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ON THOSE ORDINARY DIFFERENTIAL EQUATIONS

THAT ARE SOLVED EXACTLY

BY THE IMPROVED EULER METHOD

Hans Jakob Rivertz

Abstract. As a numerical method for solving ordinary differential equations
y′ = f(x, y), the improved Euler method is not assumed to give exact solutions.
In this paper we classify all cases where this method gives the exact solution
for all initial conditions. We reduce an infinite system of partial differential
equations for f(x, y) to a finite system that is sufficient and necessary for
the improved Euler method to give the exact solution. The improved Euler
method is the simplest explicit second order Runge-Kutta method.

1. Introduction

In general, numerical schemes do not give exact solutions. A scheme may, however,
give the exact solution to certain problems for all step sizes and all initial conditions.
The classical fourth-order method of Runge [16], applied to equations on the form
y′ = f(x), is identical to Simpson’s rule applied on the integral in the solution
y(x) = y0 +

∫ x
x0
f(t) dt. Simpson’s rule is exact when f(x) = p(x) is a polynomial

of degree three or less. Therefore, Runge’s method solves y′ = p(x) exactly.
What are those first order ODEs y′ = f(x, y) that are solved exactly by the

improved Euler method, the simplest explicit second order Runge-Kutta method?
Although numerical methods for solving differential equations have been present
since the 18th century [6], the answer is not known. We will answer that question
in the this paper.

The method is briefly explained as follows: Exactness of the numerical method
leads to an infinite number of non-linear partial differential equations with f as
the dependent variable and x and y as the free variables. We reduce this infinite
set of partial differential equations to a finite set.

Our method has never been applied to other numerical schemes. The formulas,
however, have been applied in many studies; Euler introduced these formulas to find
higher derivatives of y(x), where y(x) is a solution of y′ = f(x, y). Later, Cauchy
used the same formulas in 1824 to prove convergence of the classical Euler method.
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The same formulas were used by Runge in his works on higher order numerical
schemes [15, 16].

Problems similar to the one in this paper have been studied [1, 4, 13]: To find
numerical schemes that solve exactly a specific equation. An important reason to
find such schemes is to make better numerical schemes. For more references see
[5, 10, 12].

Although error bounds for Runge-Kutta methods are known from the works of
many authors [3, 7, 8, 9, 11, 14], no error bounds tell us when a scheme solves an
equation exactly. Therefore, better error bounds than these could exist.

2. On the improved Euler method

Consider the linear ordinary differential equation
(1) y′ = f(x, y) ,
where y is an unknown real function in the variable x. Let y(x0) = y0 be any initial
condition. The improved Euler method gives approximate values y1, y2, . . . for the
solution y(x) at the points x1, x2, . . .:

α = hf(xn, yn)

β = hf(xn + h, yn + α)

yn+1 = yn + 1
2(α+ β)

xn+1 = xn + h

The step size h is a positive number. It is known that if the exact solutions of the
original ODE are linear or if f(x, y) = ax+ b, a, b ∈ R, then the improved Euler
method gives the exact solutions. The result is:

Theorem. Given a differential equation y′ = f(x, y). The improved Euler method
gives the exact solution for all small step sizes and all initial conditions y(x0) = y0
if and only if one of the following conditions holds true:

1) f(x, y) = −y − a
x− b

+ c, a, b, c ∈ R.

2) f(x, y) = ax+ b, a, b ∈ R.
3) The exact solutions are linear: y(x) = y0 + f(x0, y0)(x− x0).

The “if” part of this theorem is easy to establish by inspection. In the present
article we will prove the “only if” part of the theorem.

3. The derived equations

Let y(x) be a solution of y′ = f(x, y). Define the operators Df = ∂
∂x +

f(x, y(x)) ∂∂y and D
n
f = DfDf . . . Df (n times). Higher order derivatives of

y(x) are obtained by y(n+1)(x) = [Dnf f ](x, y(x)).
Define the operator D(n)

f =
∑n
i=0
(
n
i

)
f i ∂n

∂xn−i∂yi .



ON ODES WITH EXACT NUMERICAL SOLUTIONS 31

The first step of the improved Euler equation is a function of the step size.

y1(h) = y0 + 1
2

[
h f(x0, y0) + h f

(
x0 + h, y0 + h f(x0, y0)

)]
.

We need its derivative.

Lemma 1. The n-th derivative of y1(h) is

y
(n)
1 (h) = 1

2

[
nD

(n−1)
f f

(
x0 + h, y0 + h f(x0, y0)

)
+ hD

(n)
f f

(
x0 + h, y0 + h f(x0, y0)

)]
.

Proof. The lemma follows from induction. �

Proposition 1. If y′ = f(x, y) is solved exactly by the improved Euler method for
all initial conditions and all small step sizes, the following differential equations
are satisfied.

(2) (n+ 1)D(n)
f f = 2Dnf f , n ≥ 2 .

Proof. Given any initial condition y(x0) = y0. If two functions are equal in a
neighborhood about x0, they have the same value and derivatives in x0. The
derivatives of y(x) in x0 are

(3) y(n)(x0) =
{
D
n−1
f f

}
(x0, y0) .

The derivatives of y1(h) in h = 0 are

(4) y
(n)
1 (0) = n

2
{
D

(n−1)
f f

}
(x0, y0) .

The derivatives of y1(h) was given in Lemma 1. A necessary condition for y(x0+h) =
y1(h) is therefore that (3) and (4) are equal. �

Proposition 2. Let Df and D(n)
f be as above and let g be any smooth function in

x and y. The following identity holds:

(5) Df (D
(n)
f g) = D

(n+1)
f g + n(Dff)

(
D

(n−1)
f ∂g/∂y

)
for all n ≥ 1.

Proof. We have

Df (D(n)
f g) = ∂

∂x

( n∑
i=0

(
n

i

)
f i

∂ng

∂xn−i∂yi

)
+ f

∂

∂y

( n∑
i=0

(
n

i

)
f i

∂ng

∂xn−i∂yi

)
=
n∑
i=1

i

(
n

i

)
f i−1

(∂f
∂x

+ f
∂f

∂y

) ∂ng

∂xn−i∂yi

+
n∑
i=0

(
n

i

)
f i

∂n+1g

∂xn+1−i∂yi
+
n∑
i=0

(
n

i

)
f i+1 ∂n+1g

∂xn−i∂yi+1

= (nDff)
(
D

(n−1)
f ∂g/∂y

)
+D

(n+1)
f g .

We have used that i
(
n
i

)
=
(
n−1
i−1
)

and that
(
n
i

)
+
(
n
i+1
)

=
(
n+1
i+1
)
. �
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By using the n-th equation in (2) and replacing g with f in (5) we get

(6) 2
n+ 1D

n+1
f f = D

(n+1)
f f + n(Dff)

(
D

(n−1)
f ∂f/∂y

)
.

By using (6) in the (n+ 1)th equation in (2) we get the following lemma.

Lemma 2. If y′ = f(x, y) is solved exactly by the improved Euler method for all
initial conditions and all small step sizes, the following differential equations are
satisfied.

(7) D
(n)
f f = n(n− 1)(Dff)

(
D

(n−2)
f ∂f/∂y

)
, n ≥ 2 .

4. General solution of the derived equations

Take n = 2 in equation (7):
(8) fxx + 2ffxy + f2fyy = 2fxfy + 2ff2

y .

Apply Df to both sides:
(9) fxxx + 3ffxxy + 3f2fxyy + f3fyyy = 2fy(f2fyy + fxx + fxfy + 2ffxy + ff2

y ) .
By using equation (8) we eliminate fxx:
(10) fxxx + 3ffxxy + 3f2fxyy + f3fyyy = 6f2

y (fx + ffy) .
For n = 3, equation (7) yields:
(11) fxxx + 3ffxxy + 3f2fxyy + f3fyyy = 6(fx + ffy)(fxy + ffyy) .
Notice that the left hand sides of equation (11) and equation (10) are equal. The
same must be true for the right hand sides: 6f2

y (fx+ffy) = 6(fx+ffy)(fxy+ffyy).
Thus we see that f must satisfy either
(12) a) fxy + ffyy = f2

y or b) fx + ffy = 0 .

Proposition 3. If f is constant along all solutions of y′ = f(x, y), then fx+ffy =
0.

Proof. Since f is constant along a solution y of (1) then 0 = f(x, y)′ = fx+y′fy =
fx + ffy. �

Proposition 4. If Dff = 0, then the exact solution of y′ = f(x, y), y(x0) = y0 is
linear.

Proof. y′′ = d
dxf(x, y) = fx(x, y) + fy(x, y)y′ = Dff(x, y) = 0. So y′ = k =

f(x0, y0) and y = y0 + k(x− x0). �

We apply the operator Df on both sides of (7). When n = 2, this gives

(13) DfD
(2)
f f = 2(D2

ff)∂f/∂y + 2(Dff)Df∂f/∂y .
For n ≥ 3,

(14) D
(n+1)
f f + n(Dff)D(n−1)

f ∂f/∂y = n(n− 1)(D2
ff)
(
D

(n−2)
f ∂f/∂y

)
+ n(n− 1)(Dff)D(n−1)

f ∂f/∂y + n(n− 1)(n− 2)(Dff)2(D(n−3)
f ∂2f/∂y2) .
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We have used proposition 2 on the left hand side. By substituting n with n+ 1 in
the equation (7) we get D(n+1)

f f = n(n+ 1)(Dff)
(
D

(n−1)
f ∂f/∂y

)
, n ≥ 1. We use

this to eliminate D(n+1)
f f from (14):

(15) 3(Dff)
(
D

(n−1)
f ∂f/∂y

)
= (n− 1)(D2

ff)
(
D

(n−2)
f ∂f/∂y

)
+ (n− 1)(n− 2)(Dff)2(D(n−3)

f ∂2f/∂y2) .
In the rest of the article we will assume that Dff 6= 0. By adding equation (2) for

n = 2 to 3 times equation (5) for n = 1 and g = f , one obtains D2
ff = 3(Dff)fy.

Substituting 3(Dff)fy for D2
ff and dividing by Dff in (15), we obtain the following

equation:

(16) 3
(
D

(n−1)
f ∂f/∂y

)
= 3(n− 1)fy

(
D

(n−2)
f ∂f/∂y

)
+ (n− 1)(n− 2)(Dff)

(
D

(n−3)
f ∂2f/∂y2) .

For n = 3 we obtain:

(17) 3D(2)
f fy = 6fyDffy + 2(Dff)fyy .

We apply Df on both sides of (12a). By (5) and the multiplication law, this
simplifies to:

(18) D
(2)
f fy + (Dff)fyy = 2fyDf (fy) .

By subtracting equation (18) three times from equation (17) one obtains (Dff)fyy =
0. Since Dff 6= 0, this implies that fyy = 0. Therefore (12a) splits into

(19) fyy = 0 and fxy = f2
y .

From the first of these two, the solution must be on the form

(20) f(x, y) = F (x)y +G(x) .

The second of the two equations in (19) is then the Riccati equation F ′(x) = F 2,
which has solutions F (x) = 0 and F = −1/(x− b), where b is a constant. From (8)
and (19) one has

(21) fxx = 2fxfy .

For equation (20) this gives G
′′(x)
G′(x) = − 2

x−b for F 6≡ 0. This equation has general
solution G(x) = a

x−b + c. For F ≡ 0, we have G′′(x) = 0 which has the solution
ax+ b. Thus the system of equations in (21) and (19) has the general solution

(22) f(x, y) = −y − a
x− b

+ c or f(x, y) = ax+ b .

This concludes the proof of our theorem.
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5. Discussion

This article introduces the method of prolonging the infinite set of partial
differential equations that describes the exactness of a numerical method for solving
first order ODEs. The improved Euler method was chosen as an example of this
method. Our theorem is an example of those theorems that can be proved by using
this prolongation method. I conjecture that for any Runge-Kutta method [2, 15]
a finite number of prolongations will reduce the infinite number of equations for
exactness to a finite number.
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