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Abstract. A general class of nonconforming meshes has been recently studied for sta-
tionary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMA J. Numer.
Anal. 30 (2010), 1009–1043). Thanks to the basic ideas developed in the stated reference
for stationary problems, we derive a new discretization scheme in order to approximate the
nonstationary heat problem. The unknowns of this scheme are the values at the centre
of the control volumes, at some internal interfaces, and at the mesh points of the time
discretization.

We derive error estimates in discrete norms L∞(0, T ;H10 (Ω)) andW
1,∞(0, T ;L2(Ω)), and

an error estimate for an approximation of the gradient, in a general framework in which
the discrete bilinear form involved in the finite volume scheme satisfies some ellipticity
condition.

Keywords: non-conforming grid, nonstationary heat equation, several space dimension,
SUSHI scheme, implicit scheme, discrete gradient

MSC 2010 : 65M08, 65M15, 35K15

1. Aim of this paper and description of the main results

Let us consider the following heat problem:

(1.1) ut(x, t) − ∆u(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ),

The first author was supported in part by Algerian Ministry of Higher Education and
Scientific Research under Project # B01120090113 and the PNR Project EMNDG con-
trolled by ANDRU.
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where Ω is an open bounded polyhedral subset in R
d with d ∈ N

⋆ = N \ {0}, T > 0,

and f is a given function.

An initial condition is given by

(1.2) u(x, 0) = u0(x), x ∈ Ω,

and, for the sake of simplicity, we consider homogeneous Dirichlet boundary condi-

tions, that is

(1.3) u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

where we denote by ∂Ω = Ω \ Ω the boundary of Ω.

Heat equation (1.1) is typically used in different applications, such as fluid me-

chanics, heat and mass transfer, etc., and it is the prototypical parabolic partial

differential equation which in turn arises, for instance, in many different models like

Navier-Stokes and reaction-diffusion systems. It describes the distribution of heat

(or variation in temperature) in a given region over time. Therefore, parabolic equa-

tions are important from the mathematical viewpoint as well as in practice. For this

reason, many works have been devoted to the numerical approximation of parabolic

equations, see for instance [16, Chapter IV, pp. 837–868], [19], [17, pp. 331–341],

[3], [4], [2], [1], the recent works [7], [8] which are devoted to finite volume element

methods, and references therein.

The present paper is a continuation of our previous contributions [3], [4] which have

been devoted to error estimates for parabolic equations on the so called admissible

meshes given in [16], and it is an extended version of our recent notes [2], [1] in which

we stated some particular cases of the present paper.

The first aim of the present work is to derive a discretization scheme approximating

the nonstationary heat problem (1.1)–(1.3) using the new general class of spatial

meshes which was introduced recently in [12] to approximate stationary problems.

The second aim is to provide and prove error estimates of our discretization scheme

in possible different norms.

The general class of nonconforming multidimensional meshes introduced recently

in [12] has the following advantages:

• The scheme can be applied to any type of grid: conforming or non conforming,
2D and 3D, or more, made with control volumes which are only assumed to be

polyhedral (the boundary of each control volume is a finite union of subsets of

hyperplanes).

• When the family of discrete fluxes satisfies some suitable conditions, the matri-
ces of the generated linear systems are sparse, symmetric, positive and definite.
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• A discrete gradient for the exact solution is formulated and converges to the
gradient of the exact solution.

Thanks to the basic ideas of the finite volume scheme developed in [12] to approxi-

mate stationary problems, we shall first derive the new finite volume scheme (4.16)–

(4.17) in order to approximate problem (1.1)–(1.3), see Section 4. The first equation

of the finite volume scheme, i.e. (4.16), is a discrete version for the weak formula-

tion (2.1) of the heat equation (1.1) (with, of course, the boundary condition (1.3)).

Whereas, the discrete initial condition (4.17) of scheme (4.16)–(4.17) is a discrete

version of the weak formulation for the orthogonal projection

(1.4) a(u(0), v) = −(∆u0, v)L2(Ω), ∀ v ∈ H1
0 (Ω),

where

(1.5) a(w, v) =

∫

Ω

∇w(x) · ∇v(x) dx.

This choice is useful as explained in Remark 6.

Although the scheme (4.16)–(4.17) stems from the finite volume ideas developed

during the last years (that is, integrating over the control volumes and then ap-

proximating the fluxes arising after integration by parts by some suitable numerical

ones), its formulation seems a discrete version for the weak formulation (2.1) and

(1.4)–(1.5). From this point of view, the scheme (4.16)–(4.17) presented in this work

looks like a nonconforming finite element scheme for the heat problem (1.1)–(1.3).

Thanks to the properties of the scheme presented in [12], the scheme we present,

that is (4.16)–(4.17), also has the following advantages:

• The scheme can be applied to any type of spatial grid: conforming or non
conforming, 2D and 3D, or more, made with control volumes which are only

assumed to be polyhedral (the boundary of each control volume is a finite union

of subsets of hyperplanes).

• For each time level n, the scheme results in a linear system (4.16) with a number
of unknowns being equal to card(M)+card(H), the sum of the number of control

volumes and the cardinality of a certain subset of the set of edges of the mesh

equations. So, the present scheme (4.16)–(4.17) has less unknowns than that

presented in [1].

• When the discrete fluxes satisfy some suitable conditions, the matrices generated
by the scheme (4.16)–(4.17) are sparse, symmetric, positive and definite.

• For each level n ∈ [[0, N+1]], the finite volume solution of (4.16)–(4.17) converges

to u(·, tn) in the L2(Ω)-norm, see first and fourth items of Remark 5.
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• Using the discrete gradient provided in [12] for the stationary case, suitable
discrete derivatives of the finite volume solution of (4.16)–(4.17) can be formu-

lated in order to approximate spatial first derivatives of the exact solution of

problem (1.1)–(1.3), see second and fourth items of Remark 5.

• A discrete time derivative is formulated in order to approximate the time deriva-
tive of the exact solution of (1.1)–(1.3), see third and fourth items of Remark 5.

The convergence analysis of the finite volume scheme (4.16)–(4.17), see Theo-

rem 4.1, is provided in several discrete norms, namely in those which allow us

to get error estimates for the approximation of the exact solution of (1.1)–(1.3)

and its first derivatives. We derive error estimates (4.34)–(4.36) in discrete norms

L
∞(0, T ; H1

0 (Ω)) and W1,∞(0, T ; L2(Ω)), and an error estimate for an approxima-

tion for the gradient, in a general framework in which the discrete bilinear form

involved in the first equation (4.16) of the discretization scheme (4.16)–(4.17) and

given by (4.30) satisfies ellipticity condition (4.29). We prove in particular, see (4.37),

when the discrete flux is given by (4.25)–(4.28), that the convergence order is hD +k,

where hD and k are the mesh sizes of the spatial time discretization, respectively.

This estimate is valid under the regularity assumption u ∈ C2([0, T ]; C2(Ω)) for the

exact solution u.

The proof of Theorem 4.1 is based on the comparison between the solution of

scheme (4.16)–(4.17) and the new auxiliary solution defined by (4.62). As the first

principal part of the proof of Theorem 4.1, we prove Lemma 4.5 and as the second

principal part, we prove Lemma 4.6. The technical Lemma 4.7 will help us to con-

clude the proof of Theorem 4.1. Lemmas 4.1–4.4 are some preliminary technical tools

which are used in the proof of Lemmas 4.5 and 4.6 and Theorem 4.1. Lemma 4.5

provides us with some estimates of the error between the solution of (4.62) and the

exact solution of (1.1)–(1.3), and its proof is based on the proof of [12, Theorem 4.8,

p. 1033] with some special attention to determining the dependence of the constants,

which appear in the estimates, of the exact solution. Lemma 4.6 provides us with

some estimates of the error between the auxiliary solution of (4.62) and the finite vol-

ume solution of (4.16)–(4.17). So, the proof of Theorem 4.1 can be done by gathering

results of Lemmas 4.5, 4.6, 4.7, and the triangle inequality.

The organization of this paper is as follows: in the second section, we state the

weak formulation of the continuous problem and recall some functional spaces which

will be used throughout this paper. Third section is devoted to recalling the defini-

tion of general nonconforming meshes as well as some discrete spaces given in [12].

In the fourth section, we derive and present the finite volume scheme (4.16)–(4.17)

and the main result of our paper, namely Theorem 4.1. The proof of Theorem 4.1 is

performed thanks to Lemmas 4.5, 4.6, and 4.7. Among the tools used to prove Lem-
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mas 4.5 and 4.6, we used some Lemmas and results from [12]. In fact, Lemma 4.1

and 4.2 are the subject of [12, (4.6), p. 1026] and [12, Lemma 4.2, p. 1026]), respec-

tively, and we recall them here for the sake of completeness. Whereas, Lemmas 4.3

and 4.4 are the subject of [12, Lemma 4.4, p. 1029] and [12, (4.20), p. 1031] in which

the constants in estimates [12, (4.13), Lemma 4.4, p. 1029] and [12, (4.20), p. 1031]

depend on the function under consideration ϕ, whereas the constants which appear

in estimate (4.41) of Lemma 4.3 and in estimate (4.53) of Lemma 4.4 are indepen-

dent of the function under consideration ϕ. Writing Lemmas 4.3 and 4.4 in which

the constants are independent of the function under consideration ϕ has at least two

roles:

• The application of Lemmas 4.3 and 4.4 serves to get constants independent of
the exact solution in the error estimates, whereas a straightforward application

of [12, Lemma 4.4, p. 1029] and [12, (4.20), p. 1031] leads to constants, which

appear in error estimates, depending on u(·, tn) and, consequently, we obtain

constants depending on the parameters of the time discretization.

• The required regularity in Lemmas 4.3 and 4.4 is ϕ ∈ C2(Ω). This regularity

assumption together with the regularity assumptions in Lemmas 4.5, 4.6, and

4.7 yields the regularity assumption u ∈ C2([0, T ]; C(Ω)) in Theorem 4.1 for the

exact solution u of problem (1.1)–(1.3). So, we expect that this regularity may

be weakened to W2,∞(0, T ; H2(Ω)).

So, some efforts have been devoted in order to determine the dependendence of the

constants which appear in the estimates of [12, Theorem 4.8, p. 1033] on the exact

solution.

Finally, the fifth section is devoted to suggesting interesting tasks not resolved in

this work and suitable to work on in the future.

2. Weak problem and preliminaries

The following theorem, provided in [11], gives a sense for a weak solution for prob-

lem (1.1)–(1.3) (recall that H−1(Ω) is the dual of H1
0 (Ω)), see also [6, Theorem X.1,

p. 205], [6, Theorem X.1, p. 207], and [6, Theorem X.9, p. 218] for more information:

Theorem 2.1 (cf. [11, Theorems 3 and 4, pp. 356–358]). Let f ∈ L
2(0, T ;L2(Ω))

and u0 ∈ L
2(Ω). Then there exists a unique weak solution for (1.1)–(1.3) in the follow-

ing sense: there exists a function u ∈ L
2(0, T ; H1

0(Ω)) such that ut ∈ L
2(0, T ; H−1(Ω))

and:
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(i) For a.e. 0 6 t 6 T

(2.1) 〈ut, v〉 +

∫

Ω

∇u(x, t) · ∇v(x) dx =

∫

Ω

f(x, t)v(x) dx, ∀ v ∈ H1
0 (Ω);

(ii) For a.e. x ∈ Ω

(2.2) u(0) = u0.

The convergence of the finite volume scheme we want to present is analyzed using

the space Cm([0, T ]; Cl(Ω)), where m and l are integers, of m-times continuously dif-

ferentiable mappings of the interval [0, T ] with values in Cl(Ω), see [17, pages 47–48].

The space Cm([0, T ]; Cl(Ω)) is equipped with the norm

(2.3) ‖u‖Cm([0,T ];Cl(Ω)) = max
j∈[[1,m]]

{

sup
t∈[0,T ]

∥

∥

∥

dju

dtj
(t)
∥

∥

∥

Cl(Ω)

}

,

where ‖ · ‖Cl(Ω) denotes the usual norm of Cl(Ω).

3. Meshes and discrete spaces

This paper deals with a finite volume scheme approximating (1.1)–(1.3) on a gen-

eral class of nonconforming meshes which include the admissible mesh of [16, Defi-

nition 9.1, p. 762]. This general class of meshes is introduced in [12]. An example

of two neighboring control volumes K and L is depicted in Fig. 1. For the sake of

completeness, we recall the general finite volumes mesh given in [12].

K

L

hK

xK

xσ

xL

Mσ = {K, L}

DK,σ

Figure 1. Notation for two neighboring control volumes in the case d = 2.
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Definition 3.1 (Definition of a large class of finite volume grids, cf. [12, Defi-

nition 2.1, p. 1012]). Let Ω be a polyhedral open bounded subset of Rd, where

d ∈ N \ {0}, and ∂Ω = Ω \ Ω its boundary. A discretization of Ω, denoted by D, is
defined as the triplet D = (M, E ,P), where:

(1) M is a finite family of non empty connected open disjoint subsets of Ω (the

“control volumes”) such that Ω =
⋃

K∈M

K. For any K ∈ M, let ∂K = K \ K

be the boundary of K; let m(K) > 0 denote the measure of K and hK the

diameter of K.

(2) E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such

that, for all σ ∈ E , σ is a non empty open subset of a hyperplane of Rd, whose

(d − 1)-dimensional measure is strictly positive. We also assume that, for all

K ∈ M, there exists a subset EK of E such that ∂K =
⋃

σ∈EK

σ. For any σ ∈ E ,

we denote Mσ = {K : σ ∈ EK}. We then assume that, for any σ ∈ E , either
Mσ has exactly one element and then σ ⊂ ∂Ω (the set of these interfaces,

called boundary interfaces, is denoted by Eext) orMσ has exactly two elements

(the set of these interfaces, called interior interfaces, is denoted by Eint). For

all σ ∈ E , we denote by xσ the barycentre of σ. For all K ∈ M and σ ∈ EK , we

denote by nK,σ the unit vector normal to σ outward to K.

(3) P is a family of points of Ω indexed byM, denoted by P = (xK)K∈M, such that

for all K ∈ M, xK ∈ K and K is assumed to be xK -star-shaped, which means

that for all x ∈ K, the condition [xK , x] ⊂ K holds. Denoting by dK,σ the

Euclidean distance between xK and the hyperplane including σ, one assumes

that dK,σ > 0. We then denote by DK,σ the cone with vertex xK and basis σ.

R em a r k 1 (Some properties of the mesh). It is useful to mention the difference

between the admissible mesh considered in [16, Definition 9.1, p. 762] and the mesh

considered in Definition 3.1. The class of meshes considered in 3.1 is larger than that

considered in [16, Definition 9.1, p. 762] for the following reasons:

• The control volumes of the class of meshes in Definition 3.1 are not necessarily
convex subsets of Ω, whereas the control volumes of the class of meshes in [16,

Definition 9.1, p. 762] are convex polygonal subsets of Ω.

• The class of meshes in Definition 3.1 does not possess the orthogonality prop-
erty (iv) possessed by the meshes considered in [16, Definition 9.1, p. 762].

The discretization of Ω is then performed using the mesh D = (M, E ,P) described

in Definition 3.1, whereas the time discretization is performed with a constant time

step k = T/(N + 1), where N ∈ N
⋆, and we shall denote tn = nk for n ∈ [[0, N + 1]].

For our need, we use the discrete spaces and their norms of the following definition:
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Definition 3.2 (Discrete spaces and norms, cf. [12]). Let Ω be a polyhedral

open bounded subset of Rd and D = (M, E ,P) a discretization in the sense of

Definition 3.1. Throughout this paper we use the following spaces and norms:

• The space XD:

(3.1) XD = {v = ((vK)K∈M, (vσ)σ∈E) : vK ∈ R, vσ ∈ R}.

The space XD is equipped with the semi-norm

(3.2) |v|2X =
∑

K∈M

∑

σ∈EK

m(E)

dK,σ
(vσ − vK)2.

• The space XD,0:

(3.3) XD,0 = {v = ((vK)K∈M, (vσ)σ∈E) ∈ XD; vσ = 0, ∀σ ∈ Eext}.

The semi-norm | · |X given by (3.2) is a norm on the subspace XD,0 of XD.

• For a given family of real numbers {βK
σ : K ∈ M, σ ∈ Eint}, with βK

σ 6= 0 only

for some control volumes which are “close” to σ, and such that

(3.4) 1 =
∑

K∈M

βK
σ and xσ =

∑

K∈M

βK
σ xK ,

we define a space with dimension smaller than that ofXD,0. This can be achieved

by expressing the value uσ of u on any interior interface σ ∈ B, where B ⊂ Eint

as a consistent barycentric combination of the values uK on the control volumes

K ∈ M:

(3.5) uσ =
∑

K∈M

βK
σ uK .

Note that, for any σ ∈ Eint, there exists an infinity of solutions {βσ
K}K for (3.4)

when the number of control volumes K ∈ M involved in the two sums of (3.4)

is greater than or equal to d+2. There exists a unique solution {βσ
K}K for (3.4)

when the number of control volumes K ∈ M involved is d + 1 and the corre-

sponding points {xK}K are not contained in a hyperplane, see for instance [9,

p. 66].

We decompose then the set Eint of interfaces into two non intersecting subsets,

that is: Eint = B∪H andH = Eint\B. The interface unknowns associated with B
will be computed by using the barycentric formula (3.5). The unknowns of the
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scheme (see (4.16)–(4.17)) will be then the quantities uK for K ∈ M and uσ

for σ ∈ H. Consider then the space XD,B ⊂ XD,0 given by

(3.6) XD,B = {v ∈ XD,0 such that vσ satisfies (3.5), ∀σ ∈ B}.

The semi-norm | · |X given by (3.2) is a norm on the subspace XD,B of XD,0.

• The subspace HM(Ω) of L2(Ω) defined by the functions which are constant on

each control volume K ∈ M. We then denote, for all v ∈ HM(Ω) and for all

σ ∈ Eint with Mσ = {K, L}, Dσv = |vK − vL| and dσ = dK,σ + dL,σ, and for

all σ ∈ Eext withMσ = {K}, we denote Dσv = |vK | and dσ = dK,σ. We then

define the following norm:

(3.7) ∀ v ∈ HM(Ω), ‖v‖2
1,2,M =

∑

K∈M

∑

σ∈EK

m(σ)dK,σ

(Dσv

dσ

)2

=
∑

σ∈E

m(σ)
(Dσv)2

dσ
.

We also need the following interpolation operators:

Definition 3.3 (Interpolation operators, cf. [12]). Let Ω be a polyhedral open

bounded subset of Rd and D = (M, E ,P) a discretization in the sense of Defini-

tion 3.1. Throughout this paper we use the following interpolation operators:

• For all v ∈ XD we denote by ΠMv ∈ HM(Ω) the piecewise constant function

from Ω to R defined by ΠMv(x) = vK for a.e. x ∈ K and for all K ∈ M.
• For all ϕ ∈ C(Ω) we denote by PDϕ ∈ XD the element defined by

(

(ϕ(xK ))K∈M, (ϕ(xσ))σ∈E

)

.

• For all ϕ ∈ (Ω) we denote by PD,Bϕ ∈ XD,B the element v ∈ XD,B such that

vK = ϕ(xK), ∀K ∈ M,(3.8)

vσ = 0, ∀σ ∈ Eext,(3.9)

vσ =
∑

K∈M

βK
σ ϕ(xK), ∀σ ∈ B,(3.10)

and

vσ = ϕ(xσ), ∀σ ∈ H.(3.11)

• For all ϕ ∈ C(Ω) we denote by PMϕ ∈ HM(Ω) the element defined by PMϕ(x) =

ϕ(xK) for a.e. x ∈ K and for all K ∈ M.
In order to analyze the convergence, we need to consider the size of discretization D,
see [12, (4.1), p. 1025], and

(3.12) hD = sup{diam(K) : K ∈ M},
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and the regularity of the mesh is given by, see [12, (4.2), p. 1025],

(3.13) θD =
(

max
σ∈Eint,K,L∈Mσ

dK,σ

dL,σ
, max
K∈M,σ∈EK

hK

dK,σ

)

.

For a given set B ⊂ Eint and for a given family (βK
σ )K∈M,σ∈Eint

satisfying condi-

tion (3.4) we introduce a measure of the resulting regularity by

(3.14) θD,B = max

(

θD, max
K∈M,σ∈EK∩B

∑

L∈M

|βL
σ ||xσ − xL|2

h2
K

)

.

4. The discretization scheme and statement of the main result

The scheme we want to consider is to find an approximation for (1.1)–(1.3) by

setting up systems of equations for a family of values ((un
K)K∈M, (un

σ)σ∈E ) in the

control volumes and on the interfaces.

Following the idea of finite volume method, we first integrate equation (1.1) over

each control volume K and on each interval (tn, tn+1), and then we use integration

by parts to get (recall that nK,σ is the unit vector normal to σ outward to K)

∫ tn+1

tn

∫

K

ut(x, t) dxdt −
∑

σ∈EK

∫ tn+1

tn

∫

σ

∇u(x, t) · nK,σ(x) dγ(x) dt(4.1)

=

∫ tn+1

tn

∫

K

f(x, t) dxdt,

which gives

∫

K

(u(x, tn+1) − u(x, tn)) dx −
∑

σ∈EK

∫ tn+1

tn

∫

σ

∇u(x, t) · nK,σ(x) dγ(x) dt(4.2)

=

∫ tn+1

tn

∫

K

f(x, t) dxdt.

The left-hand side of this equation is the sum of two terms. We will approximate

these two terms.

• The first term
∫

K
((u(x, tn+1) − u(x, tn))) dx can be approximated using a zero

order quadrature by

m(K)
u(xK , tn+1) − u(xK , tn)

k
.
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• For each n ∈ [[0, N ]], the flux −
∫ tn+1

tn

∫

σ
∇u(x, t) · nK,σ(x) dγ(x) dt is approx-

imated by a function kFK,σ(un+1) of the values ((un+1
K )K∈M, (un+1

σ )σ∈E ) at

the “centers” and the interfaces of the control volumes (in all particular cases,

FK,σ(un+1) only depends on un+1
K and (un+1

σ′ )σ′∈EK
), thus the proposed scheme

is implicit in time. The numerical flux FK,σ(un+1) satisfies the following con-

servativity:

(4.3) FK,σ(un+1) + FL,σ(un+1) = 0, ∀σ ∈ Eint such thatMσ = {K, L}.

Therefore, a discrete equation corresponding to (4.2) can be written as

(4.4) m(K)∂1un+1
K +

∑

σ∈EK

FK,σ(un+1) = m(K)fn
K ,

where ∂1vn denotes the value

(4.5) ∂1vn =
vn − vn−1

k

and

(4.6) fn
K =

1

km(K)

∫ tn+1

tn

∫

K

f(x, t) dxdt.

The discrete problem for (1.1) is then defined by

(4.7) m(K)∂1un+1
K +

∑

σ∈EK

FK,σ(un+1) = m(K)fn
K , ∀K ∈ M, ∀n ∈ [[0, N ]].

The discretization of the initial condition (1.2) is performed as an approximation

of (1.4)–(1.5) (which is a weak form for (1.2)), that is

(4.8)
∑

σ∈EK

FK,σ(u0) = −
∫

K

∆u0(x) dx.

The Dirichlet boundary condition (1.3) can be approximated for all n ∈ [[0, N + 1]]

as

(4.9) un
σ = 0, ∀σ ∈ Eext.

Equation (4.7) can be written in a weak formulation; multiplying, for any v ∈ XD,0,

both sides of (4.7) by the value vK of v on the control volume, and summing over

K ∈ M to get

(4.10)
∑

K∈M

m(K)∂1un+1
K vK +

∑

K∈M

∑

σ∈EK

FK,σ(un+1)vK =
∑

K∈M

m(K)fn
KvK .
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Using (4.3), (4.7) yields the following discrete weak formulation: for any n ∈ [[0, N ]],

find un ∈ XD,0 such that

(4.11)
∑

K∈M

m(K)∂1un+1
K vK + 〈un+1, v〉F =

∑

K∈M

m(K)fn
KvK , ∀ v ∈ XD,0,

where

(4.12) 〈w, v〉F =
∑

K∈M

∑

σ∈EK

FK,σ(w)(vK − vσ).

In the same way, (4.8) can be written in the following discrete weak form:

(4.13) 〈u0, v〉F = −
∑

K∈M

vK

∫

K

∆u0(x) dx, ∀ v ∈ XD,0.

It is useful to mention that (4.11) is equivalent to (4.3), (4.7); indeed, setting v ∈ XD,0

in (4.11) such that vK = 1 and vL = 0 for all L 6= K, and vσ = 0 for all σ ∈ E , we
get (4.7). Similarly, choosing v ∈ XD,0 such that vK = 0, for all K ∈ M, and vσ = 1

and vτ = 0 for any τ ∈ Eint, such thatMσ = {K, L} leads to (4.3).
In the same way, we can justify that ((4.3), (4.8)) is equivalent to (4.13). This

means that under the conservativity property (4.3), problem (4.7)–(4.9) is equivalent

to problem (4.11)–(4.13).

We may also choose a space with dimension smaller than that of XD,0. This

can be achieved by expressing uσ, for all σ ∈ Eint, as the consistent barycentric

combination (3.5) of the values uK , where {βK
σ : K ∈ M, σ ∈ Eint} is a family of

real numbers with βK
σ 6= 0 only for some control volumes which are “close” to σ, and

satisfies (3.4).

Hence, the new scheme can be written as follows: for any n ∈ [[0, N ]], find un ∈
XD,0 such that uσ =

∑

K∈M

βK
σ uK for all σ ∈ Eint

∑

K∈M

m(K)∂1un+1
K vK + 〈un+1, v〉F(4.14)

=
∑

K∈M

m(K)fn
KvK , ∀ v ∈ XD,0 with vσ =

∑

K∈M

βK
σ vK , ∀σ ∈ Eint,

and find u0 ∈ XD,0 such that u0
σ =

∑

K∈M

βK
σ u0

K for all σ ∈ Eint,

(4.15) 〈u0, v〉F = −
∑

K∈M

vK

∫

K

∆u0(x) dx, ∀ v ∈ XDd,0.
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Let us decompose the set Eint of interfaces into two non intersecting subsets, that

is: Eint = B∪H and H = Eint \B. The interface unknowns associated with B will be
computed by using the barycentric formula (3.5).

In terms of the space XD,B given by (3.6), we suggest the following composite

scheme, which is based on the ideas of the finite volume approximation of anisotropic

diffusion equations considered in [12]. For any n ∈ [[0, N ]], find un
D ∈ XD,B such that

(4.16) (∂1ΠMun+1
D , ΠMv)L2(Ω) + 〈un+1

D , v〉F =
∑

K∈M

m(K)fn
KvK , ∀ v ∈ XD,B,

where fn
K is given by (4.6), and find u0

D ∈ XD,B such that

(4.17) 〈u0
D,v〉F = −

∑

K∈M

vK

∫

K

∆u0(x) dx, ∀ v ∈ XD,B,

where (·, ·)L2(Ω) denotes the L
2 inner product, and ΠMv, for all v ∈ XD, is the

piecewise constant function from Ω to R defined by ΠMv(x) = vK for a.e. x ∈ K

and for all K ∈ M, see Definition 3.3.
R em a r k 2 (Choice of B). The choices for the set B include B = ∅ (hybrid finite

volume scheme) and B = Eint (completely cell centred finite volume scheme). An

interesting use for the set B arises when considering a more general heat equation
with a matrix diffusion coefficient Λ (instead of the identity matrix I as in (1.1)),

that is

(4.18) ut(x, t) −∇ · (Λ(x)∇u(x, t)) = f(x, t), (x, t) ∈ Ω × (0, T ).

In this case, the accuracy of the scheme is increased in practice when the points where

the matrix Λ is discontinuous are located within the set
⋃

σ∈H

σ (even this property is

not needed in the mathematical study of the scheme), see [12, Remark 2.5, p. 1015].

Therefore, the unknowns of the scheme are the values at the centre of the control

volumes and at the internal interfaces H = Eint \B that may, for instance, be chosen
at the diffusion tensor discontinuities.

4.1. Construction of the numerical flux using the discrete gradient. We

recall here an example of an explicit expression for the numerical flux FK,σ given

in [12]. This numerical flux is derived using the discrete gradient and can be calcu-

lated as follows:

〈u, v〉F =
∑

K∈M

∑

σ∈EK

FK,σ(u)(vK − vσ)(4.19)

=

∫

Ω

∇Du(x) · ∇Dv(x) dx, ∀u ∈ XD, ∀ v ∈ XD.
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Let us consider the discrete gradient given in [12]:

(4.20) ∇Du(x) = ∇K,σu, a.e. x ∈ DK,σ,

where DK,σ is the cone with vertex xK and basis σ and

∇K,σu = ∇Ku + RK,σunK,σ,(4.21)

∇Ku =
1

m(K)

∑

σ∈EK

m(σ)(uσ − uK)nK,σ,(4.22)

and

(4.23) RK,σu =

√
d

dK,σ
(uσ − uK −∇uK · (xσ − xK)).

Let us set

(4.24) ∇K,σu =
∑

σ′∈EK

(uσ′ − uK)yσσ′

,

where

(4.25) yσσ′

=















m(σ)

m(K)
nK,σ +

√
d

dK,σ

(

1 − m(σ)

m(K)
nK,σ · (xσ − xK)

)

nK,σ, σ′ = σ,

m(σ′)

m(K)
nK,σ′ −

√
d

dK,σm(K)
m(σ′)nK,σ′ · (xσ − xK)nK,σ, σ′ 6= σ.

Therefore, using (4.20) and (4.24), we obtain

∫

Ω

∇Du(x) · ∇Dv(x) dx(4.26)

=
∑

K∈M

∑

σ∈EK

∑

σ′∈EK

Aσσ′

(uσ − uK)(vσ′ − vK), ∀u ∈ XD, ∀ v ∈ XD,

where

(4.27) Aσσ′

=
∑

σ′′∈EK

ΛK,σ′′yσ′′σ · yσ′′σ′

and ΛK,σ′′ =

∫

DK,σ′′

I dx.

The identification, using (4.19) and (4.26), leads to

(4.28) FK,σ(u) =
∑

σ′∈EK

Aσσ′

(uK − uσ′).

The convergence of the discretization scheme (4.16)–(4.17) is established in the

following theorem.
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Theorem 4.1 (Error estimates for the finite volume scheme (4.16)–(4.17)). Let

Ω be a polyhedral open bounded subset of Rd, where d ∈ N
⋆, and ∂Ω = Ω \ Ω its

boundary. Assume that the weak solution of (1.1)–(1.3) in the sense of Theorem 2.1

satisfies u ∈ C2([0, T ]; C2(Ω)). Let k = T/(N + 1) with N ∈ N
⋆, and denote tn = nk

for n ∈ [[0, N+1]]. LetD = (M, E ,P) be a discretization in the sense of Definition 3.1.

Let B ⊂ Eint be given and let {βK
σ : σ ∈ B, K ∈ M} be a subset of R satisfying (3.4).

Assume that θD,B, given by (3.14), satisfies θ > θD,B. Let (FK,σ)K∈M,σ∈E be a family

of linear mappings from XD into R such that there exists a positive constant α with

(4.29) α|v|2X 6 〈v, v〉F , ∀ v ∈ XD,

where 〈·, ·〉F is defined by (4.12), that is

(4.30) 〈u, v〉F =
∑

K∈M

∑

σ∈EK

FK,σ(u)(vK − vσ), ∀u, v ∈ XD.

Then there exists a unique solution (un
D)N+1

n=0 for problem (4.16)–(4.17).

For a function u ∈ C1(Ω), we define the following expressions:

(4.31) RK,σ(u) = FK,σ(PD,B(u)) +

∫

σ

∇u(x) · nK,σ dγ(x),

and

(4.32) ED(u) =

(

∑

K∈M

∑

σ∈EK

dK,σ

m(σ)
(RK,σ(u))2

)1/2

.

Let (un
D)N+1

n=0 be the solution of (4.16)–(4.17). For each n ∈ [[0, N + 1]], let us define

the error en
M ∈ HM(Ω) by

(4.33) en
M = PMu(·, tn) − ΠMun

D.

Then the following error estimates hold for positive constants C1, C2, and C3 only

depending on Ω, d, α, θ, and T :

• Discrete L∞(0, T ; H1
0 (Ω))-estimate: for all n ∈ [[0, N + 1]]

‖en
M‖1,2,M(4.34)

6 C1

(

max
j∈[[0,2]]

max
m∈[[j,N+1]]

ED(∂ju(·, tm)) + (hD + k)‖u‖C2([0,T ];C2(Ω))

)

.
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• W1,∞(0, T ;L2(Ω))-estimate: for all n ∈ [[1, N + 1]]

‖∂1en
M‖L2(Ω)(4.35)

6 C2

(

max
j∈[[1,2]]

max
m∈[[j,N+1]]

ED(∂ju(·, tm)) + (hD + k)‖u‖C2([0,T ];C2(Ω))

)

.

• Error estimate in the gradient approximation: for all n ∈ [[0, N + 1]],

‖∇Dun
D −∇u(·, tn)‖L2(Ω)(4.36)

6 C3

(

max
j∈[[0,2]]

max
m∈[[j,N+1]]

ED(∂ju(·, tm)) + (hD + k)‖u‖C2([0,T ];C2(Ω))

)

.

Moreover, in the particular case where (FK,σ)K∈M,σ∈E is defined by (4.25)–(4.28),

there is a constant C4 only depending on θ, Ω, and d such that, for all j ∈ [[0, 2]],

(4.37) max
m∈[[j,N+1]]

ED(∂ju(·, tm)) 6 C4hD‖u‖C2([0,T ];C2(Ω)).

R em a r k 3 (Sufficient conditions on the data to get the required regularity of

Theorem 4.1). The required regularity assumption u ∈ C2([0, T ]; C2(Ω)) in Theo-

rem 4.1 can be reached by assuming sufficient regularity for the data u0, f , and Ω

and some compatibility conditions, see for instance [6, Theorem X.10, p. 219] and

[11, Theorem 5, pp. 360–361], and [11, Theorem 7, p. 367].

R em a r k 4 (A semi-discretization scheme). The present work is devoted to the

full discretization scheme (which is the more practical) (4.16)–(4.17), i.e. discretiza-

tion in time and space, but the analysis presented here can be extended also to a

semi-discretization scheme, i.e. discretization only in space.

R em a r k 5 (Some applications of Theorem 4.1). Results of Theorem 4.1 are

useful, since they allow us to get error estimates for approximations for the first

derivatives of the exact solution, of order max
j∈[[0,2]]

max
m∈[[j,N+1]]

ED(∂ju(·, tm))+(hD+k)×
‖u‖C2([0,T ];C2(Ω)); indeed:

• Estimate (4.34) implies that using [12, (5.10), Lemma 5.4, p. 1038] and the
triangle inequality, for all n ∈ [[0, N + 1]], ΠMun

D approximates u(·, tn) by order

max
j∈[[0,2]]

max
m∈[[j,N+1]]

ED(∂ju(·, tm)) + (hD + k)‖u‖C2([0,T ];C2(Ω)), in the L
2(Ω)-norm.

• Estimate (4.36) implies that, for all n ∈ [[0, N + 1]], the i-th component of

the discrete gradient ∇Dun
D, defined by (4.20)–(4.23) by replacing u with

un
D, approximates the i-th component of the gradient ∇u(·, tn) by order

max
j∈[[0,2]]

max
m∈[[j,N+1]]

ED(∂ju(·, tm)) + (hD + k)‖u‖C2([0,T ];C2(Ω)), in the L
2(Ω)-norm.
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• Estimate (4.35) implies that (using the triangle inequality), for all n ∈ [[0, N ]],

(PMun+1
D − PMun

D)/k approximates ut(·, tn) by order

max
j∈[[1,2]]

max
m∈[[j,N+1]]

ED(∂ju(·, tm)) + (hD + k)‖u‖C2([0,T ];C2(Ω)),

in the L2(Ω)-norm.

• In the particular case where (FK,σ)K∈M,σ∈E is defined by (4.25)–(4.28), ΠMun
D,

the i-th component of the discrete gradient ∇Dun
D, and (PMun+1

D − PMun
D)/k

approximate respectively u(·, tn), the i-th component of the gradient ∇u(·, tn),

and ut(·, tn) by order hD + k in the L2(Ω)-norm.

R em a r k 6 (Discretization (4.17) of the initial condition (1.2)). The choice of the

discretization (4.17) of the initial condition (1.2) is useful in the proof of Lemma 4.6,

on which the proof of Theorem 4.1 is based. Indeed, the choice (4.17) implies (4.99)

below, see (4.97)–(4.99) below. The property (4.99) will allow to obtain (4.129) for

the first time step. Error estimates for the finite volume scheme (4.16) with another

choice of discretization for the initial condition (1.2) but different from that of (4.17)

could be studied, see Section 5.

The proof of Theorem 4.1 is performed thanks to several technical lemmas. We

will quote these lemmas and then we prove Theorem 4.1. We begin with the following

lemma which is concerned with some interpolatory relations and norm inequalities.

Results of Lemma 4.1 are given in [12], and we recall them here for the sake of

completeness.

Lemma 4.1 (Some interpolatory relations and norm inequalities, cf. [12, (4.6),

p. 1026]). Let Ω be a polyhedral open bounded subset of Rd, where d ∈ N
⋆ and

let D = (M, E ,P) be a discretization in the sense of Definition 3.1. Let B ⊂ Eint be

given and let {βK
σ : σ ∈ B, K ∈ M} be a subset of R satisfying (3.4).

(1) Interpolatory relations: Let PM, PD, and PD,B be the interpolatory operators

given in Definition 3.3, and ϕ ∈ C(Ω). The following relation holds:

(4.38) PMϕ = ΠMPDϕ = ΠMPD,Bϕ.

(2) Norm inequalities: let ‖ · ‖1,2,M and | · |X be the norm and the semi norm given
in Definition 3.2. Then the following inequality holds:

(4.39) ‖ΠMv‖1,2,M 6 |v|X , ∀ v ∈ XD,0.

The next lemma, which is the subject of [12, Lemma 4.2, p. 1026], provides us

with the equivalence between the norm of the gradient, given in (4.20)–(4.23), and
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the norm | · |X , given in (3.2). This lemma is useful since it allows us, for instance, to
get the uniqueness (and then the existence) of the solution un

D of (4.16)–(4.17) when

(FK,σ)K∈M,σ∈E is defined by (4.25)–(4.28), and also to prove the error estimate (4.36)

of Theorem 4.1, see for example (4.81)–(4.82).

Lemma 4.2 (Stability property for the discrete gradient, cf. [12, Lemma 4.2,

p. 1026]). Let Ω be a polyhedral open bounded subset of Rd, where d ∈ N
⋆ and

let D be a discretization of Ω in the sense of Definition 3.1, and let θ > θD be given

(where θD is defined by (3.13)). Then there exists C5 > 1 only depending on θ and

d such that

(4.40) C−1
5 |v|X 6 ‖∇Dv‖L2(Ω) 6 C5|v|X , ∀ v ∈ XD,

where ∇D is the discrete gradient given in (4.20)–(4.23).

Lemmas 4.3 and 4.4, given below, provide us, respectively, with an error estimate

for the gradient approximation and a consistency result. They are the subject of [12,

Lemma 4.4, p. 1029] and [12, (4.20), p. 1031] with some slight modifications on the

r.h.s. (right-hand side) of [12, (4.13), Lemma 4.4, p. 1029] and [12, (4.20), p. 1031].

Indeed, the constants which appear in these formulas depend on the function ϕ, so

when we apply these formulas directly, for instance, to (4.88)–(4.89) or, respectively,

to (4.84)–(4.85), we get constants depending on u(x, tn) and then on n, whereas the

application of Lemmas 4.3 and 4.4, given below, leads to constants independent of

the discretization parameters. In addition to this, the application of Lemmas 4.3

and 4.4 below helps us to see clearly which regularity is required to get the results

of Theorem 4.1.

Lemma 4.3 (Consistency result for the discrete gradient, see [12, Lemma 4.4,

p. 1029]). Let D be a discretization of Ω in the sense of Definition 3.1, and let

θ > θD be given (where θD is defined by (3.13)). Then for any function ϕ ∈ C2(Ω),

the following estimate holds:

(4.41) ‖∇DPDϕ −∇ϕ‖(L∞(Ω))d 6 C6hD max
|α|=2

‖Dαϕ‖C(Ω),

where ∇D is the discrete gradient given in (4.20)–(4.23) and C6 = d3θ + d7/2θ2 +

d5/2θ + 1.

P r o o f. Using the triangle inequality and the definitions (4.21) and (4.23), we

get

(4.42) |∇K,σPDϕ −∇ϕ(xK)| 6 |∇KPDϕ −∇ϕ(xK)| + |RK,σPDϕ|.
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We then estimate each term on the r.h.s. of the previous inequality; thanks to (4.22)

and the Taylor expansion we obtain

∇KPDϕ =
1

m(K)

∑

σ∈EK

m(σ)(ϕ(xσ) − ϕ(xK))nK,σ(4.43)

6
1

m(K)

∑

σ∈EK

m(σ)
(

(xσ − xK)T∇ϕ(xK)

+ d2h2
K max

|α|=2
‖Dαϕ‖C(Ω)

)

nK,σ,

where (xσ − xK)T denotes the transpose of xσ − xK ∈ R
d.

We use the following geometrical relation, which is the subject of [12, (2.17),

p. 1017]:

(4.44)
∑

σ∈EK

m(σ)nK,σ(xσ − xK)T = m(K)I, ∀K ∈ M,

where I is the d × d identity matrix. (Recall that (xσ − xK)T is a 1 × d matrix and

nK,σ is a d× 1 matrix, therefore the product nK,σ(xσ − xK)T is meaningful, namely

nK,σ(xσ − xK)T is a d × d matrix; consequently equality (4.44) makes sense.)

Therefore, (4.43) with (4.44), and the definition (3.13) of θD, yield that

(4.45) |∇KPDϕ −∇ϕ(xK)| 6
d2hKθD
m(K)

max
|α|=2

‖Dαϕ‖C(Ω)

∑

σ∈EK

m(σ)dK,σ .

Thanks to the assumption that K is xK -star-shaped, the following equality holds,

cf. [12, (4.3), p. 1025]:

(4.46)
∑

σ∈EK

m(σ)dK,σ = dm(K).

Consequently, (4.45) with (4.46) and the fact that θD 6 θ imply that

(4.47) |∇KPDϕ −∇ϕ(xK)| 6 max
|α|=2

‖Dαϕ‖C(Ω)d
3θhK .

Let us proceed to estimating the second term on the r.h.s. of (4.42); using defini-

tion (4.23) combined with (4.43) and (4.47), we get for some values ̺K,σ such that
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|̺K,σ| 6 d2 max
|α|=2

‖Dαϕ‖C(Ω):

|RK,σPDϕ|(4.48)

=
∣

∣

∣

√
d

dK,σ

(

ϕ(xσ) − ϕ(xK) −∇KPDϕ · (xσ − xK)
)

∣

∣

∣

=
∣

∣

∣

√
d

dK,σ

(

(xσ − xK) · ∇ϕ(xK) + h2
K̺K,σ −∇KPDϕ · (xσ − xK)

)

∣

∣

∣

=
∣

∣

∣

√
d

dK,σ

(

(xσ − xK) · (∇ϕ(xK ) −∇KPDϕ) + h2
K̺K,σ

)

∣

∣

∣

6

√
d

dK,σ

(

θdK,σ max
|α|=2

‖Dαϕ‖C(Ω)d
3θhK + d2hKθdK,σ max

|α|=2
‖Dαϕ‖C(Ω)

)

=
√

dd2θ max
|α|=2

‖Dαϕ‖C(Ω)(θd + 1)hK .

Combining then inequalities (4.42), (4.47), and (4.48), we get

(4.49) |∇K,σPDϕ −∇ϕ(xK)| 6 max
|α|=2

‖Dαϕ‖C(Ω)

√
dd2θ(

√
d + θd + 1)hK .

It is easily seen that, since |xK − x| 6 hK for all x ∈ DK,σ and for all σ ∈ EK ,

(4.50) |∇ϕ(xK ) −∇ϕ(x)|(L∞(DK,σ))d 6 max
|α|=2

‖Dαϕ‖C(Ω)hK .

Using the triangle inequality combined with (4.49)–(4.50), we get for all σ ∈ EK

and for all K ∈ M,

‖∇K,σPDϕ −∇ϕ(x)‖(L∞(DK,σ))d(4.51)

6 max
|α|=2

‖Dαϕ‖C(Ω)(d
3θ + d7/2θ2 + d5/2θ + 1)hK ,

which implies, since hK 6 hD for all K ∈ M

(4.52) ‖∇K,σPDϕ−∇ϕ(x)‖(L∞(Ω))d 6 max
|α|=2

‖Dαϕ‖C(Ω)(d
3θ+d7/2θ2+d5/2θ+1)hD.

This concludes the proof of the desired inequality (4.41). �
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Lemma 4.4 (see [12, (4.20), p. 1031]). Let Ω be a polyhedral open bounded

subset of Rd, where d ∈ N
⋆ and let D = (M, E ,P) be a discretization in the sense

of Definition 3.1. Let B ⊂ Eint be given and let {βK
σ : σ ∈ B, K ∈ M} be a subset

of R satisfying (3.4). Let ϕ be a function satisfying ϕ ∈ C2(Ω). Then the following

estimate holds for all K ∈ M and for all σ ∈ EK ∩ B:

(4.53) |ϕ(xσ) − ϕσ| 6 d2 max
|α|=2

‖Dαϕ‖C(Ω)θD,Bh2
K ,

where θD,B is given by (3.14) and

(4.54) ϕσ =
∑

L∈M

βL
σ ϕ(xL).

P r o o f. Thanks to a Taylor expansion, for ϕ ∈ C2(Ω) we have

ϕ(xL) = ϕ(xσ) + ∇u(xσ) · (xL − xσ)(4.55)

+

∫ 1

0

H(ϕ)(txσ + (1 − t)xL)(xL − xσ) · (xL − xσ) dt,

where H(ϕ)(z) denotes the Hessian matrix of ϕ at the point z.

This implies, due to (3.4),

∑

L∈M

βL
σ ϕ(xL) =

∑

L∈M

βL
σ ϕ(xσ) +

∑

L∈M

βL
σ ∇u(xσ) · (xL − xσ) + Lσ(4.56)

= ϕ(xσ) +

(

∑

L∈M

βL
σ xL −

∑

L∈M

βL
σ xσ

)

· ∇u(xσ) + Lσ

= ϕ(xσ) +

((

∑

L∈M

βL
σ xL

)

− xσ

)

· ∇u(xσ) + Lσ

= ϕ(xσ) + Lσ,

where

(4.57) Lσ =
∑

L∈M

βL
σ

∫ 1

0

H(ϕ)(txσ + (1 − t)xL)(xL − xσ) · (xL − xσ) dt.

It is easily seen that

(4.58) |Lσ| 6 d2 max
|α|=2

‖Dαϕ‖C(Ω)

∑

L∈M

|βL
σ |xL − xσ|2.
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But, using (3.14), for all K ∈ M and for all σ ∈ EK ∩ B we have

(4.59)
∑

L∈M

|βL
σ |xL − xσ|2 6 θD,Bh2

K .

This with (4.58) implies that

(4.60) |Lσ| 6 d2 max
|α|=2

‖Dαϕ‖C(Ω)θD,Bh2
K ,

which gives

(4.61) |ϕ(xσ) −
∑

L∈M

βL
σ ϕ(xL)| 6 d2 max

|α|=2
‖Dαϕ‖C(Ω)θD,Bh2

K .

This completes the proof of Lemma 4.4. �

To analyse the convergence of the finite volume scheme (4.16)–(4.17), we need to

use the following auxiliary scheme: for any n ∈ [[0, N + 1]], find ūn
D ∈ XD,B such that

(4.62) 〈ūn
D, v〉F = −

∑

K∈M

vK

∫

K

∆u(x, tn) dx, ∀ v ∈ XD,B.

Note that, taking n = 0 in (4.62) with (1.2) leads to

(4.63) 〈ū0
D, v〉F = −

∑

K∈M

vK

∫

K

∆u0(x) dx, ∀ v ∈ XD,B,

which together with (4.17) implies, when the condition (4.29) is satisfied (and then

the uniqueness of the solution of (4.63) holds)

(4.64) ū0
D = u0

D,

where u0
D is given by (4.17).

The following lemma concerns the convergence of the auxiliary scheme (4.62). The

proof of Lemma 4.5 is based on the use of the proof of [12, Theorem 4.8, p. 1033]

with special attention to the constants which appear in the error estimates in the

isotropic case.
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Lemma 4.5 (Some error estimates for the auxiliary scheme (4.62), see [12, Theo-

rem 4.8, p. 1033]). Let Ω be a polyhedral open bounded subset of Rd, where d ∈ N
⋆

and ∂Ω = Ω \Ω is its boundary. Assume that the weak solution of (1.1)–(1.3) in the

sense of Theorem 2.1 satisfies u ∈ C([0, T ]; C2(Ω)). Let k = T/(N + 1), with N ∈ N
⋆,

and denote tn = nk for n ∈ [[0, N + 1]]. Let D = (M, E ,P) be a discretization in the

sense of Definition 3.1. Let B ⊂ Eint be given and let {βK
σ : σ ∈ B, K ∈ M} be a sub-

set of R satisfying (3.4). Assume that θD,B, given by (3.14), satisfies θ > θD,B. Let

(FK,σ)K∈M,σ∈E be a family of linear mappings from XD into R such that (4.29) holds

for some positive constant α. For a function u ∈ C1(Ω), we define the expressions

RK,σ(u) and ED(u) given respectively by (4.31) and (4.32) in Theorem 4.1.

Then for each n ∈ [[0, N + 1]] there exits a unique solution ūn
D for the auxiliary

scheme (4.62). In addition to this, the following error estimates hold:

• Discrete L∞(0, T ; H1
0 (Ω))-error estimate, for all n ∈ [[0, N + 1]]

(4.65) α‖PMu(·, tn) − ΠMūn
D‖1,2,M 6 max

m∈[[0,N+1]]
ED(u(·, tm)).

• Wj,∞(0, T ;L2(Ω))-error estimate, for all j ∈ [[0, 2]]: for all n ∈ [[j, N + 1]]

(4.66) α‖∂j(PMu(·, tn) − ΠMūn
D)‖L2(Ω) 6 Cp max

m∈[[j,N+1]]
ED(∂ju(·, tm)),

where we have denoted ∂0vn = vn, ∂1vn is given by (4.5), and ∂2vn =

k−1(∂1vn − ∂1vn−1), and Cp is the constant which appears in the Sobolev

inequality [12, (5.10), Lemma 5.4, p. 1038].

• Error estimate in the gradient approximation: there is a constant C7 only de-

pending on θ, d, Ω, and α such that, for all n ∈ [[0, N + 1]],

‖∇Dūn
D −∇u(·, tn)‖(L2(Ω))d(4.67)

6 C7

(

max
m∈[[0,N+1]]

ED(u(·, tm)) + hD‖u‖C([0,T ];C2(Ω))

)

.

Moreover, in the particular case where (FK,σ)K∈M,σ∈E is defined by (4.25)–(4.28)

and u ∈ C2([0, T ]; C2(Ω)), there is a constant C4 only depending on θ, Ω, and d such

that, for all j ∈ [[0, 2]],

(4.68) max
m∈[[j,N+1]]

ED(∂ju(·, tm)) 6 C4hD‖u‖C2([0,T ];C2(Ω)).

P r o o f. Let us first remark that, thanks to the regularity assumption u ∈
C([0, T ]; C2(Ω)), equation (4.62) is meaningful.
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1. Proof of existence and uniqueness: For each n ∈ [[0, N + 1]], equation (4.62) is

equivalent to a linear system of N unknowns, namely {(ūn
K , ūn

σ) : K ∈ M, σ ∈ H},
and N equations, where N = card(M) + card(H) (recall that H = Eint \ B and
ūσ =

∑

K∈M

βK
σ ūK for all σ ∈ B where the set {βK

σ : σ ∈ B, K ∈ M} satisfies (3.4)).
For a fixed n ∈ [[0, N + 1]], assume that the r.h.s. of (4.62) equals to zero, taking

vD = ūn
D, and using (4.29) yields that ū

n
D = 0. This uniqueness implies the existence.

2. Proof of estimate (4.65): Using integration by parts yields that

(4.69) −
∑

K∈M

vK

∫

K

∆u(x, tn) dx = −
∑

K∈M

∑

σ∈EK

vK

∫

σ

∇u(x, tn) · nK,σ(x) dγ(x).

Since vσ = 0 for all σ ∈ Eext and
∫

σ ∇u(x, tn) · nK,σ(x) dγ(x) +
∫

σ ∇u(x, tn) ·
nL,σ(x) dγ(x) = 0 for all σ ∈ E such thatMσ = {K, L} (it stems from the fact that
nK,σ = −nL,σ) we have

(4.70) −
∑

K∈M

∑

σ∈EK

vσ

∫

σ

∇u(x, tn) · nK,σ(x) dγ(x) = 0.

This with (4.69) leads to

−
∑

K∈M

vK

∫

K

∆u(x, tn) dx(4.71)

= −
∑

K∈M

∑

σ∈EK

(vK − vσ)

∫

σ

∇u(x, tn) · nK,σ(x) dγ(x).

Substituting this in (4.62) and multiplying both sides of the resulting equation

by −1, we get for all n ∈ [[0, N + 1]]

(4.72) −〈ūn
D, v〉F =

∑

K∈M

∑

σ∈EK

(vK − vσ)

∫

σ

∇u(x, tn) ·nK,σ(x) dγ(x), ∀ v ∈ XD,B.

Adding
∑

K∈M

∑

σ∈EK

FK,σ(PD,Bu(·, tn))(vK −vσ) to both sides of the previous equal-

ity and using definition (4.30), we obtain for all v ∈ XD,B

(4.73) 〈PD,Bu(·, tn) − ūn
D, v〉F =

∑

K∈M

∑

σ∈EK

RK,σ(u(·, tn))(vK − vσ),

where RK,σ is given by (4.31).

Taking PD,Bu(·, tn) = v + ūn
D ∈ XD,B (therefore, v = PD,Bu(·, tn) − ūn

D) in the

previous equality, we get for all n ∈ [[0, N + 1]]

(4.74) 〈v, v〉F =
∑

K∈M

∑

σ∈EK

RK,σ(u(·, tn))(vK − vσ).
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The previous inequality with the coercivity (4.29), the Cauchy-Schwarz inequality,

and the definitions (3.2) and (4.32) yield

(4.75) α|v|X 6 ED(u(·, tn)).

This implies, since v = PD,Bu(·, tn) − ūn
D,

(4.76) α|PD,Bu(·, tn) − ūn
D|X 6 ED(u(·, tn)).

Using now (4.39), (4.76) implies

(4.77) α‖ΠMPD,Bu(·, tn) − ΠMūn
D‖1,2,M 6 ED(u(·, tn)).

This with (3.38) of Lemma 4.1 yields

(4.78) α‖PMu(·, tn) − ΠMūn
D‖1,2,M 6 ED(u(·, tn)),

which implies the required estimate (4.65).

3. Proof of estimate (4.66): Estimate (4.78) with the Sobolev inequality [12, (5.10),

Lemma 5.4, p. 1038] (by taking p = 2 in [12, (5.10), Lemma 5.4, p. 1038]) implies,

since PMu(·, tn) − ΠMūn
D ∈ HM(Ω) (see Definition 3.3), for all n ∈ [[0, N + 1]]

(4.79) α‖PMu(·, tn) − ΠMūn
D‖L2(Ω) 6 Cp max

m∈[[0,N+1]]
ED(u(·, tm)),

which is the required estimate (4.66) when j = 0.

Using the definition of ∂j and (4.62) and the fact that 〈·, ·〉F is a bilinear form, we
deduce that for any n ∈ [[j, N + 1]], ∂j ūn

D ∈ XD,B is the solution of the problem

(4.80) 〈∂j ūn
D, v〉F = −

∑

K∈M

vK

∫

K

∆∂ju(x, tn) dx, ∀v ∈ XD,B.

Therefore, we can apply estimate (4.79) to get (4.66), for any j ∈ {1, 2}.
4. Proof of estimate (4.67): Using the triangle inequality, we get

‖∇DPDu(·, tn) −∇Dūn
D‖L2(Ω)d(4.81)

6 ‖∇DPDu(·, tn) −∇DPD,Bu(·, tn)‖L2(Ω)d

+ ‖∇DPD,Bu(·, tn) −∇Dūn
D‖L2(Ω)d .

The second term on the r.h.s. of the previous inequality can be written as

‖∇D(PD,Bu(·, tn) − ūn
D)‖L2(Ω)d ; combining (4.40) of Lemma 4.2 and (4.76) leads to

(4.82) ‖∇DPD,Bu(·, tn) −∇Dūn
D‖L2(Ω)d 6

C5

α
ED(u(·, tn)).
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The first term on the r.h.s. of (4.81) could be written as ‖∇D(PDu(·, tn) −
PD,Bu(·, tn))‖L2(Ω)d ; using then (4.40) of Lemma 4.2, we get

(4.83) ‖∇DPDu −∇DPD,Bu‖L2(Ω)d 6 C5‖PDu(·, tn) − PD,Bu(·, tn)‖X .

On the other hand, using definition (3.2) of the norm | · |X , we have

(4.84) |PDu(·, tn) − PD,Bu(·, tn)|2X =
∑

K∈M

∑

σ∈EK∩B

m(σ)

dK,σ
(u(xσ, tn) − un

σ)2.

Using the fact that un
σ =

∑

L∈M

βL
σ u(xL, tn) and estimate (4.53) of Lemma 4.4

yields, since θD,B 6 θ,

(4.85) |PDu(·, tn)−PD,Bu(·, tn)|2X 6 d4‖u‖C([0,T ];C2(Ω))θ
2h2

D

∑

K∈M

∑

σ∈EK∩B

m(σ)

dK,σ
h2

K .

Using (3.13) and (4.46), the previous inequality implies that

(4.86) |PDu(·, tn) − PD,Bu(·, tn)|2X 6 ‖u‖C([0,T ];C2(Ω))θ
4d5m(Ω)h2

D.

This with (4.83) implies that

‖∇DPDu(·, tn) −∇DPD,Bu(·, tn)‖L2(Ω)d(4.87)

6 C5‖u‖C([0,T ];C2(Ω))θ
2d5/2

√

m(Ω)hD.

Combining now (4.81), (4.82), and (4.87) yields that

‖∇DPDu(·, tn) −∇Dūn
D‖L2(Ω)d(4.88)

6 C5‖u‖C([0,T ];C2(Ω))θ
2d5/2

√

m(Ω)hD

+
C5

α
ED(u(·, tn)).

This with (4.41) of Lemma 4.3 and the triangle inequality implies

‖∇u(·, tn) −∇Dūn
D‖L2(Ω)d(4.89)

6 C5‖u‖C([0,T ];C2(Ω))θ
2d5/2

√

m(Ω)hD +
C5

α
ED(u(·, tn))

+ C6hD‖u‖C([0,T ];C2(Ω))

√

m(Ω),

which leads to (4.67).
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5. Proof of estimate (4.68): Estimate (4.68), when j = 0, is given in [12, (4.27),

Theorem 4.8, p. 1033] but with a constant depending on u. Thanks to the proof

of [12, (4.27), Theorem 4.8, p. 1033] and the previous techniques, we can prove that

there exists a constant C4 only depending on θ, Ω, and d such that for all j ∈ [[0, 2]]

(4.90) ED(∂ju(·, tn)) 6 C4hD‖∂ju(·, tn)‖C2(Ω).

On the other hand,

(4.91) ‖∂ju(·, tn)‖C2(Ω) = max
|α|62

sup
x∈Ω

|Dα∂ju(x, tn)| = max
|α|62

sup
x∈Ω

|∂j(Dαu(x, tn))|.

For j = 0, the previous inequality leads to

(4.92) ‖∂ju(·, tn)‖C2(Ω) 6 ‖u‖C([0,T ];C2(Ω)).

For j = 1, we remark that

(4.93) ∂1(Dαu(x, tn)) =
1

k

∫ tn

tn−1

(Dαu)t(x, t) dt,

which implies that

|∂1(Dαu(x, tn))| 6
1

k

∫ tn

tn−1

sup
x∈Ω

|(Dαu)t(x, t)| dt(4.94)

6 max
t∈[0,T ]

sup
x∈Ω

|(Dαu)t(x, t)|

= ‖u‖C1([0,T ];C2(Ω)), ∀α ∈ N
d satisfying |α| 6 2.

For j = 2, we remark that

(4.95) ∂2(Dαu(x, tn)) =
1

k2

∫ tn

tn−1

∫ t

t−h

(Dαu)tt(x, t) ds dt,

which yields, thanks to the technique used to prove (4.94), that

(4.96) |∂2(Dαu(x, tn))| 6 ‖u‖C2([0,T ];C2(Ω)), ∀α ∈ N
d satisfying |α| 6 2.

Gathering now (4.90)–(4.96), we get the desired estimate (4.68). �
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The previous lemma gives error estimates for the auxiliary finite volume ap-

proximation (ūn
D)n∈[[0,N+1]], given by (4.26). We proceed now to compare the ap-

proximation (ūn
D)n∈[[0,N+1]] with the solution (un

D)n∈[[0,N+1]] of our finite volume

scheme (4.16)–(4.17). For this reason, we set for all n ∈ [[0, N + 1]]

(4.97) ηn
D = ūn

D − un
D.

Equality (4.97) means that

(4.98) ηn
K = ūn

K − un
K , ∀K ∈ M and ηn

σ = ūn
σ − un

σ, ∀σ ∈ E ,

where we have denoted un
D = ((un

K)K∈M, (un
σ)σ∈E ) and ūn

D = ((ūn
K)K∈M, (ūn

σ)σ∈E).

When (4.29) is satisfied, (4.64) implies that

(4.99) η0
D = 0.

The following lemma provides us with some estimates concerning ηn
D given

by (4.97). These estimates together with that of the previous lemma will help us to

get some estimates for the solution un
D = ((un

K)K∈M, (un
σ)σ∈E) of the scheme (4.16)–

(4.17).

Lemma 4.6 (Some error estimates for ηn
D given by (4.97)). Let Ω be a polyhedral

open bounded subset of Rd, where d ∈ N
⋆, and let ∂Ω = Ω \ Ω be its boundary.

Assume that the weak solution of (1.1)–(1.3) in the sense of Theorem 2.1 satisfies

u ∈ C2([0, T ]; C2(Ω)). Let k = T/(N + 1) with N ∈ N
⋆, and denote tn = nk for

n ∈ [[0, N + 1]]. Let D = (M, E ,P) be a discretization in the sense of Definition 3.1.

Let B ⊂ Eint be given and let {βK
σ : σ ∈ B, K ∈ M} be a subset of R satisfying (3.4).

Assume that θD,B, given by (3.14), satisfies θ > θD,B. Let (FK,σ)K∈M,σ∈E be a family

of linear mappings from XD into R satisfying (4.29) for some positive contant α,

where 〈·, ·〉F is defined by (4.30).
Then, for each n ∈ [[0, N + 1]], there exists a unique solution ūn

D for the auxiliary

scheme (4.62), and there exists a unique solution (un
D)n∈[[0,N+1]] for the finite volume

scheme (4.16)–(4.17). Let ηn
D, n ∈ [[0, N + 1]], be given by (4.97).

For a function u ∈ C1(Ω), we define the expressions RK,σ(u) and ED(u) given

respectively by (4.31) and (4.32) in Theorem 4.1 and we define the following new

expressions, for j ∈ {0, 1, 2}:

(4.100) Sj = max
m∈[[j,N+1]]

ED(∂ju(·, tm)),

where we denote ∂0vn = vn, ∂
1vn is given by (4.5), and ∂2vn = 1

k (∂1vn − ∂1vn−1).
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Let us consider the following expressions for all n ∈ [[2, N + 1]]:

m(K)Tn
K =

∫

K

∂2u(x, tn) dx − 1

k

∫

K

∂1

(
∫ tn+1

tn

∆u(x, t) dt

)

dx(4.101)

− m(K)∂2u(xK , tn) +

∫

K

∆∂1u(x, tn) dx,

with

(4.102) T
n
K = 0, ∀n ∈ {0, 1},

and, for all n ∈ [[1, N + 1]],

m(K)Kn
K =

∫

K

∂1u(x, tn) dx − 1

k

∫

K

∫ tn+1

tn

∆u(x, t) dt dx(4.103)

− m(K)∂1u(xK , tn) +

∫

K

∆u(x, tn) dx,

with

(4.104) K
0
K = 0,

where u ∈ C2([0, T ]; C2(Ω)) is the solution of (1.1)–(1.3).

Set

(4.105) T = max
n∈[[0,N+1]]

(

∑

K∈M

m(K)(Tn
K)2

)1/2

and

(4.106) K = max
n∈[[0,N+1]]

(

∑

K∈M

m(K)(Kn
K)2

)1/2

.

Then, the following error estimates hold:

• Discrete L∞(0, T ; H1
0 (Ω))-estimate: for all n ∈ [[0, N + 1]]

(4.107) α‖ΠMηn
D‖1,2,M 6 2

C2
p

α
S1 + T

C2
p

α
S2 + 2CpK + TCpT,

where Cp (the letter “p” for Poincaré) is the constant which appears in [12,

(5.10), Lemma 5.4, p. 1038] when p = 2.
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• W1,∞(0, T ;L2(Ω))-estimate: for all n ∈ [[1, N + 1]]

(4.108) ‖∂1ΠM, ηn
D‖L2(Ω) 6

Cp

α
S1 + T

Cp

α
S2 + TT + K.

• Error estimate in the gradient approximation: for all n ∈ [[0, N + 1[]

(4.109) α‖∇Dηn
D‖L2(Ω) 6 2C5

C2
p

α
S1 + TC5

C2
p

α
S2 + TC5CpT + 2C5CpK,

where C5 is the constant which appears in (4.10) of Lemma 4.2.

P r o o f. 1. Proof of existence and uniqueness results: The existence and unique-

ness of the solution ūn
D, for each n ∈ [[0, N + 1]], for the auxiliary scheme (4.62) is

provided in Lemma 4.5.

To prove the existence and uniqueness of the solution (un
D)n∈[[0,N+1]] for the com-

posite scheme (4.16)–(4.17), we set fn
K = 0 and un

K = 0, and taking v = un+1
D

in (4.16) yields, thanks to (4.29), un+1
D = 0. This yields the uniqueness of the so-

lution un+1
D for (4.16) for given {fn

K : K ∈ M} and un
D. The existence of un+1

D

follows immediately, since (4.16) is a finite dimensional linear system with respect

to the unknowns {(un
K , un

σ) : K ∈ M, σ ∈ H} (with as many unknowns as many
equations). This with the existence and uniqueness (thanks to Lemma 4.5) of u0

D

implies, successively on n, the existence and uniqueness of un
D for all n ∈ [[0, N + 1]].

We first prove (4.108) and then we prove (4.107) and (4.109).

2. Proof of estimate (4.108): Let us write equation (4.62) in the step n, for all

n ∈ [[0, N ]]:

(4.110) 〈ūn+1
D , v〉F = −

∑

K∈M

vK

∫

K

∆u(x, tn+1) dx, ∀ v ∈ XD,B.

Subtracting (4.16) from (4.110) and using (4.97)–(4.98), we get for all n ∈ [[0, N ]]

(∂1ΠMηn+1
D , ΠMv)L2(Ω) + 〈ηn+1

D , v〉F(4.111)

= −
∑

K∈M

(

m(K)fn
K +

∫

K

∆u(x, tn+1) dx

)

vK

+ (∂1ΠMūn+1
D , ΠMv)L2(Ω), ∀ v ∈ XD,B.

Applying the discrete operator ∂1 to both sides of the previous equality, we get for

all n ∈ [[1, N ]]

(∂2ΠMηn+1
D , ΠMv)L2(Ω) + 〈∂1ηn+1

D , v〉F(4.112)

= −
∑

K∈M

(

m(K)∂1fn
K +

∫

K

∆∂1u(x, tn+1) dx

)

vK

+ (∂2ΠMūn+1, ΠMv)L2(Ω), ∀ v ∈ XD,B.
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Substituting f by ut −∆u (subject of equation (1.1)), and recalling that fn
K is given

by (4.6) yields

m(K)∂1fn
K =

1

k

∫

K

∂1

(
∫ tn+1

tn

f(x, t) dt

)

dx(4.113)

=

∫

K

∂2u(x, tn+1) dx − 1

k

∫

K

∂1

(
∫ tn+1

tn

∆u(x, t) dt

)

dx.

Due to (4.113) and (4.101), we can write

(4.114) m(K)∂1fn
K +

∫

K

∆∂1u(x, tn+1) dx = m(K)Tn+1
K + m(K)∂2u(xK , tn+1).

Inserting this in (4.112) yields that for all n ∈ [[1, N ]]

(∂2ΠMηn+1
D , ΠMv)L2(Ω) + 〈∂1ηn+1

D , v〉F(4.115)

= − (∂2ΠMξn+1
D , ΠMv)L2(Ω) −

∑

K∈M

m(K)Tn+1
K vK ,

where ξn
D is given for all n ∈ [[0, N + 1]] by

(4.116) ξn
D = PDu(·, tn) − ūn

D.

Taking v = ∂1ηn+1
D (this is possible since ηn

D ∈ XD,B, n ∈ [[0, N + 1]], see (4.97))

in (4.115), using (4.29), and the Cauchy-Schwarz inequality leads to (recall that

∂2ηn+1
D = (∂1ηn+1

D − ∂1ηn
D)/k), for all n ∈ [[1, N ]]

(4.117) ‖∂1ΠMηn+1
D ‖L2(Ω) 6 ‖∂1ΠM, ηn

D‖L2(Ω) + k‖∂2ΠMξn+1
D ‖L2(Ω) + kT.

By virtue of

(4.118) ΠMPDϕ = PMϕ, ∀ϕ ∈ C(Ω),

using (4.116) one deduces that

(4.119) ΠMξn
D = PMu(·, tn) − ΠMūn

Dd,

and therefore, using (4.66) and (4.100), for all n ∈ [[1, N ]], we have

(4.120) ‖∂2ΠMξn+1
D ‖L2(Ω) 6

Cp

α
S2,
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where Cp is the constant which appears in the Sobolev inequality [12, (5.10),

Lemma 5.4, p. 1038] when p = 2.

This together with (4.117) implies that for all n ∈ [[1, N ]]

(4.121) ‖∂1ΠMηn+1
D ‖L2(Ω) − ‖∂1ΠMηn

D‖L2(Ω) 6 k
Cp

α
S2 + kT.

Taking into account that for all n ∈ [[1, N ]]

‖∂1ΠMηn+1
D ‖L2(Ω) − ‖∂1ΠMη1

D‖L2(Ω)(4.122)

=

n
∑

j=1

(‖∂1ΠMηj+1
D ‖L2(Ω) − ‖∂1ΠMηj

D‖L2(Ω)),

using (4.121) one deduces

(4.123) ‖∂1ΠMηn+1
D ‖L2(Ω) 6 ‖∂1ΠMη1

D‖L2(Ω) + kn
Cp

α
S2 + knT,

which gives, since nk 6 T ,

(4.124) ‖∂1ΠMηn+1
D ‖L2(Ω) 6 ‖∂1ΠMη1

D‖L2(Ω) + T
Cp

α
S2 + TT.

Let us estimate the first term on the r.h.s. of the previous inequality; set n = 0

in (4.111) to get for all v ∈ XD,B

(∂1ΠMη1
D, ΠMv)L2(Ω) + 〈η1

D, v〉F(4.125)

= −
∑

K∈M

(

m(K)f0
K +

∫

K

∆u(x, t1) dx

)

vK

+ (∂1ΠMū1
D, ΠMv)L2(Ω).

Using once again the fact that f = ut − ∆u (subject of equation (1.1)), and

recalling that fn
K , for all n ∈ [[0, N ]], is given by (4.6), we obtain

m(K)fn
K =

1

k

∫

K

(
∫ tn+1

tn

f(x, t) dt

)

dx(4.126)

=

∫

K

∂1u(x, tn+1) dx − 1

k

∫

K

∫ tn+1

tn

∆u(x, t) dt dx.

From (4.126) and (4.103) we obtain

(4.127) m(K)fn
K +

∫

K

∆u(x, tn+1) dx = m(K)Kn+1
K + m(K)∂1u(xK , tn+1).
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Setting n = 0 in the previous expansion and inserting the result in (4.125) yields

that

(∂1ΠMη1
D, ΠMv)L2(Ω) + 〈η1

D , v〉F(4.128)

= − (∂1ΠMξ1
D, ΠMv)L2(Ω) −

∑

K∈M

m(K)K1
KvK .

Taking v = ∂1η1
D in (4.128), using (4.29) and the Cauchy-Schwarz inequality leads

to (recall that ∂1η1
D = (η1

D − η0
D)/k = η1

D/k since η0
D = 0, thanks to (4.99)),

(4.129) ‖∂1ΠMη1
D‖L2(Ω) 6 ‖∂1ΠMξ1

D‖L2(Ω) + K.

Thanks to (4.119) and (4.66), the previous inequality implies

(4.130) ‖∂1ΠMη1
D‖L2(Ω) 6

Cp

α
S1 + K.

This with (4.124) implies that for all n ∈ [[1, N ]]

(4.131) ‖∂1ΠMηn+1
D ‖L2(Ω) 6 T

Cp

α
S2 +

Cp

α
S1 + TT+ K.

Combining the previous two inequalities yields that for all n ∈ [[0, N + 1]]

(4.132) ‖∂1ΠMηn
D‖L2(Ω) 6 T

Cp

α
S2 +

Cp

α
S1 + TT + K.

This is the required estimate (4.108).

3. Proof of estimate (4.107): Let us turn to (4.111); inserting (4.127) in (4.11)

leads for all v ∈ XD,B

(∂1ΠMηn+1
D , ΠMv)L2(Ω) + 〈ηn+1

D , v〉F(4.133)

= − (∂1ΠMξn+1
D , ΠMv)L2(Ω) −

∑

K∈M

m(K)Kn+1
K vK .

Taking v = ηn+1
D in the previous inequality and using the Cauchy-Schwarz inequality

yields that for all n ∈ [[0, N ]]

(4.134) 〈ηn+1
D , ηn+1

D 〉F 6 M
n+1
D ‖ΠMηn+1

D ‖L2(Ω),

where

(4.135) M
n+1
D = ‖∂1ΠMηn+1

D ‖L2(Ω) + ‖∂1ΠMξn+1
D ‖L2(Ω) + K.
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Inequality (4.134) with estimate [12, (5.10), Lemma 5.4, p. 1038] when p = 2, (4.29),

and (4.39) (recall that ΠMηn+1
D ∈ XD,B ⊂ XD,0 since (3.6) yield that

(4.136) α‖ηn+1
D ‖X 6 CpM

n+1
D .

Estimate (4.136) with the expressions (4.135), (4.132), (4.60) and the fact that

η0
D = 0 (see (4.99)) implies that for all n ∈ [[0, N + 1]]

(4.137) α‖ηn
D‖X 6 T

C2
p

α
S2 + TCpT + 2CpK + 2

C2
p

α
S1.

This together with (4.39) yields that for all n ∈ [[0, N + 1]]

(4.138) α‖ΠMηn
D‖1,2,M 6 T

C2
p

α
S2 + TCpT + 2

C2
p

α
S1 + 2CpK,

which is (4.107).

Proof of estimate (4.109): Thanks to (4.40) of Lemma 4.2, (4.137) implies that for

all n ∈ [[0, N + 1]]

(4.139) α‖∇Dηn
D‖L2(Ω) 6 TC5

C2
p

α
S2 + TC5CpT + 2C5CpK + 2C5

C2
p

α
S1,

which concludes the proof of (4.109), and thus the proof of Lemma 4.6 is completed.

�

The following lemma is devoted to estimating T
n and K

n defined respectively

by (4.105).

Lemma 4.7 (A technical lemma). Let Ω be a polyhedral open bounded subset

of Rd, where d ∈ N
⋆, and let ∂Ω = Ω \ Ω its boundary. Assume that the weak

solution of (1.1)–(1.3) in the sense of Theorem 2.1 satisfies u ∈ C2([0, T ]; C2(Ω)).

Let k = T/(N + 1) with N ∈ N
⋆, and denote tn = nk for n ∈ [[0, N + 1]]. Let

D = (M, E ,P) be a discretization in the sense of Definition 3.1.

Let {Tn
K : n ∈ [[0, N + 1]], K ∈ M} and {Kn

K : n ∈ [[0, N + 1]], K ∈ M} be the
sets of expressions given by (4.101)–(4.102) and (4.103)–(4.104), respectively.

Then the following estimates hold:

(4.140) T 6 (hD + k)
√

m(Ω)d‖u‖C2([0,T ];C2(Ω)),

and

(4.141) K 6 (hD + k)
√

m(Ω)d‖u‖C1([0,T ];C2(Ω)),

where T and K are given respectively by (4.105) and (4.106).
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P r o o f. We first remark that for all n ∈ [[1, N + 1]]

(4.142)

∣

∣

∣

∣

∫

K

∂2u(x, tn) dx − m(K)∂2u(xK , tn)

∣

∣

∣

∣

6 hDm(K)d‖∂2u(·, tn)‖C1(Ω).

This together with the representation (4.95) implies that

(4.143)

∣

∣

∣

∣

∫

K

∂2u(x, tn) dx − m(K)∂2u(xK , tn)

∣

∣

∣

∣

6 hDm(K)d‖u‖C2([0,T ];C1(Ω)).

On the other hand, we have

1

k

∫

K

∂1

(
∫ tn

tn−1

∆u(x, t) dt

)

dx −
∫

K

∆∂1u(x, tn) dx(4.144)

=
1

k2

∫

K

∫ tn

tn−1

∫ t

tn−1

∫ s+k

s

∆
d2u

dl2
(x, l) dl ds dt dx,

which implies that

∣

∣

∣

∣

1

k

∫

K

∂1

(
∫ tn

tn−1

∆u(x, t) dt

)

dx −
∫

K

∆∂1u(x, tn) dx

∣

∣

∣

∣

(4.145)

6 km(K)‖u‖C2([0,T ];C2(Ω)).

Combining (4.101)–(4.102), estimates (4.143), and (4.145), and the triangle inequal-

ity, leads for all n ∈ [[0, N + 1]] and for all K ∈ M

(4.146) |Tn
K | 6 (hD + k)d‖u‖C2([0,T ];C2(Ω)).

This together with (4.105) implies (4.110).

A similar reasoning to that presented in (4.142)–(4.146) implies (4.141). �

P r o o f of Theorem 4.1. The results of Theorem 4.1 can be justified easily using

Lemmas 4.5, 4.6, and 4.7 together with the triangle inequality. �
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5. Conclusion

We considered the nonstationary heat equation with homogeneous Dirichlet

boundary conditions on a polygonal domain of any space dimension. The scheme

we presented, that is (4.16)–(4.17), can be applied to any type of spatial grid: con-

forming or non conforming, 2D and 3D, or more, made with control volumes which

are only assumed to be polyhedral (the boundary of each control volume is a finite

union of subsets of hyperplanes). The estimates obtained, i.e. (4.34)–(4.36) allow to

get error estimates for approximations for the exact solution u of (1.1)–(1.3) and its

first derivatives, see Remark 5.

The first equation of the finite volume scheme, i.e. (4.16), is a discretization of

the weak formulation (2.1) of the heat equation (1.1) (with, of course, the boundary

condition (1.3)), whereas the discrete initial condition (4.17) is a discrete version of an

orthogonal projection (1.4). From this point of view the discretization scheme (4.34)–

(4.36) can be viewed as a nonconforming finite element method although the scheme

stems from finite volume ideas. The choice of the discretization (4.17) for the initial

condition (1.2) is useful as explained in Remark 6.

It is worth discussing the case when the discretization of initial condition (1.2) is

performed using the following obvious choice (recall that u0
D = ((u0

K)K∈M, (u0
σ)σ∈E )

is an element of XD,0):

(5.1) u0
K = u0(xK), ∀K ∈ M,

and

(5.2) u0
σ = u0(xσ), ∀σ ∈ E .

Concerning the finite volume scheme (4.16) with (5.1)–(5.2), we could only prove the

following estimates for some positive constants C only depending on T , Ω, d, and θ,

see the case of an admissible mesh [4, Section 3, pp. 239–240]:

• Discrete L2(0, T ; H1
0 (Ω))-estimate

N
∑

n=0

k‖PMu(·, tn+1) − ΠMun+1
D ‖2

1,2,M(5.3)

6 C

( N
∑

n=0

k(ED(u(·, tn+1)))
2 + (hD + k)2‖u‖2

C2([0,T ];C2(Ω))

)

;
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• discrete semi-norm H1(0, T ;L2(Ω))-estimate:

N
∑

n=0

∑

K∈M

m(K)k
(en+1

K − en
K

k

)2

(5.4)

6 C

( N
∑

n=0

(ED(u(·, tn+1)))
2 +

(hD + k)2

k
‖u‖2

C2([0,T ];C2(Ω))

)

.

So, in the case when (FK,σ)K∈M,σ∈E is defined by (4.25)–(4.28), estimates (5.3)–(5.4)

become thanks to (4.37)

• discrete L2(0, T ; H1
0 (Ω))-estimate

(5.5)

( N
∑

n=0

k‖PMu(·, tn+1) − ΠMun+1
D ‖2

1,2,M

)1/2

6 C(hD + k)‖u‖C2([0,T ];C2(Ω));

• discrete semi-norm H1(0, T ;L2(Ω))-estimate:

(5.6)

( N
∑

n=0

∑

K∈M

m(K)k
(en+1

K − en
K

k

)2
)1/2

6 C
hD + k√

k
‖u‖C2([0,T ];C2(Ω)).

Therefore, there are many investigations to take care of in the future, and among

them we quote:

(1) Although the efficiency of the finite volume schemes arising from the new class

of general meshes was proved numerically in the stationary case in [12], it is

worth justifying numerically Theorem 4.1 and estimates (5.5)–(5.6).

(2) It is worth considering the task if it is possible to weaken the regularity assump-

tion u ∈ C2([0, T ]; C2(Ω)) of Theorem 4.1.
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