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THE DIOPHANTINE EQUATION x2 + 2a · 17b = yn
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Abstract. Let Z, N be the sets of all integers and positive integers, respectively. Let p

be a fixed odd prime. Recently, there have been many papers concerned with solutions
(x, y, n, a, b) of the equation x2 + 2apb = yn, x, y, n ∈ N, gcd(x, y) = 1, n > 3, a, b ∈ Z,
a > 0, b > 0. And all solutions of it have been determined for the cases p = 3, p = 5, p = 11
and p = 13. In this paper, we mainly concentrate on the case p = 3, and using certain
recent results on exponential diophantine equations including the famous Catalan equation,
all solutions (x, y, n, a, b) of the equation x2+2a ·17b = yn, x, y, n ∈ N, gcd(x, y) = 1, n > 3,
a, b ∈ Z, a > 0, b > 0, are determined.

Keywords: exponential diophantine equation, modular approach, arithmetic properties
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1. Introduction

Let Z,N be the sets of all integers and positive integers respectively. Let p be

a fixed odd prime. Recently, there have been many papers concerned with solutions

(x, y, n, a, b) of the equation

(1.1) x2 + 2apb = yn, x, y, n ∈ N, gcd(x, y) = 1, n > 3, a, b ∈ Z, a > 0, b > 0.

All solutions of (1.1) have been determined for the following cases:

1. (F. Luca [12]) p = 3.

2. (F. Luca and A.Togbé [13]) p = 5.

3. (I. N.Cangul, M.Demirci, F. Luca, A. Pintér and G. Soydan [5]) p = 11.

4. (F. Luca and A.Togbé [14]) p = 13.

In this paper, using certain recent results on exponential diophantine equations

including the famous Catalan equation, we solve (1.1) for p = 17. We prove the

following result:
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Theorem. The equation

(1.2) x2 + 2a · 17b = yn, x, y, n ∈ N, gcd(x, y) = 1, n > 3, a, b ∈ Z, a > 0, b > 0

has only the solutions (x, y, n, a, b) = (5, 3, 3, 1, 0), (7, 3, 4, 5, 0), (11, 5, 3, 2, 0), (8, 3, 4,

0, 1), (1087, 33, 4, 8, 1), (5, 7, 4, 7, 1), (9, 5, 4, 5, 1), (47, 9, 4, 8, 1), (47, 3, 8, 8, 1) and

(495, 23, 4, 11, 1).

We notice that if p ≡ 7 (mod 8), then (1.1) probably has solutions (x, y, n, a, b)

with a = 0 and y is even. Thus it can be seen that this case is very hard.

Equation (1.1) is a special case of the general exponential diophantine equation

Axm + Bzr = Cyn and such equations can be thought of as generalized Fermat

equations. These equations can be attacked using the abc conjecture, which is still

a famous unsolved problem. The abc conjecture says that for any fixed ε > 0, there

is a constant K(ε) such that if a + b = c are three mutually coprime integers, then

max(|a|, |b|, |c|) 6 K(ε)(rad(abc))1+ε,

where (rad(abc) is the product of the distinct primes dividing abc. Applying this

conjeture to our equation x2 + 2apb = yn shows that for any fixed prime p there

are only finitely many (x, y, n, a, b). Since the abc conjeture is still unsolved, it is of

interest to try to show this directly using other methods. This is why we look at this

equation.

2. Preliminaries

Lemma 2.1 ([7]). The equation

(2.1) X3 + 1 = 2Y 2, X, Y ∈ N

has only the solutions (X, Y ) = (1, 1) and (23, 78).

Let q be an odd prime, let D be a positive integer.

Lemma 2.2 ([2]). If q > 5, then the equation

(2.2) Xq + 1 = 2Y 2, X, Y ∈ N

has only the solution (X, Y ) = (1, 1).
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Lemma 2.3 ([11]). The equation

(2.3) X4 − DY 2 = −1, X, Y ∈ N

has at most one solution (X, Y ).

Applying Lemma 2.3, we can immediately obtain the following lemma.

Lemma 2.4. The equation

(2.4) X4 − 2Y 2 = −1, X, Y ∈ N

has only the solution (X, Y ) = (1, 1).

Lemma 2.5 ([8], [10]). The equation

(2.5) X2 + 2m = Y n, X, Y, m, n ∈ N, gcd(X, Y ) = 1, n > 2

has only the solutions (X, Y, m, n) = (3, 5, 4, 2), (5, 3, 1, 3), (7, 3, 5, 4) and (11, 5, 2, 3).

Lemma 2.6 ([16]). The equation

(2.6) X2 − 2m = Y 3, X, Y, m ∈ N, gcd(X, Y ) = 1, Y > 1

has only the solution (X, Y, m) = (71, 17, 7).

Lemma 2.7 ([17]). If q > 5, then the equation

(2.7) X2 − 2m = Y q, X, Y, m ∈ N, gcd(X, Y ) = 1, Y > 1, m > 1

has no solution (X, Y, m).

Lemma 2.8 ([3]). If D = 22r − 3 · 2r+1 + 1, where r is a positive integer with

r > 1, then the equation

(2.8) X2 − D = 2n, X, n ∈ N

has only the solutions (X, n) = (2r−3, 3), (2r−1, r+2), (2r +1, r+3) and (3 ·2r−1,

2r + 3).

Put r = 3. Applying Lemma 2.8, we can obtain the following lemma.
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Lemma 2.9. The equation

(2.9) X2 − 17 = 2m, X, m ∈ N

has only the solutions (X, n) = (5, 3), (7, 5), (9, 6) and (23, 9).

Lemma 2.10 ([15]). The equation

(2.10) Xm − Y n = 1, X, Y, m, n ∈ N, min(X, Y, m, n) > 1

has only the solution (X, Y, m, n) = (3, 2, 2, 3).

Let D, k be positive integers such that k > 1, 2 ∤ k and gcd(D, k) = 1. Further let

h(−4D) denote the class number of positive binary quadratic forms of discriminant

−4D.

Lemma 2.11 ([9]). Every solution (X, Y, Z) of the equation

(2.11) X2 + DY 2 = kZ , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0

can be expressed as

Z = Z1t, t ∈ N,

X + Y
√
−D = λ1(X1 + λ2Y1

√
−D)t, λ1, λ2 ∈ {±1},

where (X1, Y1, Z1) is a positive integer solution of (2.11) with Z1 | h(−4D).

Let α, β be algebraic integers. If α + β and αβ are nonzero co-prime integers and

α/β is not a root of unity, then (α, β) is called a Lucas pair. Further, let f = α + β

and g = αβ. Then we have

α =
1

2

(

f + λ
√

d
)

, β =
1

2

(

f − λ
√

d
)

, λ ∈ {±1},

where d = f2−4g. We call (f, d) the parameters of the Lucas pair (α, β). Two Lucas

pairs (α1, β1) and (α2, β2) are equivalent if α1/α2 = β1/β2 = ±1. Given a Lucas

pair (α, β), one defines the corresponding sequence of Lucas numbers by

(2.12) Ln(α, β) =
αn − βn

α − β
, n = 0, 1, 2, . . . .

For equivalent Lucas pairs (α1, β1) and (α2, β2), we have Ln(α1, β1) = ±Ln(α2, β2)

for any n > 0. A prime l is called a primitive divisor of Ln(α, β) (n > 1) if

l | Ln(α, β) and l ∤ dL1(α, β) . . . Ln−1(α, β).
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Lemma 2.12 ([6]). If l is a primitive divisor of Ln(α, β), then l ≡ ±1 (mod n).

A Lucas pair (α, β) such that Ln(α, β) has no primitive divisor will be called an

n-defective Lucas pair.

Lemma 2.13 ([1], [18]). Let n satisfy 4 < n 6 30 and n 6= 6. Then, up to

equivalence, all parameters of n-defective Lucas pairs are given as follows:

(i) n = 5, (f, d) = (1, 5), (1,−7), (2,−40), (1,−11), (1,−15), (12,−76) and

(12,−1364).

(ii) n = 7, (f, d) = (1,−7) and (1,−19).

(iii) n = 8, (f, d) = (2,−24) and (1,−7).

(iv) n = 10, (f, d) = (2,−8), (5,−3) and (5,−47).

(v) n = 12, (f, d) = (1, 5), (1,−7), (1,−11), (2,−56), (1,−15) and (1,−19).

(vi) n ∈ {13, 18, 30}, (f, d) = (1,−7).

A positive integer n is called totally non-defective if no Lucas pair is n-defective.

Lemma 2.14 ([4]). If n > 30, then n is totally non-defective.

Lemma 2.15. Let q be an odd prime with q > 5, and let (X, Y ) be a solution of

the equation

(2.13) X2 + DY 2 = kq, X, Y ∈ Z, gcd(X, Y ) = 1.

If q ∤ h(−4D), then Y must have an odd prime divisor l satisfying l ≡ ±1 (mod q),

except for (D, k, q) = (19, 55, 5) and (341, 377, 5).

P r o o f. Since q ∤ h(−4D), applying Lemma 2.11 we have

(2.14) X + Y
√
−D = λ1(X1 + λ2Y1

√
−D)q, λ1, λ2 ∈ {±1},

where X1 and Y1 satisfy

(2.15) X2
1 + DY 2

1 = k, X1, Y1 ∈ N, gcd(X1, Y1) = 1.

Let

(2.16) α = X1 + Y1

√
−D, β = X1 − Y1

√
−D.

By (2.14) and (2.15), α + β = 2X1 and αβ = k are co-prime positive integers.

Further, since α/β satisfies k(α/β)2 − (X2
1 − DY 2

1 )(α/β) + k = 0, α/β is not a root

of unity. Therefore, (α, β) is a Lucas pair with parameters (f, d) = (2X1,−4DY 2
1 ).
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Let Ln(α, β) denote the n-th corresponding Lucas numbers. By (2.12), (2.14) and

(2.16), we get

(2.17) Y = Y1|Lq(α, β)|.

Since q is an odd prime with q > 5, applying Lemma 2.13 and 2.14 we find from

(2.15) and (2.16) that, if (D, k, q) 6= (19, 55, 5) and (341, 377, 5), then Lq(α, β) has

a primitive divisor l. Further, by (2.17) we have l | Y . Thus, since 2 ∤ Lq(α, β), by

Lemma 2.12, Y has an odd primitive divisor l with l ≡ ±1 (mod q). The lemma is

proved. �

3. Proof of the theorem

Let (x, y, n, a, b) be a solution of (1.2). We now proceed to prove the theorem in

the following four cases separately.

Case I. a = b = 0.

By (1.2), we get x2 + 1 = yn. But, since n > 3, by Lemma 2.10 this is impossible.

Case II. a > 0 and b = 0.

Then (X, Y, m, n) = (x, y, a, n) is a solution of (2.5).

Thus, applying Lemma 2.5, we obtain

(3.1) (x, y, n, a, b) = (5, 3, 3, 1, 0), (7, 3, 4, 5, 0), (11, 5, 3, 2, 0).

Case III. a = 0 and b > 0.

Then we have

(3.2) x2 + 17b = yn, x, y, n, b ∈ N, gcd(x, y) = 1, n > 3.

We first consider the case of 4 | n. From (3.2), we get yn/2 + x = 17b and

yn/2 − x = 1. This implies that

(3.3) 2yn/2 = 17b + 1,

and

(3.4) 2x = 17b − 1.

If b = 1, then from (3.3) we get y = 3 and n = 4. Hence, by (3.4), we obtain the

solution

(3.5) (x, y, n, a, b) = (8, 3, 4, 0, 1).
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If b is a power of 2, then b = 2r, where r is a positive integer. Since n/2 is even,

(3.3) is false for r = 1. When r > 1, (X, Y ) = (17b/4, yn/4) is a solution of (2.4).

But, by Lemma 2.4, this is impossible.

If b > 1 and b is not a power of 2, then b has an odd prime divisor q. By (3.3),

(X, Y ) = (17b/q, yn/4) is a solution of (2.2). But, by Lemmas 2.1 and 2.2, this is

impossible.

We next consider the case of 4 ∤ n. Since n > 3, n has an odd prime divisor q. Let

z = yn/q, then (3.2) can be written as

(3.6) x2 + 17b = zq, x, z, b ∈ N, gcd(x, z) = 1.

If 2 | b and q = 3, then since h(−4) = 1, applying Lemma 2.11, from (3.6) we get

(3.7) x + 17b/2
√
−1 = λ1

(

X1 + λ2Y1

√
−1

)3
, λ1, λ2 ∈ {±1},

where X1 and Y1 satisfy

(3.8) X2
1 + Y 2

1 = z, X1, Y1 ∈ N, gcd(X1, Y1) = 1.

By (3.7) we obtain

(3.9) 17b/2 = Y1|3X2
1 − Y 2

1 |.

Since (3/17) = −1, where (⋆/⋆) is the Legendre symbol, we have 17 ∤ 3X2
1 − Y 2

1 .

Therefore, by (3.9), we get Y1 = 17b/2 and

(3.10) 3X2
1 − 17b = −1.

But, since (−3/17) = −1, (3.10) is impossible.

If 2 | b and q > 5, then (X, Y ) = (x, 17b/2) is a solution of (2.13) for (D, k) = (1, z).

But, since h(−4) = 1 and q ∤ 17 ± 1, by Lemma 2.15, this is impossible.

Since h(−68) = 4, using the same method, we can prove that if 2 ∤ b, then (3.6) is

false.

Case IV. a > 0 and b > 0.

Then (1.2) can be written as

(3.11) x2 + 2a · 17b = yn, x, y, n, a, b ∈ N, gcd(x, y) = 1, n > 3.

We first consider the case of 4 | n. By (3.11), we get either

(3.12) yn/2 + x = 2a−1 · 17b, yn/2 − x = 2,
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or

(3.13) yn/2 + x =

{

2a−1,

2 · 17b,
yn/2 − x =

{

2 · 17b,

2a−1.

If (3.12) holds, then we have

(3.14) yn/2 = 2a−2 · 17b + 1

and

(3.15) x = 2a−2 · 17b − 1.

Further, since n/2 is even, by (3.14) we obtain either

(3.16) yn/4 + 1 = 2a−3 · 17b, yn/4 − 1 = 2,

or

(3.17) yn/4 + 1 =

{

2a−3,

2 · 17b,
yn/4 − 1 =

{

2 · 17b,

2a−3.

When (3.15) holds, we have yn/4 = 3 and 2a−3 · 17b = 4, a contradiction. When

(3.17) holds, we get

(3.18) yn/4 = 2a−4 + 17b

and

(3.19) 2a−1 − 17b = ±1.

Applying Lemma 2.10 to (3.19), we obtain b = 1 and a = 8.

Hence, by (3.18), we get the solution

(3.20) (x, y, n, a, b) = (1087, 33, 4, 8, 1).

If (3.13) holds, then we have

(3.21) yn/2 = 2a−2 + 17b

and

(3.22) x = |2a−2 − 17b|.
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When b = 1, we see from (3.21) that (X, m) = (yn/4, a − 2) is a solution of (2.9).

Therefore, by Lemma 2.9, we get from (3.21) and (3.22) that

(3.23) (x, y, n, a, b) = (5, 7, 4, 7, 1), (9, 5, 4, 5, 1), (47, 9, 4, 8, 1),

(47, 3, 8, 8, 1) and (495, 23, 4, 11, 1).

When 2 | b, we get from (3.21) that yn/4 + 17b/2 = 2a−3 and yn/4 − 17b/2 = 2.

This implies that

(3.24) 17b/2 = 2a−4 − 1.

But, since a > 7, by (3.24) we get 1 ≡ 17b/2 ≡ 2a−4 − 1 ≡ −1 (mod 8), a contradic-

tion.

Let b > 1 and 2 ∤ b, where b has an odd prime divisor q. For q = 3, applying

Lemma 2.6 to (3.21), we obtain the solution

(3.25) (x, y, n, a, b) = (4785, 71, 4, 9, 3)

by (3.22). For q > 5, by Lemma 2.7, (3.21) is impossible, since a > 5.

We next consider the case of 4 ∤ n. Since n > 2, n has an odd prime divisor q. Let

z = yn/q (3.11) can be written as

(3.26) x2 + 2a · 17b = zq, x, z, a, b ∈ N, gcd(x, z) = 1.

If 2 | a, 2 | b and q = 3, then since h(−4) = 1, by Lemma 2.11, from (3.26) we get

(3.27) x + 2a/2 · 17b/2
√
−1 = λ1(X1 + λ2Y1

√
−1)3, λ1, λ2 ∈ {±1},

where X1 and Y1 satisfy

(3.28) X2
1 + Y 2

1 = z, X1, Y1 ∈ N, gcd(X1, Y1) = 1.

By (3.27), we have

(3.29) 2a/2 · 17b/2 = Y1|3X2
1 − Y 2

1 |.

Since 2 | X1Y1 and (3/17) = −1, we see from (3.29) that Y1 = 2a/2 · 17b/2 and

(3.30) 3X2
1 − 2a · 17b = ±1.

But, since (±3/17) = −1, (3.30) is impossible.

Since h(−8) = 1 and h(−68) = h(−136) = 4, using the same method we can deal

with the other cases for q = 3.

If 2 | a, 2 | b and q > 5, then since h(−4) = 1 and q ∤ 17 ± 1, by Lemma 2.15,

(3.26) is false. Using the same method, we can remove the other cases for q > 5.

Thus, the combination of solutions (3.1), (3.5), (3.20), (3.23) and (3.25), proves

the theorem. �
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