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Abstract. We investigate functional equations f(p(x)) = q(f(x)) where p and q are given
real functions defined on the set R of all real numbers. For these investigations, we can use
methods for constructions of homomorphisms of mono-unary algebras. Our considerations
will be confined to functions p, q which are strictly increasing and continuous on R. In this
case, there is a simple characterization for the existence of a solution of the above equation.
First, we give such a characterization. Further, we present a construction of any solution
of this equation if some exists. This construction is demonstrated in detail and discussed
by means of an example.
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A group of mathematicians around Jan Chvalina have investigated functional

equations f(p(x)) = q(f(x)) for a couple of given real functions p and q—see papers

[1]–[9]. They have demonstrated the importance of such functional equations e.g. in

works [14]–[16]. A large collection of functions p, q they considered were strictly

increasing continuous functions ([8], [9]).

Therefore, we concentrate our considerations of the above equations on p and q

which are strictly increasing continuous real functions.

More exactly, let R be the set of all real numbers. We investigate the equation

(1) f(p(x)) = q(f(x))

where p, q : R → R are given real functions and f : R → R a searched real one—as

a so called solution f of this equation.

If we consider mono-unary algebras (R, p) and (R, q) where p, q : R → R are real

functions, then the form of equation (1) implies the following. A function f : R → R
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is a solution of (1) if and only if f is a homomorphism of (R, p) into (R, q). Hence we

can look for solutions of the functional equation (1) using the methods of mono-unary

algebras.

1. Existence of solutions

As usual, under a mono-unary algebra we will understand a pair (A, o) where A

is a set and o a unary operation on A. Let N denote the set of natural numbers (or

non negative integers) and let Z denote the set of all integers. For any n ∈ N, on

denotes the n-th iteration of o and further, for any x ∈ A, o−1(x) denotes the set of

all origins of x for the mapping o; if o is injective and n ∈ N, n > 0 is arbitrary, then

o−1 denotes the inverse mapping of o and we denote o−n = (o−1)n.

We will use basic concepts for mono-unary algebras, as a connected mono-unary al-

gebra (i.e. (A, o) such that, for any x, y ∈ A, there are m, n ∈ N with om(x) = on(y))

and a homomorphism of (A, o) into a mono-unary algebra (A′, o′) (i.e. a mapping

h : A → A′ with h(o(x)) = o′(h(x)) for any x ∈ A). For a basis of the theory of

mono-unary algebras—see for example [10] or [17].

By Cn we will denote a cycle with n elements, i.e. a mono-unary algebra

({a1, a2, . . . , an}, o) such that o(ai) = ai+1 for i = 1, 2, . . . , n − 1 and o(an) = a1

hold. Further, we will use mono-unary algebras (N, ν0) and (Z, ν) where ν is a unary

operation on Z defined by ν(x) = x + 1 for any x ∈ Z and ν0 = ν ∩ N2 holds. To

simplify matters, we will denote both operations ν0 and ν by the same symbol ν.

Furthermore, if A is a set, then cardA will denote the cardinal number of A. And

finally, the symbol ≃ denotes the existence of an isomorphism between two algebras.

Lemma 1. Let (A, o) be a connected mono-unary algebra. Then o is injective if

and only if

(A, o) ≃







CcardA for A finite,

(Z, ν) for A infinite and o surjective,

(N, ν) otherwise

is satisfied.

P r o o f. If (A, o) has one of the described forms, then for any x ∈ A,

card o−1(x) 6 1 holds and so o is injective.

On the other hand, let o be injective.

First, let cardA < ℵ0. Then there is a cycle Z ⊆ A. If we had Z 6= A, then there

would exist x ∈ A − Z such that o(x) ∈ Z. Thus, we would have card o−1(o(x)) > 1

which would be a contradiction. Therefore, Z = A.
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Further, let cardA > ℵ0 hold. If there is a ∈ A with card o−1(a) = 0 (o is not

surjective), then the mapping α : A → N such that α(on(a)) = n for any n ∈ N is

an isomorphism of (A, o) and (N, ν). Otherwise, if card o−1(x) = 1 for any x ∈ A

and a ∈ A is arbitrary, then the mapping β : A → Z such that β(on(a)) = n for any

n ∈ Z is an isomorphism of (A, o) and (Z, ν). �

Starting from now, if we speak about components of a mono-unary algebra, then

we always mean connected components of this algebra.

Corollary 2. Let (A, o) be a mono-unary algebra where o is injective. Then the

following assertions are valid.

a) The components of (A, o) are either cycles or they are isomorphic to (Z, ν) or

to (N, ν).

b) If o is surjective on A, then the components of (A, o) are either cycles or they

are isomorphic to (Z, ν).

Now, we want to consider a special case of mono-unary algebras. They are mono-

unary algebras on the set of real numbers R, i.e. algebras of the kind (R, p) where p

is a function p : R → R.

At the same time, we will suppose that p is injective and, moreover, we will choose

the case that p is strictly increasing. Strictly increasing (stricly decreasing) functions

or sequences will be called increasing (decreasing) in short.

First, we want to mention some properties of functions that are generated by

a given function p. (As above, if p : R → R is a function, then p−1 denotes the

inverse function to p, if some exists and further, if n ∈ N is arbitrary and (p−1)n

exists, then we denote p−n = (p−1)n.) The following fact is well-known.

Lemma 3. Let p : R → R be an increasing function. Then the function p−1

exists and is increasing.

Further, for any increasing function p on R, the iterations of p have some simple

properties. At the same time, we can form “iterations” of p with negative powers as

well. For this, if α ∈ N ∪ {ω0} is arbitrary (where ω0 is the ordinal type of N), then

we denote W (α) = {n ∈ N ; n < α} as usual.
Let x ∈ R be arbitrary. Furthermore, let α be the greatest ordinal number such

that p−n(x) is defined for any n ∈ W (α). Then α is a finite ordinal number or ω0.

We can investigate the sequence (p−n(x))n∈W (α).
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Lemma 4. Let p : R → R be an increasing function. Let x ∈ R be arbitrary.

Then the sequence

a) (pn(x))n∈N is increasing and (p−n(x))n∈W (α) is decreasing if and only if

p(x) > x;

b) (pn(x))n∈N is decreasing and (p−n(x))n∈W (α) is increasing if and only if

p(x) < x.

P r o o f. We prove a). The necessity of the condition is clear. On the other

hand, let p(x) > x hold. Then, by induction, pn+1(x) > pn(x) for any n ∈ N because

p is increasing. Further, for α = 1, we have nothing more to prove. Let α > 1. Then

p−1(x) is defined and since p−1(p(x)) is defined too, the condition p(x) > x implies

x = p−1(p(x)) > p−1(x) because p−1 is increasing. Then p−(n+1)(x) < p−n(x) for

any n ∈ N with n + 1 ∈ W (α) by induction.

The assertion b) is dual to a). �

Corollary 5. Let p : R → R be an increasing function. Then the following

assertions are valid.

a) (R, p) is a mono-unary algebra whose components are isomorphic to C1 or to

(Z, ν) or to (N, ν).

b) If x ∈ R is arbitrary such that p(x) > x (p(x) < x) holds, then the component

containing x is an increasing (decreasing) sequence of real numbers.

Indeed, the assertion a) is a consequence of Lemma 1 where the cycles cannot have

more than just one element by Lemma 4. Furthermore, b) is a direct consequence of

assertion a) and Lemma 4.

Another well-known fact for increasing functions is the following lemma.

Lemma 6. Let p : R → R be an increasing function. Then lim
x→−∞

p(x) and

lim
x→∞

p(x) exist.

We denote

p(−∞) = lim
x→−∞

p(x)

and

p(∞) = lim
x→∞

p(x)

for any increasing function p : R → R.

In what follows, we confine our considerations to continuous increasing functions.

For these functions, the following facts are well-known.
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Lemma 7. Let p : R → R be an increasing continuous function. Then p(R) =

(p(−∞), p(∞)) holds and thus, p is surjective on R if and only if p(−∞) = −∞ and
p(∞) = ∞.

Lemma 8. Let p : R → R be an increasing continuous function and let a, b ∈
R ∪ {−∞,∞}, a < b be arbitrary. Then p((a, b)) = (p(a), p(b)) holds.

P r o o f. If x ∈ (a, b) is arbitrary, then a < x < b and so p(a) < p(x) < p(a)

because p is increasing. Therefore, p(x) ∈ (p(a), p(b)) holds and, altogether, we have

p((a, b)) ⊆ (p(a), p(b)).

On the other hand, let y ∈ (p(a), p(b)) be arbitrary. Then there is x ∈ R such that

p(x) = y because p is continuous on R. But, since p is increasing, x 6 a would imply

y = p(x) 6 p(a) which would be a contradiction and, similarly, x > b would lead

to a contradiction too. This implies x ∈ (a, b) and so we have y = p(x) ∈ p((a, b)).

Hence, altogether, we obtain (p(a), p(b)) ⊆ p((a, b)). �

Now, the assertion in Lemma 7 can be formulated for intervals in R generally.

Lemma 9. Let p : R → R be an increasing continuous function. Let a, b ∈
R∪{−∞,∞}, a < b be arbitrary. Then p((a, b)) = (a, b) holds if and only if p(a) = a

and p(b) = b.

P r o o f. The condition is sufficient by Lemma 8.

On the other hand, the condition is necessary. Indeed, let p((a, b)) = (a, b) be

satisfied. Then p(x) < b for any x ∈ (a, b). Since p is continuous in b, we have

lim
x→b−

p(x) = p(b) which implies p(b) 6 b. Moreover, p(x) < p(b) holds for any

x ∈ (a, b) because p is increasing. Now, if we had p(b) < b, then we would have

p(x) < p(b) < b for any x ∈ (a, b) which would be a contradiction to the surjectivity

of p on (a, b). Hence p(b) = b. Analogously, we can show that p(a) = a holds. �

In algebraic setting, we obtain the following assertion.

Corollary 10. Let p : R → R be an increasing continuous function. Let a, b ∈
R∪{−∞,∞}, a < b be arbitrary. Then ((a, b), p|(a, b)) is a subalgebra of (R, p) with

components isomorphic to (Z, ν) or to C1 if and only if p(a) = a and p(b) = b hold.

Indeed, this assertion is a consequence of Lemma 9 and Corollary 2 b) because of

surjectivity of p on the interval (a, b).

Example 11. Let p(x) = x3 for any x ∈ R. Then p is increasing and

continuous on R and (R, p) is a mono-unary algebra such that p(a) = a for

a ∈ {−1, 0, 1}. Its subalgebras ({a}, p|{a}) for a ∈ {−1, 0, 1} are isomorphic
to C1 and further, the components of the subalgebra ((a, b), p|(a, b)) for any

(a, b) ∈ {(−∞,−1), (−1, 0), (0, 1), (1,∞)} are isomorphic to (Z, ν).
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Further, for any increasing continuous function p on R, the iterations of p have

some other simple properties.

Corollary 12. Let p : R → R be a continuous increasing function. Let x ∈ R be

arbitrary. Then the following assertions hold.

a) lim
n→∞

pn(x) = a exists for some a ∈ R ∪ {−∞,∞} and p(a) = a holds.

b) Let p−n(x) be defined for any n ∈ N. Then lim
n→∞

p−n(x) = a exists for some

a ∈ R ∪ {−∞,∞} and p(a) = a holds.

P r o o f. a) If p(x) = x, then pn(x) = x for any n ∈ N and lim
n→∞

pn(x) = x = p(x)

holds which is the assertion of a). Let, on the other hand, p(x) > x hold. Then the

sequence (pn(x))n∈N is increasing by 4 a) and thus lim
n→∞

pn(x) = a exists for some

a ∈ R ∪ {∞}.
Let a = ∞. Then, by definition of p(∞), p(∞) = lim

t→∞
p(t) = lim

n→∞
pn(x) = ∞ and

we have finished again. Hence now, let a ∈ R. Since p is continuous in a we obtain

lim
n→∞

p(pn(x)) = p(a), which implies p(a) = a because lim
n→∞

pn+1(x) = a holds.

Analogously, we can prove a) for p(x) < x using 4 b), considering a decreasing

sequence (pn(x))n∈N and a = lim
n→∞

with a ∈ R ∪ {−∞}.
Finally, the assertion b) is dual to a). �

For a characterization of the existence of homomorphisms of the investigated

mono-unary algebras on R, we define the following mappings. Let ∞1, ∞2 be two

arbitrary symbols (used in paper [12] for the following special definition); please, do

not confuse ∞1, ∞2 with symbols −∞ and ∞ for extension of set R. Further, let ω

be symbol for the ordinal number of N which we use instead of ω0 to be briefer.

Let p : R → R be an increasing continuous function, A = (A, p|A) a component of

the algebra (R, p). Then we put

χA =







∞2 if A ≃ C1,

∞1 if A ≃ (Z, ν),

ω if A ≃ (N, ν).

Let {Ak ; k ∈ K} be the system of all components of the algebra (R, p). Then we

define

char(R, p) = {χAk ; k ∈ K}

and call it the characteristic of p.

For the sake of brevity, we will write char(p) instead of char(R, p).

We see that char(p) ⊆ {ω,∞1,∞2} for any mono-unary algebra (R, p) where p is

increasing and continuous.
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Now, for any given function on R, we define the following set which is very impor-

tant for the computation of its characteristic.

Let p : R → R be an increasing continuous function. Then we define

Ip = {x ∈ R ∪ {−∞,∞} ; p(x) = x}.

Lemma 13. Let p : R → R be an increasing continuous function. Then the

following assertions hold.

a) Let a, b ∈ R, a < b be such that the inequlities p(a) > a and p(b) < b (or

p(a) < a and p(b) > b) are satisfied. Then Ip ∩ (a, b) 6= ∅ holds.
b) Ip 6= ∅ holds.

P r o o f. a) Let p(a) > a and p(b) < b hold. Define q(x) = x − p(x) for any

x ∈ R. Then q is a continuous function on R. Moreover, q(a) = a − p(a) < 0 and

q(b) = b − p(b) > 0. Thus, there is c ∈ (a, b) such that q(c) = 0. Hence p(c) = c and

c ∈ Ip.

The other assertion with the opposite inequalities is dual to the former.

b) If p(∞) = ∞ then ∞ ∈ Ip.

Now, let p(∞) = b < ∞. If we had p(−∞) = −∞, then we would have −∞ ∈ Ip

and we could finish again.

Hence, let p(−∞) = a > −∞. By Lemma 7, a < p(x) < b for any x ∈ R. Thus,

p(a) > a and p(b) < b and we obtain Ip ∩ (a, b) 6= ∅ by a) of this lemma. Hence
Ip 6= ∅ holds. �

Lemma 14. Let p : R → R be an increasing continuous function. Then

a) ∞2 ∈ char(p) if and only if Ip ∩ R 6= ∅,
b) ∞1 ∈ char(p) if and only if there are a, b, x ∈ R∪{−∞,∞} with a < x < b such

that a, b ∈ Ip and x /∈ Ip hold,

c) ω ∈ char(p) if and only if {−∞,∞} 6⊆ Ip.

P r o o f. a) ∞2 ∈ char(p) holds if and only if there is x ∈ R with p(x) = x, i.e.

Ip ∩ R 6= ∅ is satisfied.
b) For the necessity of the condition, let ∞1 ∈ char(p) hold. Then there is x ∈ R

such that the set {pn(x) ; n ∈ Z} is infinite. This implies that x /∈ Ip. Further,

lim
n→−∞

pn(x) = a and lim
n→∞

pn(x) = b exist for some a, b ∈ R∪{−∞,∞} and p(a) = a

and p(b) = b hold by Corollary 10, i.e. a, b ∈ Ip. Finally, by Lemma 4, either

a < x < b or b < x < a holds.

For the sufficiency, let the condition be satisfied. Then ∞1 ∈ char(p) by Corol-

lary 10.
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c) ω ∈ char(p) holds exactly in the case that there is x ∈ R such that p−1(x) is

not defined, i.e. p is not surjective. But, by Lemma 7, this is satisfied if and only if

−∞ < p(−∞) or p(∞) < ∞, i.e. {−∞,∞} 6⊆ Ip holds. �

Now, we can compute char(p) for any increasing continuous function on R.

Lemma 15. Let p : R → R be an increasing continuous function.

a) If {−∞,∞} ⊆ Ip, then

char(p) =







{∞2} if Ip ∩ R = R,

{∞1} if Ip ∩ R = ∅,
{∞1,∞2} otherwise.

b) If {−∞,∞} 6⊆ Ip, then

char(p) =







{ω} if Ip ∩ R = ∅,
{ω,∞2} if Ip ∩ {−∞,∞} = ∅ and card(Ip ∩ R) = 1,

{ω,∞1,∞2} otherwise.

P r o o f. a) ω /∈ char(p) holds by Lemma 14 c).

Now, if Ip ∩ R = R, then ∞2 ∈ char(p) by Lemma 14 a) and ∞1 /∈ char(p) by

Lemma 14 b) because the condition in b) requires the existence of x ∈ R with x /∈ Ip.

Hence char(p) = {∞2}.
Further, if Ip ∩ R = ∅, then ∞2 /∈ char(p) by Lemma 14 a) and ∞1 ∈ char(p) by

Lemma 14 b) because −∞,∞ ∈ Ip and x /∈ Ip holds for some (arbitrary) x ∈ R.

Finally, if R 6= Ip ∩ R 6= ∅, then char(p) = {∞1,∞2} by Lemma 14 a) and b)
because the conditions of both the assertions are satisfied.

b) ω ∈ char(p) holds by Lemma 14 c).

Further, the conditions {−∞,∞} 6⊆ Ip and card(Ip ∩ {−∞,∞}) 6 1 are equal.

First moreover, let card(Ip ∩ (R ∪ {−∞,∞})) 6 1 be satisfied and let x ∈ R be

arbitrary.

If p(x) = x, then x ∈ Ip which implies ∞2 ∈ char(p).

Now, let p(x) 6= x hold. We generate the set A = {pn(x) ; n ∈ N} ∪ {p−n(x) ; n ∈
W (α)} where α is the greatest ordinal number such that p−n(x) is defined for any

n ∈ W (α). Put a = lim
n→∞

pn(x). Then a ∈ Ip by Corollary 12 a). But this implies

that α is finite because if we had b = lim
n→∞

p−n(x), then we would obtain b ∈ Ip by

Corollary 12 b) and since b 6= a holds we would have a contradiction to the above

assumption. Therefore, the component (A, A|p) of (R, p) is isomorphic to (N, ν).
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Altogether in this case, any component of (R, p) is either a cycle (at most one)

or it is isomorphic to (N, ν). Hence, char(p) = {ω} holds for Ip ∩ R = ∅ and
char(p) = {ω,∞2} holds for card(Ip ∩R) = 1 and, consequently, Ip ∩ {−∞,∞} = ∅.
Secondly, let, on the contrary, card(Ip ∩ (R ∪ {−∞,∞})) > 1 be satisfied. Since

card(Ip ∩ {−∞,∞}) 6 1 we have Ip ∩ R 6= ∅ and so ∞2 ∈ char(p).

Further, there are components of (R, p) which are isomorphic to (Z, ν) by Corol-

lary 10 (because card(Ip ∩ R) = 1 implies card(Ip ∩ {−∞,∞}) = 1) and so ∞1 ∈
char(p) as well. Altogether, char(p) = {ω,∞1,∞2} in this case. �

We want to notice that the set {ω,∞1} is the only nonempty subset of the set
{ω,∞1,∞2} which does not occur as a value of char(p).

The two formulas of Lemma 15 for computing char(p) of a given function p can

be joined together in a single one. In this formula, we can observe the “interaction”

of both parts of the set Ip, namely of part Ip ∩ R and part Ip ∩ {−∞,∞}.

Theorem 16. Let p : R → R be an increasing continuous function.

Denote I
(R)
p = Ip ∩R and I

(∞)
p = Ip ∩ {−∞,∞}. Then

char(p) =







{∞2} if I
(R)
p = R,

{∞1} if I
(R)
p = ∅ and I

(∞)
p = {−∞,∞},

{ω} if I
(R)
p = ∅ and I

(∞)
p 6= {−∞,∞},

{∞1,∞2} if ∅ 6= I
(R)
p 6= R and I

(∞)
p = {−∞,∞},

{ω,∞2} if cardI
(R)
p = 1 and I

(∞)
p = ∅,

{ω,∞1,∞2} otherwise.

Examples 17. (More detailed computations for some of the following functions

can be found e.g. in [8].)

a) Let p(x) = x for any x ∈ R. Then Ip ∩ R = R which, by Lemma 15 a), implies

char(p) = {∞2}; it is the only function with this characteristic.
b) Let p ∈ {{x + c ; x ∈ R}, c ∈ R − {0}} ∪ {{x + ax ; x ∈ R}, a ∈ R, a > 1}.

Then Ip = {−∞,∞} which, by Lemma 15 a), implies char(p) = {∞1}.
c) Let p ∈ {{x3 ; x ∈ R}, {x + sin x ; x ∈ R}}. Then Ip = {−1, 0, 1,−∞,∞} or

Ip = {kπ ; k ∈ Z} ∪ {−∞,∞} which, by Lemma 15 a), implies char(p) = {∞1,∞2}.
d) Let p ∈ {{ax ; x ∈ R}, a ∈ R, a > 1}. Then Ip = {∞} which, by Lemma 15 b),

implies char(p) = {ω}.
e) Let p ∈ {{arctanx ; x ∈ R}} ∪ {{ax/(a + |x|) ; x ∈ R}, a ∈ R, a > 0} ∪

{{ax/
√

a2 + x2 ; x ∈ R}, a ∈ R, a > 0}. Then Ip = {0} which, by Lemma 15 b),
implies char(p) = {ω,∞2}.
f) Let p ∈ {{ax − 1; x ∈ R} ; a ∈ R, a > 1}. Then Ip = {0,∞} which, by

Lemma 15 b), implies char(p) = {ω,∞1,∞2}.
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For a simple characterization of the existence of a homomorphism of a mono-unary

algebra (R, p) into another one (R, q), we use the following relations.

We define the relation 6 on the set {ω,∞1,∞2} of the symbols used above so that
6 is the reflexive and transitive closure of the relation < = {(ω,∞1), (∞1,∞2)}. See
Figure 1 where we show the relation <. (The symbols ∞1 and ∞2 are abbreviated,

respectively by 1 and 2 there.) Then 6 is an ordering.

ω

1

2

Figure 1

Further, we define the relation ̺ on the set Θ = {{ω}, {∞1}, {∞2}, {ω,∞2},
{∞1,∞2}, {ω,∞1,∞2}} of all possible values of a characteristic used above as fol-
lows.

If θ, θ′ ∈ Θ are arbitrary, then θ ̺ θ′ holds if and only if, for any α ∈ θ, there is

α′ ∈ θ′ with α 6 α′.

We see that the relation ̺ is a quasi-ordering on Θ. It is represented in Figure 2

where the reflexive arrows are omitted and a simple line without arrows means arrows

in both directions. (The symbols ∞1 and ∞2 are abbreviated by 1 and 2 again.)

{2}

{1, 2}

{1}

{ω}

{ω, 2}

{ω, 1, 2}

Figure 2

Now, we come back to the original question about the existence of solutions of the

functional equation (1). The following assertion is a consequence of investigations

in [12] (cf. [11], too); or—without [12]—it follows easily by a direct consideration of

the facts.
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Theorem 18. Let p, q : R → R be two increasing continuous functions. Then the

following assertions are equivalent.

a) There is a homomorphism of (R, p) into (R, q).

b) Equation f(p(x)) = q(f(x)) has a solution.

c) char(p) ̺ char(q) is satisfied.

Examples 19. From Examples 17, we choose a function in each of the groups a)

through f) as their representative: x, x + 1, x3, ex, arctanx, ex − 1. Then we obtain

the following values of their characteristics:

char(x) = {∞2},
char(x + 1) = {∞1},
char(x3) = {∞1,∞2},
char(ex) = {ω},
char(arctanx) = {ω,∞2},
char(ex − 1) = {ω,∞1,∞2}.

The following table shows the solvability of functional equation (1), i.e. f(p(x)) =

q(f(x)), for given functions p and q where “the functions p” are in the rows and “the

functions q” are in the columns. Symbol ‘+’ means that equation (1) is solvable,

symbol ‘−’ that it is not. Symbol ‘(+)’ means that (1) has a solution but it is one
function only which is constant.

p q x x + 1 x3 ex arctanx ex − 1
x + − + − (+) +
x + 1 + + + − (+) +
x3 + − + − (+) +
ex + + + + + +
arctanx + − + − + +
ex − 1 + − + − + +

2. Construction of solutions

Now, we want to discuss possibilities of a construction of solutions of functional

equation (1), i.e. f(p(x)) = q(f(x)), for given functions p and q if some exist.

First, we will extend the concept of a characteristic function χ that we have defined

for components of a mono-unary algebra (R, p).

Let p : R → R be an increasing continuous function. For simplicity, we will confine

our considerations to the case that the set Ip (of all x ∈ R∪{−∞,∞} with p(x) = x)

is finite.
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Now, if a ∈ Ip ∩ R is arbitrary, then the mono-unary algebra ({a}, p|{a}) is a cy-
cle C1.

Further, let a, b ∈ Ip ∪ {−∞,∞}, a < b being arbitrary such that Ip ∩ (a, b) = ∅.
In the case that a, b ∈ Ip holds, any component of the mono-unary algebra

((a, b)), p|(a, b)) is isomorphic to (Z, ν) by Corollary 10.

In the opposite case that either a = −∞ /∈ Ip or b = ∞ /∈ Ip hold (both is not

possible by Lemma 13 b)), any component of the mono-unary algebra ((a, b)), p|(a, b))

is isomorphic to (N, ν) by Lemma 1 and Corollary 10 as well.

The set Ip determines the following decomposition of the set R that we denote

by Rp:

Rp = {{a} ; a ∈ Ip ∩ R} ∪ {(a, b) ; a, b ∈ Ip ∪ {−∞,∞}, a < b, Ip ∩ (a, b) = ∅}.

Then, by the above considerations, we can define a function χ
(i)
p : Rp → {ω,∞1,

∞2} (on the set of blocks of Rp) in the following way.

If a ∈ Ip ∩R is arbitrary, then we put

χ(i)
p ({a}) = ∞2.

If a, b ∈ Ip ∪ {−∞,∞}, a < b are arbitrary such that (a, b) ∈ Rp holds, then we

define

χ(i)
p ((a, b)) =

{

∞1 if a, b ∈ Ip,

ω if either a = −∞ /∈ Ip or b = ∞ /∈ Ip.

The function χ
(i)
p can be called the interval characteristic function of p where the

elements of Ip ∩ R are intervals with one element only. For any interval J ∈ Rp,

χ
(i)
p characterizes all components of the corresponding mono-unary algebra (J, J |p).

Namely, by the definition of the function χ of a component of the mono-unary algebra

(R, p), the identity χ
(i)
p (J) = χ(C) is satisfied for any component C of (J, J |p), which

can be easily shown by the above considerations.

On the other hand, for a construction of solutions of equation (1) for given func-

tions p and q, we use the following assertion that is a consequence of Lemma 8.

Corollary 20. Let p : R → R be an increasing continuous function. If x ∈ R

is arbitrary such that p(x) > x holds and n ∈ N is arbitrary, then the following

assertions hold:

a) pn([x, p(x))) = [pn(x), pn+1(x));

b) if p−n(x) exists, then pn([p−n(x), p−n+1(x))) = [x, p(x)).

Indeed, the assertions a) and b) for open intervals are satisfied by induction using

Lemma 8. Since p is continuous on R, we obtain the assertions for the “half closed”

intervals as well.
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Obviously, a dual assertion to Corollary 20 can be formulated for an arbitrary

x ∈ R with p(x) < x.

As a further consequence, we will use the following assertion as well.

Corollary 21. Let p : R → R be an increasing continuous function. Let a, b ∈
R ∪ {−∞,∞}, a < b being arbitrary such that Ip ∩ (a, b) = ∅ holds. Then the
following assertions hold.

a) Let a, b ∈ Ip hold. If x ∈ (a, b) is arbitrary such that p(x) > x, then

{[pm(x), pm+1(x)) ; m ∈ Z} is a decomposition of the set (a, b).

b) Let a = −∞, −∞ /∈ Ip and b ∈ Ip (or b = ∞,∞ /∈ Ip and a ∈ Ip) hold.

Then {pn((−∞, p(−∞)]) ; n ∈ N} ({pn([p(∞),∞)) ; n ∈ N}, respectively) is
a decomposition of the set (a, b).

Indeed, the assertion a) is a consequence of Corollary 20 and Corollary 12 because

the condition Ip ∩ (a, b) = ∅ implies lim
n→∞

p−n(x) = a and lim
n→∞

pn(x) = b. Similarly,

the assertion b) is a consequence of Corollary 20 and Corollary 12 as well.

Clearly, a dual assertion to Corollary 21 can be formulated for any x ∈ R with

p(x) < x.

Finally, we must use the relation ̺ for the existence of a solution of equation (1) but

not only this relation, we will use the ordering 6 of the ordered set ({ω,∞1,∞2}, 6)

directly; the ordering 6 was defined as a basis for ̺ (see the definitions behind

Examples 17).

Now, we can formulate a construction of any solution of the functional equation

f(p(x)) = q(f(x)), if some exist.

Construction 22. Let p, q : R → R be increasing continuous functions.

1. Compute sets Ip and Iq .

Further, compute char(p) and char(q) as above and find out whether char(p)̺

char(q) is satisfied. If not, then there is no solution and the construction ends.

Thus, let char(p)̺ char(q) be satisfied now.

2. Determinate the decompositions Rp and Rq of R and compute the interval

characteristic functions χ
(i)
p and χ

(i)
q .

3. For p, compute the set G of the so called generators of the construction in the

following way: for any J ∈ Rp with cardJ > 1, choose xJ ∈ J arbitrary and put

GJ =

{

[xJ , p(xJ )) if xJ < p(xJ ),

(p(xJ ), xJ ] if p(xJ ) < xJ ;
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then set

G = (Ip ∩ R) ∪ (−∞, p(−∞)] ∪ [p(∞),∞) ∪
⋃

J∈Rp,cardJ>1

GJ

(where, obviously, the sets Ip ∩ R, (−∞, p(−∞)] and [p(∞),∞) can be empty).

4. Choose a function γ : G → R with the following property:

if x ∈ G is arbitrary and x ∈ J ∈ Rp and γ(x) ∈ K ∈ Rq hold, then

χ(i)
p (J) 6 χ(i)

q (K)

is satisfied.

5. Define a function fγ : R → R in the following way: let x ∈ R be arbitrary;

if x ∈ Ip, then put fγ(x) = γ(x);

if x /∈ Ip, then there is m ∈ Z such that p−m(x) ∈ G (by Corollary 21) and put

fγ(x) = qm(γ(p−m(x))).

The function fγ is a solution of the equation f(p(x)) = q(f(x)).

Example 23. We want to find some solutions of the equation

(2) f(2x + 1) = 3f(x) + 1.

We see that the given functions p(x) = 2x + 1 and q(x) = 3x + 1 are increasing

and continuous on R. Therefore, we can use Construction 22. By means of this

example, we want to demonstrate this construction; it will proceed up to the end of

this section.

Of course, it would not be too time-consuming to specify Construction 22 in

such a way that it could be formulated for any linear increasing functions p and q.

However, we prefer a shorter demonstration of Construction 22 directly on the basis

of a particular example.

For equation (2), step 1 of Construction 22 is the following.

First, since p(−1) = −1 and q(− 1
2 ) = − 1

2 , we have Ip = {−∞,−1,∞} and
Iq = {−∞,− 1

2 ,∞}.
Further, as a consequence, char(p) = {∞1,∞2} and char(q) = {∞1,∞2} hold by

Lemma 15 a). Therefore, char(p) ̺ char(q) is satisfied.

Now, step 2 of Construction 22 contains a consequence of step 1.
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Namely, we have Rp = {(∞,−1), {−1}, (−1,∞)} and Rq =
{
(∞,− 1

2 ), {− 1
2},

(− 1
2 ,∞)

}
by the definition of these decompositions of R. Further, by the defini-

tion of interval characteristic functions χ
(i)
p and χ

(i)
q , we obtain

χ(i)
p ({−1}) =∞2, χ(i)

q

({

−1

2

})

= ∞2,

χ(i)
p ((−∞,−1)) =∞1, χ(i)

q

((

−∞,−1

2

))

= ∞1,

χ(i)
p ((−1,∞)) =∞1, χ(i)

q

((

−1

2
,∞

))

= ∞1.

Further, for step 3 of Construction 22 we proceed as follows. We choose −2 ∈
(−∞,−1) and 0 ∈ (−1,∞). Then p(−2) = −3 and p(0) = 1 hold and since Ip ∩
R = {−1} and (−∞, p(−∞)] ∪ [p(∞),∞) = ∅ is satisfied the set of (such chosen)
generators G is

G = (−3,−2] ∪ {−1} ∪ [0, 1).

In our next computation, we want to be briefer and so we will confine the con-

struction to the interval (−1,∞) only.

Then step 4 of Construction 22 is the following.

For the construction on the interval (−1,∞) the set of all the chosen generators is

the interval [0, 1). Further, q(0) = 1 holds and thus, one of the simplest constructions

of a partial solution of (2) on (−1,∞) is to choose a function γ1 : [0, 1) → R in step

4 such that γ1 = id[0,1) holds. Indeed, since [0, 1) ⊂ (− 1
2 ,∞) and, by step 2,

χ
(i)
p ((−1,∞)) = χ

(i)
q

(
(− 1

2 ,∞)
)
hold, the condition required in step 4 (for functions

χ
(i)
p and χ

(i)
q and relation 6) is satisfied trivially.

For our next computations in step 5 of Construction 22, we can use the following

assertion for a linear function r(x) = kx + l with k 6= 1. In this assertion, point xr

plays the role that it is the only point of r(x) with the property r(x) = x, i.e. the

only cycle element of r (this is satisfied for xr = l/(1 − k)).

Proposition. Let k, l ∈ R be arbitrary such that k 6= 0 and k 6= 1. Let r(x) =

kx + l be a linear function defined on R. Denote xr = l/(1 − k). Let m ∈ Z be

arbitrary. Then rm(x) = km(x − xr) + xr holds for any x ∈ R.

Indeed, for m = 0 we have r0(x) = x − xr + xr = x; if m ∈ N and the formula is

satisfied form, then rm+1(x) = r(rm(x)) = k(km(x−xr)+xr)+l = km+1(x−xr)+xr

because kxr + l = xr holds.

Further, r−1(x) = x/k− l/k holds and at the same time, this is the above formula

for the exponent −1, i.e. r−1(x) = k−1(x − xr) + xr = x/k − xr/k + xr = x/k − l/k

because xr − kxr = l holds.
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Finally, let the formula be satisfied for −n where n ∈ N, n > 1. Then r−(n+1)(x) =

r−1(r−n(x)) = k−1(k−n(x−xr)+xr)−l/k = k−(n+1)(x−xr)+xr because xr/k−l/k =

xr holds. This completes the proof.

Now, we come back to step 5 of Construction 22 in our case for the interval

(−1,∞).

We need functions pm and qm for any m ∈ Z and so we will compute them first.

Using the above proposition, we have xp = −1 and so

pm(x) = 2mx + 2m − 1

for any m ∈ Z. Furthermore, xq = − 1
2 which implies

qm(x) = 3m
(

x +
1

2

)

− 1

2
= 3mx +

1

2
(3m − 1)

for any m ∈ Z.

Therefore, pm(0) = 2m − 1 for any m ∈ Z and so we obtain

p(0) = 1, p−1(0) = −1

2
,

p2(0) = 3, p−2(0) = −3

4
,

p3(0) = 7, p−3(0) = −7

8
,

p4(0) = 15, p−4(0) = −15

16
,

...
...

Hence by Corollary 20, we have

p([0, 1)) = [1, 3), p−1([0, 1)) =
[

−1

2
, 0

)

,

p2([0, 1)) = [3, 7), p−2([0, 1)) =
[

−3

4
,−1

2

)

,

p3([0, 1)) = [7, 15), p−3([0, 1)) =
[

−7

8
,−3

4

)

,

...
...
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Furthermore, the iterations of p and q are the functions

p(x) = 2x + 1, p−1(x) =
x

2
− 1

2
, q(x) = 3x + 1, q−1(x) =

x

3
− 1

3
,

p2(x) = 4x + 3, p−2(x) =
x

4
− 3

4
, q2(x) = 9x + 4, q−2(x) =

x

9
− 4

9
,

p3(x) = 8x + 7, p−3(x) =
x

8
− 7

8
, q3(x) = 27x + 13, q−3(x) =

x

27
− 13

27
,

...
...

...
...

By step 5, for the chosen function γ1 = id[0,1), we compute the function f1 such

that

f1(x) = qm(p−m(x))

holds for any m ∈ Z and any x ∈ [pm(0), pm+1(0)).

Hence for instance, we obtain the following parts of f1:

if m = 1, i.e. x ∈ [1, 3), then f1(x) = q(p−1(x)) = 3
(

x
2 − 1

2

)
+ 1 = 3x

2 − 1
2 ;

if m = 2, i.e. x ∈ [3, 7), then f1(x) = q2(p−2(x)) = 9
(

x
4 − 3

4

)
+ 4 = 9

4x − 11
4 ;

if m = 3, i.e. x ∈ [7, 15), then f1(x) = q3(p−3(x)) = 27
(

x
8 − 7

8

)
+ 13 = 27

8 x − 85
8 ;

if m = −1, i.e. x ∈
[
− 1

2 , 0
)
, then f1(x) = q−1(p(x)) = 1

3 (2x + 1) − 1
3 = 2

3x;

if m = −2, i.e. x ∈
[
− 3

4 ,− 1
2

)
, then f1(x) = q−2(p2(x)) = 1

9 (4x+3)− 4
9 = 4

9x− 1
9 ;

if m = −3, i.e. x ∈
[
− 7

8 ,− 3
4

)
, then f1(x) = q−3(p3(x)) = 1

27 (8x + 7) − 13
27 =

8
27x − 6

27 .

Altogether, the partial solution f1 of equation (2) on (−1,∞) is

f1(x) =







...

27
8 x − 85

8 if x ∈ [7, 15),

9
4x − 11

4 if x ∈ [3, 7),

3
2x − 1

2 if x ∈ [1, 3),

x if x ∈ [0, 1),

2
3x if x ∈ [− 1

2 , 0),

4
9x − 1

9 if x ∈ [− 3
4 ,− 1

2 ),

8
27x − 13

27 if x ∈ [− 7
8 ,− 3

4 ),

...

Now, on the other hand, let Q denote the set of all rational numbers. We define

γ2 : [0, 1) → [0, 1) as a “half Dirichlet” function in the following way. If x ∈ [0, 1) is
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arbitrary, then we put

γ2(x) =

{
1
2 if x ∈ Q,

0 otherwise.

By the above computations—in steps 1 up to 3 of the construction, we have the

following result in this case.

Let m ∈ Z be arbitrary. If x ∈ [pm(0), pm+1(0)) is arbitrary, then

f2(x) = qm(γ2(p
−m(x))) = 3mγ2(2

−mx + 2−m − 1) +
1

2
(3m − 1).

Thus, let x ∈ [pm(0), pm+1(0)) and x ∈ Q. Then 2−mx + 2−m − 1 ∈ Q too and

γ2(2
−mx + 2−m − 1) = 1

2 by the definition of γ2. Then

f2(x) = 3m 1

2
+

1

2
(3m − 1) = 3m − 1

2
.

Let, on the other hand, x ∈ [pm(0), pm+1(0)) and x /∈ Q. Then 2−mx+2−m−1 /∈ Q

too, γ2(2
−mx + 2−m − 1) = 0 by the definition of γ2 and so

f2(x) =
1

2
(3m − 1).

Altogether, we obtain the following new partial solution f2 of (2) on (−1,∞).

f2(x) =







...

5
2 if x ∈ [1, 3) ∩Q,

1 if x ∈ [1, 3)−Q,

1
2 if x ∈ [0, 1) ∩Q,

0 if x ∈ [0, 1)−Q,

− 5
2 if x ∈

[
− 1

2 , 0
)
∩Q,

− 1
3 if x ∈

[
− 1

2 , 0
)
−Q,

...

Partial solutions of equation (2) on the interval (−1,∞) can be used for simple

construction of partial solutions on the interval (−∞,−1) by means of point sym-

metry with respect to the point (−1,− 1
2 ). A point symmetry of subsets of the plane

R× R with respect to the point (x0, y0) ∈ R× R uses the linear transformation

t = x0 − (x − x0) = 2x0 − x,

u = y0 − (y − y0) = 2y0 − y

for any (x, y) ∈ R× R.
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Therefore, the point symmetry of the graph of a function f defined on R with

respect to a point (x0, y0) is defined by the identity f(2x0 − x) = 2y0 − f(x) where

x ∈ R is arbitrary.

Then, for instance, the graph of any linear function q(x) = kx+l is point symmetric

with respect to a point (x0, q(x0)) where x0 ∈ R is arbitrary (because k(2x0−x)+l =

2kx0 − kx + l − l + l = 2(kx0 + l) − (kx + l) holds).

The point symmetry and its properties could be investigated generally but now,

we can show by simple means that constructions by point symmetry are possible in

our case.

Proposition. Let k, l, k′, l′ ∈ R be arbitrary such that k, k′ 6= 1. Let r(x) = kx+l

and r′(x) = k′x + l′ be linear functions defined on R. Denote xr = l/(1 − k) and

xr′ = l′/(1 − k′). Let f : (xr ,∞) → R be a partial solution of equation

(3) f(kx + l) = k′f(x) + l′.

Define a function f∗ : (−∞, xr) → R such that f∗(x) = −f(2xr −x)+2xr′ holds for

any x ∈ (−∞, xr). Then f∗ is a partial solution of (3) on (−∞, xr).

Indeed, let f be a partial solution of equation (3) on (xr ,∞). Then we prove the

identity

(∗) f∗(kx + l) = k′f∗(x) + l′

for any x ∈ (−∞, xr) if the function f∗ is defined as above.

Let x ∈ (−∞, xr) be arbitrary. By the definition of f
∗, the left hand side of (∗)

has the form

(∗∗) f∗(kx + l) = −f(2xr − (kx + l)) + 2xr′ .

We will deal with the term f(2xr − (kx + l)) now.

First, we observe the argument of f in this term. The points xr and xr′ are defined

so that kxr +l = xr and k′xr′ +l′ = xr′ hold. Hence 2xr−l = 2(kxr +l)−l = 2kxr +l

and, similarly, 2xr′ − l′ = 2k′xr′ + l′ hold. Therefore, the argument of f has a new

form 2xr − (kx + l) = −kx + 2xr − l
︸ ︷︷ ︸

= k(−x + 2xr) + l. Thus,

(∗∗∗) f(2xr − (kx + l)) = f(k(−x + 2xr) + l).

Further, −x+2xr ∈ (xr ,∞) holds and we can use the condition that f is a partial

solution of equation (3) on (xr,∞). Then we obtain

f(k(−x + 2xr) + l) = k′f(−x + 2xr) + l′ = k′f(−x + 2xr) − 2k′xr′ + 2k′xr′ + l′
︸ ︷︷ ︸

= k′(f(−x + 2xr) − 2xr′) + 2xr′ − l′ = k′(−f∗(x)) − l′ + 2xr′ .
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Altogether, if we come back to (∗∗) and use (∗∗∗), we have

f∗(kx + l) = −(−k′f∗(x) − l′ + 2xr′) + 2xr′ = k′f∗(x) + l′

which is (∗) and which was to be proved.
Finally, we come back to equation (2). In particular, we have xp = −1, xq = − 1

2

and, by the last proposition, any partial solution fi of (2) on (−1,∞) for i ∈ {1, 2}
found above can be extended by

f∗
i (x) = −fi(2xp − x) + 2xq = −(fi(−(x + 2)) + 1)

to the interval (−∞,−1).

In this way, we can obtain, for example, the set

{

f∗
i ∪

{(

−1,−1

2

)}

∪ fj ; i, j ∈ {1, 2}
}

of four complete solutions of equation (2).

In Example 23, we have construted some solutions of the given functional equa-

tion (2). But if we look at Construction 22, we see that—under the assumption of

the existence of more than one solution—“functions γ’s” in step 4 of Construction 22

play an important role in the construction. The set of such functions, which can be

used there, is uncountable and this suggests that the set of all solutions of the given

equation (1) is uncountable as well (cf. [13] or, for instance, [8]).

3. What should be done next

Our investigations should be extended to partially defined strictly increasing con-

tinuous functions p, q on R—e.g.
√

x, lnx and so on. It is clear that such real

functions will need more values of their corresponding characteristic functions than

the six of them which were used for instance in Figure 2.

The other topics should be investigations of strictly decreasing continuous func-

tions, and further, more general continuous functions, such as say e−x, x2, 1/x,

arctan(lnx), . . .

Some of these cases can be very easy. For other ones, the theory of mono-unary

algebras must take effect more and be used wider than it was in the case of strictly

increasing continuous functions in the present paper. There are already investigations

of some of these problems—see e.g. [1]–[6].

Any of these considerations leads to a construction similar to the present one.

Since, clearly, constructions are algorithms, any of such results of our considerations
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are programmable. These programs would be, above all, suitable for computations

of local parts of solutions of given equations which, moreover, satisfy additional and

for specific problems important conditions. In fact, this is one of the main aims of

our investigations.
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