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THE CAUCHY PROBLEM FOR THE HOMOGENEOUS

TIME-DEPENDENT OSEEN SYSTEM IN R
3:

SPATIAL DECAY OF THE VELOCITY

Paul Deuring, Calais

(Received May 20, 2012)

Abstract. We consider the homogeneous time-dependent Oseen system in the whole space

R
3. The initial data is assumed to behave as O(|x|−1−ε), and its gradient as O(|x|−3/2−ε),

when |x| tends to infinity, where ε is a fixed positive number. Then we show that the
velocity u decays according to the equation |u(x, t)| = O(|x|−1), and its spatial gradient

∇xu decreases with the rate |x|−3/2, for |x| tending to infinity, uniformly with respect to
the time variable t. Since these decay rates are optimal even in the stationary case, they
should also be the best possible in the evolutionary case considered in this article. We also
treat the case ε = 0. Then the preceding decay rates of u remain valid, but they are no
longer uniform with respect to t.
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1. Introduction

Consider the homogeneous time-dependent Oseen system

(1.1) ∂tu(x, t) − ∆xu(x, t) + τ∂1u(x, t) + ∇xπ(x, t) = 0, divxu(x, t) = 0

for (x, t) ∈ R
3 × (0,∞), under the initial condition

(1.2) u(x, 0) = a(x) for x ∈ R
3.

Here the initial data a : R
3 7→ R

3 and the parameter τ ∈ (0,∞) are given, whereas

the velocity u : R
3× [0,∞) 7→ R

3 and the pressure π : R
3×(0,∞) 7→ R are unknown.
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We are interested in the question as to what are the minimal assumptions on a such

that the velocity u decays in the following way:

(1.3) |∂α
x u(x, t)| = O([|x|ντ (x)]−1−|α|/2) for |x| → ∞, uniformly in t ∈ (0,∞),

where α is a multiindex in N
3
0 with |α| 6 1, and where the function ντ is defined by

(1.4) νκ(z) := 1 + κ(|z| − z1) for κ ∈ (0,∞), z ∈ R
3.

Here and in the following, we use the notation |β| for the length β1+β2+β3 of β ∈ N
3
0.

The condition |α| 6 1 in (1.3) means that we consider the asymptotic behaviour of

u(α = 0) and of the gradient of u with respect to x(|α| = 1). The term ντ (x) may

be seen as a mathematical manifestation of the wake extending behind a rigid body

moving with constant velocity through a viscous incompressible fluid. We further

note that the decay rates of u and ∇xu given by (1.3) are the best possible, in the

sense that no better rates could be detected in general in the stationary case ([1],

[18, Chapter IX], [16], [24], [4]). Returning to the question concerning the minimal

conditions on a such that (1.3) holds, an ideal answer would, of course, consist in

requiring that

|∂αa(y)| = O([|y|ντ (y)]−1−|α|/2) for |y| → ∞,

with α as in (1.3). However, although we did obtain a decay rate as in (1.3) under

this condition, we could not show this rate to be uniform in t ∈ (0,∞). In order to

get a decay uniform in t, we had to assume there is an ε > 0 with

|∂αa(y)| = O([|y|ντ (y)]−1−|α|/2−ε) for |y| → ∞.

Let us state our results in more detail. To this end, we have to introduce some

notation. Put e1 := (1, 0, 0) and Ac := R
3 \ A for A ⊂ R

3. By H, we denote the

usual heat kernel in R
3, that is,

(1.5) H(z, t) := (4πt)−3/2e−|z|2/(4t) for z ∈ R
3, t ∈ (0,∞).

We define the volume potential I(κ)(c) : R
3 × (0,∞) 7→ R

3 by

(1.6) I(κ)(c)(x, t) :=

∫

R3

H(x− y − κte1, t)c(y) dy for x ∈ R
3, κ, t ∈ (0,∞),

and for suitable functions c : R
3 7→ R

3.

Our main result may now be stated as follows:
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Theorem 1.1. Fix the parameters τ, S0, σ0, δ0, δ1 ∈ (0,∞), κ0 ∈ [0, 1], S ∈
(S0,∞). Let a ∈ L1

loc(R
3)3 with

(1.7) |a(y)| 6 δ0[|y|, ντ (y)]−1−κ0 for y ∈ Bc
S0
.

Then the function I(τ)(a) is well defined and belongs to C∞(R3 × (0,∞))3.

If κ0 > 0, we have

(1.8) |I(τ)(a)(x, t)| 6 C1(δ0 + ‖a|BS0
‖1)[|x|ντ (x)]−1 for x ∈ Bc

S , t ∈ (0,∞),

where the constant C1 > 0 depends on S0, S, κ0 and τ , with the dependence on τ

being such that C1 is an increasing function of τ .

Otherwise, not excluding the case κ0 = 0, we have

(1.9) |I(τ)(a)(x, t)| 6 C2(δ0 + ‖a|BS0
‖1)(1 + t)σ0 [|x|ντ (x)]−1

for x ∈ Bc
S , t ∈ (0,∞), with the constant C2 > 0 depending on S0, S, σ0 and τ , and

again being an increasing function of τ .

Now additionally suppose that a|BS0

c ∈ W 1,1
loc (BS0

c
)3 and

(1.10) |∂βa(y)| 6 δ1[|y|ντ (y)]−1−|β|−κ0 for y ∈ BS0

c
, β ∈ N

3
0 with |β| 6 1.

Then, if κ0 > 0, there is a constant C3 of the same type as the constant C1 in (1.8)

such that

(1.11) |∂β
x I

(τ)(a)(x, t)| 6 C3(δ1 + ‖a|BS0
‖1)[|x|ντ (x)]−1−|β|/2

for x ∈ Bc
S , t ∈ (0,∞), β ∈ N

3
0 with |β| 6 1. If we do not exclude the case κ0 = 0,

we obtain

(1.12) |∂β
x I

(τ)(a)(x, t)| 6 C4(δ1 + ‖a|BS0
‖1)(1 + t)σ0 [|x|ντ (x)]−1−|β|/2

for x, t, β as in (1.11), with C4 being the same kind of constant as C2 in (1.9).

Note that since the constants C1, . . . , C4 in Theorem 1.1 are increasing functions

of τ , we may let τ tend to zero in (1.8), (1.9), (1.11), (1.12). Actually an estimate of

I
(τ)(a) with τ = 0 is implicitly given in the second part of the proof of Lemma 4.1;

this estimate corresponds to the limit case τ = 0 in (1.8) and (1.11), respectively,

and holds even for κ0 = 0.

Lemma 2.3 below states conditions on a such that the function I
(τ)(a) is the

velocity part of a solution to (1.1), (1.2), with vanishing pressure. This type of result
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justifies the title of this paper. But we do not attempt to identify those functions

that are the velocity part of a solution to (1.1), (1.2) and may be represented by

the volume potential I
(τ)(a). It is for a different reason that we study the latter

function: we are interested in the asymptotic behaviour of solutions to the time-

dependent Navier-Stokes system with Oseen term,

(1.13) ∂tu− ∆xu+ τ∂1u+ τ(u · ∇x)u+ ∇xp = f, divxu = 0 in Ω
c × (0, T0)

for some T0 ∈ (0,∞], under Dirichlet boundary conditions on ∂Ω×(0, T0) and a decay

condition at infinity,

(1.14) u|∂Ω × (0, T0) = b, u(x, t) → 0 (|x| → ∞) for t ∈ (0, T0),

and under an initial condition,

(1.15) u(x, 0) = a(x) for x ∈ Ω
c
,

where Ω ⊂ R
3 is an open and bounded set, so that Ω

c
is an exterior domain. In [12],

we considered the situation that the velocity part u of a solution to (1.13)–(1.15)

may be represented in the form

(1.16) u(x, t) = R
(τ)(f − τ(u · ∇x)u)(x, t) + I

(τ)(a)(x, t) + V
(τ)(Φ)(x, t)

for x ∈ Ω
c
, t ∈ (0, T0) ([12, Theorem 3.1]), where R

(τ)(f − τ(u · ∇x)u)(x, t) is

a convolution integral on Ω
c×(0, T0) pertaining to a fundamental solution of (1.1) and

the function f−τ(u ·∇x)u. The single layer potential V(τ)(Φ)(x, t) is also defined as

a convolution integral, but the integral in question extends over ∂Ω×(0, T0), and the

convolution involves a function Φ which solves an integral equation on ∂Ω× (0, T0).

We discussed in [12] how formula (1.16) may be exploited in order to show that

u decays as indicated in (1.3). The proof we presented in [12] for this result uses

Theorem 1.1 in order to deal with the term I
(τ)(a)(x, t) in (1.16). The work at hand

is motivated by this role of Theorem 1.1 in a theory on asymptotic behaviour of

solutions to (1.13)–(1.15).

Let us indicate some further references related to the work at hand. Knightly

[22] proved that solutions to (1.13)–(1.15) exhibit a wake, but he required various

smallness conditions. Mizumachi [27], too, studied the asymptotic behaviour of

solutions to (1.13)–(1.15), showing (1.3) for α = 0, under assumptions that are more

restrictive than those in [12]. In his proof, he also estimated the potential I
(τ)(a)

([27, p. 514–515]), establishing (1.8). But he did not consider the other estimates

presented in Theorem 1.1, and his conditions on a are stronger than those in that

302



latter theorem. In fact, he suppposed there is a stationary solution uS of (1.13) such

that a(x) = us(x) + |x|−2 for |x| → ∞ ([27, (1.11)]).
The representation formula (1.16), introduced in [12, Theorem 3.1], is a conse-

quence of results from [5]–[11]. We refer to [10, Section 1] for an overview of this

part of our theory. References [9] and [11] give a proof of (1.3) for the case that

u is the velocity part of a solution to the Oseen system (1.1) in an exterior domain

in R3 (instead of the whole space R3), under Dirichlet boundary conditions, with [9]

requiring that a and f have compact support, whereas [11] handles a more general

situation. Theorem 1.1 enters into the theory in [11].

Existence results for problem (1.13)–(1.15) were established by Heywood [19], [20],

who used variational arguments, by Solonnikov [30] (solutions in Sobolev and Hölder

spaces, as a consequence of an extensive linear theory), and by Miyakawa [26] and

Shibata [28] (mild solutions). Lp-Lq-estimates for the Oseen system in Ω
c
were

treated by Kobayashi and Shibata [23] (space dimension n = 3), [15] (n > 3), [14]

(local Lp-Lq-estimates in the case n > 3), and by Bae, Jin [2] (weighted Lp-norms).

The temporal decay of spatial Lp-norms of the velocity part of solutions to (1.13)–

(1.15) was studied by Masuda [25], Heywood [20, p. 675], Shibata [28], Enomoto,

Shibata [15] (case n > 3), and Bae, Roh [3]. Finally, as concerns the Cauchy problem

(1.1), (1.2), Knightly [21, p. 507] and Takahashi [31] deduced results on pointwise

spatial and temporal decay of solutions to (1.1), (1.2) by exploiting a theory on

asymptotic behaviour of solutions to the instationary Stokes system.

2. Auxiliary results

Here and in the following, we write C for numerical constants, and C(γ1, . . . , γn) for

constants depending on parameters γ1, . . . , γn ∈ (0,∞) for some n ∈ N. For z ∈ R
3,

we put z′ := (z2, z3), so z = (z1, z
′) and |z|2 = z2

1 + |z′|2. Recall the definition of the
heat kernel H in (1.5). The following estimate of H was shown in [29].

Lemma 2.1. H ∈ C∞(R3 × (0,∞)) and

(2.1) |∂l
t∂

β
z H(z, t)| 6 C(l, |β|)(|z|2 + t)−3/2−|β|/2−le−|z|2/(8t)

for z ∈ R
3, t ∈ (0,∞), β ∈ N

3
0, l ∈ N0.

The ensuing result is well known and will be used frequently.

Lemma 2.2.
∫

R3 H(z, t) dz = 1 for t ∈ (0,∞).
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We remark that for our purposes, it would be enough to know that the integral in

Lemma 2.2 is bounded independently of t ∈ (0,∞). Since the function a introduced

in Section 1 may be written as χBS0
a + χBc

S0

a, with the first term of the sum

belonging to L1(R3)3 and the second to L∞(R3)3, the ensuing lemma implies in

particular that the volume potential I(τ)(a) introduced in (1.6) is well defined and

belongs to C∞(R3 × (0,∞))3.

Lemma 2.3. Let κ ∈ (0,∞), p ∈ [1,∞], c ∈ Lp(R3)3. Then

(2.2)

∫

R3

|∂β
xH(x− κte1 − y, t)c(y)| dy <∞ for x ∈ R

3, t ∈ (0,∞), β ∈ N
3
0.

Moreover, I(κ)(c) ∈ C∞(R3 × (0,∞))3 and

(2.3) ∂β
x I

(κ)(c)(x, t) =

∫

R3

∂β
x H(x− κte1 − y, t)c(y) dy

for x, t, β as in (2.2),

(2.4) ∂tI
(κ)(c)(x, t) − ∆xI

(κ)(c)(x, t) + κ∂1I
(κ)(c)(x, t) = 0 (x ∈ R

3, t > 0).

If p < ∞ and if c belongs to the closure of the set {ϕ ∈ C∞
0 (R3)3 : divϕ = 0} in

Lp(R3)3, then divxI
(κ)(c)(x, t) = 0 for x ∈ R

3, t ∈ (0,∞). If c ∈ C0(R3)3, we

further have

(2.5) I
(κ)(c) ∈ C0(R3 × [0,∞))3 and I

(κ)(c)(x, 0) = c(x) for x ∈ R
3.

P r o o f. Let R, δ,M ∈ (0,∞) with δ < M . For z ∈ BR, y ∈ Bc
2R, we have

|z − y| > |y| − R > |y|/2, so we find by Lemma 2.1 that

(2.6) |∂l
t∂

β
z H(z − y, t)c(y)|

6 C(l, |β|)δ−3/2−|β|/2−l[e−|y|2/(32M)χBc
2R

(y) + χB2R(y)]|c(y)|

(z ∈ BR, y ∈ R
3, t ∈ (δ,M), β ∈ N

3
0, l ∈ N0). The right-hand side of (2.6) is

integrable with respect to y ∈ R
3. Thus it follows by a standard application of

Lebesgue’s theorem and by the properties of the heat kernel that the statements of

Lemma 2.3 up to and including (2.4) hold in BR × (δ,M), and thus in R
3 × (0,∞).

Let p ∈ [1,∞), and suppose that c ∈ Lp(R3)3. Then we deduce from Lemma 2.1,

2.2 and Young’s inequality for integrals that

‖∂βI
(κ)(c)( , t)‖p 6

∫

R3

|∂β
z H(z − κte1, t)| dz‖c‖p 6 Ct−|β|/2‖c‖p

for t ∈ (0,∞), β ∈ N
3
0 with |β| 6 1. Therefore equation (2.3), an integration by

parts and a density argument yield that divxI
(κ)(c) = 0, under the assumptions on c

specified in the passage following equation (2.4). As for (2.5), we refer to [17, proof

of Theorem 1.2.1]. �
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The following estimate of |z − κte1|2 + t constitutes the basic observation that

allows us to detect a wake in time-dependent Oseen flows.

Lemma 2.4 ([5, Lemma 2]). Let κ ∈ (0,∞). Then

(|z − κte1|2 + t)−1
6 C(K)max{1, κ}(̺K,κ(z) + t)−1

for z ∈ R
3, κ, t ∈ (0,∞), where ̺K,κ(z) := |z|2 for z ∈ BK , and ̺K,κ(z) := |z|νκ(z)

else.

Another useful observation is stated in

Lemma 2.5 ([13, Lemma 4.8]). νκ(x − y)−1 6 C max{1, κ}(1 + |y|)νκ(x)−1 for

x, y ∈ R
3, κ ∈ (0,∞).

By exploiting the exponential factor in the inequality in Lemma 2.1, we get

Lemma 2.6. Let ε, t ∈ (0,∞), z ∈ R
3, β ∈ N

3
0 with |β| 6 1. Then

|∂β
z H(z, t)| 6 C(ε)(1 + t)ε/2(1 + |z|)−ε(|z|2 + t)−3/2−|β|/2.

P r o o f. If |z| 6 1, Lemma 2.6 is an immediate consequence of Lemma 2.1. Sup-

pose that |z| > 1. Then

e−|z|2/(8t) = (t/|z|2)ε/2(|z|2/t)ε/2e−|z|2/(8t)

6 C(ε)(t/|z|2)ε/2 6 C(ε)tε/2(1 + |z|)−ε,

where the last inequality is valid because |z| > 1. Now Lemma 2.6 follows from

Lemma 2.1. �

To end this section, two technical lemmas that will be used frequently later on.

Lemma 2.7. Let z ∈ R
3. Then

(2.7) (|z| + z1)(|z| − z1) = |z′|2, (1 + |z|)ν1(z) > (1 + |z′|)2/8.

P r o o f. The first equation is obvious. The second follows from the first by ob-

serving that in the case |z′| > 1, we have

(1 + |z|)ν1(z) > |z|(|z| − z1) > (|z| + z1)(|z| − z1)/2 = |z′|2/2 > (1 + |z′|)2/8.

If |z′| 6 1, the second inequality in (2.7) is immediate. �
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Lemma 2.8. Let ε ∈ (0, 1] and z ∈ R
3. Then

∫

R3

(1 + |y|)−1[(1 + |z − y|)ν1(z − y)]−1−ε dy 6 C(ε),(2.8)

∫

R3

(1 + |y|)−1−ε[(1 + |z − y|)ν1(z − y)]−1 dy 6 C(ε).(2.9)

P r o o f. Let the left-hand side of (2.8) be denoted by A. We find by wirtue of

(2.7) that

(2.10) A 6

∫

R3

(1 + |y|)−1(1 + |z − y|)−ε/2[(1 + |z − y|)ν1(z − y)]−1−ε/2 dy

6 C

∫

R3

(1 + |y1|)−1(1 + |z1 − y1|)−ε/2(1 + |z′ − y′|)−2−ε dy

6 C

(
∫

R

(1 + |r|)−1(1 + |z1 − r|)−ε/2 dr

)(
∫

R2

(1 + |η|)−2−ε dη

)

6 C(ε)

∫

R

(1 + |r|)−1(1 + |z1 − r|)−ε/2 dr.

By Hölder’s inequality with exponents 1/(1 − ε/4) and 4/ε, we may conclude

A 6 C(ε)

(
∫

R

(1 + |r|)−1/(1−ε/4) dr

)1−ε/4(∫

R

(1 + |z1 − r|)−2 dr

)ε/4

6 C(ε).

This proves (2.8). We further observe that by (2.7), the left-hand side of (2.9) is

bounded by

C

∫

R3

(1 + |y1|)−1−ε/2(1 + |y′|)−ε/2(1 + |z′ − y′|)−2 dy.

The latter term may be estimated in a similar way as the right-hand side of the

second inequality of (2.10). �

3. A scaling argument

Recall the quantities τ , S0, σ0, δ0, δ1, κ0, S chosen in Theorem 1.1. Further

recall that at the beginning of Section 2, we introduced the notation C(γ1, . . . , γn)

for constants that may depend on γ1, . . . , γn ∈ (0,∞), with n ∈ N. In the sequel, if

γi = τ for some i ∈ {1, . . . , n}, then the symbol C(γ1, . . . , γn) stands for constants

that are additionally supposed to be increasing functions of τ .
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We want to prove (1.8) and (1.11) on the one hand, and (1.9) and (1.12) on the

other, by a single argument. To this end, we fix α ∈ N
3
0 with |α| 6 1. In the case

α = 0, we suppose assumption (1.7) to hold, and if |α| = 1, we require (1.10) to be

valid. Thus a ∈ L1
loc(R

3)3 in both cases, a|BS0

c ∈W 1,1
loc (BS0

c
)3 if |α| = 1, and

(3.1) |∂βa(y)| 6 δ|α|[|y|ντ (y)]−1−|β|−κ0 for y ∈ BS0

c
, β ∈ {0, α}

in both cases. Note that (3.1) corresponds to two inequalities if |α| = 1, and to

a single one if α = 0. We choose a function ϕS ∈ C∞(R3) with ϕS |BS0+(S−S0)/4 = 0,

ϕS |Bc
(S0+S)/2 = 1 and 0 6 ϕS 6 1. This function will be kept fixed throughout. We

begin our estimates by considering I
(τ)((1 − ϕS)a).

Lemma 3.1. Let x ∈ Bc
S , t ∈ (0,∞). Then

(3.2) |∂α
x I

(τ)((1 − ϕS)a)(x, t)| 6 C(S0, S, τ)(‖a|BS0
‖1 + δ|α|)(|x|ντ (x))−1−|α|/2.

P r o o f. For y ∈ R
3 with (1 − ϕS)(y) 6= 0 we have |y| 6 (S + S0)/2, hence with

the abbreviation S1 := (S + S0)/2,

(3.3) |x− y| > |x| − S1 = |x|(1 − S1/S) + |x|S1/S − S1

> |x|(1 − S1/S) > S − S1 = (S − S0)/2,

and by Lemma 2.5,

(3.4) ντ (x − y)−1
6 C(τ)(1 + |y|)ντ (x)−1

6 C(S, τ)ντ (x)−1.

Now we get by Lemma 2.1, Lemma 2.4 with K = (S − S0)/2, (3.3), and (3.4) that

for y ∈ R
3 with (1 − ϕS)(y) 6= 0,

|∂α
x H(x− τte1 − y, t)| 6 C(S0, S, τ)(|x − y|ντ (x − y) + t)−3/2−|α|/2

6 C(S0, S, τ)(|x|ντ (x))−3/2−|α|/2.

Therefore by (3.1) and (2.3),

|∂α
x I

(τ)((1 − ϕS)a)(x, t)| 6 C(S0, S, τ)(|x|ντ (x))−3/2−|α|/2

∫

BS1

(1 − ϕS)(y)a(y) dy

6 C(S0, S, τ)(|x|ντ (x))−3/2−|α|/2

(
∫

BS0

|a(y)| dy + δ|α|

∫

BS1
\BS0

|y|−1−κ0 dy

)

6 C(S0, S, τ)(‖a|BS0
‖1 + δ|α|)(|x|ντ (x))−3/2−|α|/2.

�

Now we turn to ϕSa. Since this function vanishes on BS0+(S−S0)/4, assumption

(3.1) implies
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Lemma 3.2. ϕSa ∈ L1
loc(R

3)3, and ϕSa ∈W 1,1
loc (R3)3 if |α| = 1. Moreover,

(3.5) |∂β(ϕSa)(y)| 6 C(S0, S)δ|α|(|y|ντ (y))−1−|β|/2−κ0

for y ∈ R
3 \ {0}, β ∈ {0, α}.

In the ensuing corollary, we introduce a function ãS which is a scaled version of

ϕSa. This function ãS vanishes in the neighbourhood BS0/τ of the origin. However,

we do not want to exploit this fact because it would introduce a dependency on S0/τ

in our constants, which then would no longer be increasing functions of τ . So in

Corollary 3.1 below, we estimate ãS by an upper bound which is singular at y = 0.

However, this singularity is weak in R
3 and can be handled without problem. The

factor τ1+|α|/2+κ0 also appearing in our bound of ãS will be useful later on when we

will return from I
(1)(ãS) to I

(τ)(ϕSa) (Section 5). But when estimating I
(1)(ãS), we

will have to start all over again, in the sense that first we will introduce another cut-

off function, this time denoted by ψ, which we will require to satisfy the equations

ψ|B1 = 0 and ψ|Bc
2 = 1. Then we will evaluate I

(1)((1− ψ)ãS) (Lemma 4.1), before

turning to the main difficulty of our argument, that is, an estimate of I(1)(ψãS). We

indicate that it is only in the proof of Lemma 4.1, which deals with I
(1)((1−ψ)ãS),

that the singularity of the upper bound of ãS matters.

Corollary 3.1. Put ãS(y) := (ϕSa)(τ
−1y) for y ∈ R

3. Then ãS ∈ L1
loc(R

3)3,

with ãS ∈ W 1,1
loc (R3)3 if |α| = 1, and

|∂βãS(y)| 6 C(S0, S)δ|α|τ
1−|β|/2+κ0(|y|ν1(y))−1−|β|/2−κ0

for y ∈ R
3 \ {0}, β ∈ {0, α}. In particular, for y, β as before,

(3.6) |∂β ãS(y)| 6 C(S0, S)δ|α|(1 + τ−|α|/2)τ1+κ0 (|y|ν1(y))−1−|β|/2−κ0 .

Finally, by a change of variables, we scale I
(τ)(ϕSa):

Lemma 3.3. I
(τ)(ϕSa)(x, t) = I

(1)(ãS)(τx, τ2t) for x ∈ R
3, t ∈ (0,∞).
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4. Decay estimates of I
(1)(ãS)

In this section, we study the asymptotic behaviour of I
(1)(ãS). But in order to

avoid the cumbersome constant in (3.6), we replace ãS by a slightly more general

function b ∈ L1
loc(R

3)3 with b ∈W 1,1
loc (R3)3 if |α| = 1, and

(4.1) |∂βb(y)| 6 γ(|y|ν1(y))−1−|β|/2−κ0 (y ∈ R
3 \ {0}, β ∈ {0, α}),

for some number γ ∈ (0,∞). Recall that α ∈ N
3
0 with |α| 6 1 was fixed at the

beginning of Section 3. We choose a cut-off function ψ ∈ C∞(R3) with ψ|B1 = 0,

ψ|Bc
2 = 1, 0 6 ψ 6 1. For brevity, we put b̃ := ψb. Let t ∈ (0,∞) be fixed in this

section.

Lemma 4.1. Let x ∈ R
3 \ {0}. Then

(4.2) |∂α
x I

(1)((1−ψ)b)(x, t)| 6 Cγ(|x|ν1(x))−1−|α|/2(χ(4,∞)(|x|)+χ(0,4](|x|)|x|−κ0 ).

P r o o f. We first suppose that |x| > 4. Since (1 − ψ)b|Bc
2 = 0, we may then

proceed similarly as in the proof of Lemma 3.1, with the parameters S1, S replaced

by the numbers 2 and 4, respectively. In particular, we obtain |∂αH(x− te1−y, t)| 6

C(|x|ν1(x))−3/2−|α|/2 for y ∈ R
3 with (1 − ψ)(y) 6= 0, and thus

|∂α
x I

(1)((1 − ψ)b)(x, t)| 6 C(|x|ν1(x))−3/2−|α|/2

∫

B2

|b(y)| dy.

But by (4.1),
∫

B2

|b(y)| dy 6 γ
∫

BS
|y|−1−κ0 dy 6 Cγ, so that (4.2) is proved in the

case |x| > 4. Now suppose that |x| 6 4. We note that

(4.3) |∂α((1 − ψ)b)(y)| 6 CχB2
(y)γ|y|−1−|α|/2−κ0

by (4.1). Now we find

(4.4)

∫

R3\B|x|/2

H(x− te1 − y, t)|∂α((1 − ψ)b)(y)| dy

6 Cγ

∫

B2\B|x|/2

H(x− te1 − y, t)|y|−1−|α|/2−κ0 dy

6 Cγ|x|−1−|α|/2−κ0

∫

B2\B|x|/2

H(x− te1 − y, t) dy 6 Cγ|x|−1−|α|/2−κ0 ,
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where the last inequality holds by Lemma 2.2. Moreover, by virtue of (4.3),

Lemma 2.1 and Lemma 2.4 with K = 6, and because |x− y| > |x|/2 for y ∈ B2,

(4.5)

∫

B|x|/2

H(x− te1 − y, t)|∂α((1 − ψ)b)(y)| dy

6 Cγ

∫

B|x|/2∩B2

|x− y|−3|y|−1−|α|/2−κ0 dy

6 Cγ|x|−3

∫

B|x|/2

|y|−1−|α|/2−κ0 dy 6 Cγ|x|−1−|α|/2−κ0.

We use (2.3), perform integration by parts, and then apply (4.4) and (4.5) to obtain

|∂α
x I

(1)((1 − ψ)b)(x, t)| = |I(1)(∂α[(1 − ψ)b])(x, t)|

6

∫

R3

H(x− te1 − y, t)|∂α((1 − ψ)b)(y)| dy 6 Cγ|x|−1−|α|/2−κ0 .

But 1 6 Cν1(x)
−1−|α|/2−κ0 since |x| 6 4, so we have proved (4.2) in the case |x| 6 4

as well. �

In view of the choice of b and ψ at the beginning of this section, the ensuing lemma

is obvious.

Lemma 4.2. b̃ ∈ L1
loc(R

3)3, with b̃ ∈W 1,1
loc (R3)3 if |α| = 1, and

(4.6) |∂β b̃(y)| 6 Cγ((1 + |y|)ν1(y))−1−|β|/2−κ0 for y ∈ R
3, β ∈ {0, α}.

Lemma 4.3. Let K ∈ (0,∞), z ∈ BK . Then

∫

R3

H(z − y, t)|∂αb̃(y)| dy 6 C(K)γ((1 + |z|)ν1(z))−1−|α|/2.

P r o o f. By (4.6), we have |∂αb̃(y)| 6 Cγ for y ∈ R
3. Since |z| 6 K, Lemma 4.3

follows by Lemma 2.2. �

Lemma 4.4. Let x ∈ R
3. Then

∂α
x I

(1)(b̃)(x, t) =

∫

R3

H(y, t)∂αb̃(x − te1 − y) dy.
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P r o o f. By (2.3) and a change of variables, we have

(4.7) ∂α
x I

(1)(b̃)(x, t) =

∫

R3

∂α
y H(y, t)b̃(x − te1 − y) dy.

But H(y, t) and ∂αH(y, t) decay exponentially for |y| → ∞ (Lemma 2.1), and b and
∂αb are in particular bounded (Lemma 4.2). So we may integrate by parts on the

right-hand side of (4.7). Lemma 4.4 then follows. �

Lemma 4.5. Let z ∈ R
3 \ {0}. Then

(4.8)

∣

∣

∣

∣

∫

R3

H(y, t)(1 − ψ(y))∂αb̃(z − y) dy

∣

∣

∣

∣

6 Cγ(|z|ν1(z))−1−|α|/2.

P r o o f. For y ∈ R
3 with (1 − ψ)(y) 6= 0 we have |y| 6 2. Suppose that |z| > 4.

Then, for y ∈ R
3 with (1 − ψ)(y) 6= 0, we get |z − y| > |z|/2 and ν1(z − y)−1 6

Cν1(z)
−1, where we used Lemma 2.5 in the second estimate. In view of (4.6), we

obtain
∣

∣

∣

∣

∫

R3

H(y, t)(1 − ψ(y))∂αb̃(z − y) dy

∣

∣

∣

∣

6 Cγ((1 + |z|)ν1(z))−1−|α|/2

∫

B2

H(y, t) dy

6 Cγ((1 + |z|)ν1(z))−1−|α|/2,

where the last inequality is a consequence of Lemma 2.2. If |z| 6 4, inequality (4.8)

follows from Lemma 4.3 with K = 4. �

Lemma 4.6. Let z ∈ R
3 \ {0} with |z| − z1 6 1. Then

(4.9)

∣

∣

∣

∣

∫

R3

H(y, t)∂αb̃(z − y) dy

∣

∣

∣

∣

6 Cγ(|z|ν1(z))−1−|α|/2.

P r o o f. By (4.6) we have

(4.10)

∣

∣

∣

∣

∫

R3

H(y, t)∂αb̃(z − y) dy

∣

∣

∣

∣

6 Cγ

3
∑

i=1

Ri

with

Ri :=

∫

Ai

H(y, t)(1 + |z − y|)−1−|α|/2 dy for i ∈ {1, 2, 3},

with A1 := B|z|/2, A2 := B2|z| \B|z|/2, A3 := Bc
2|z|. For y ∈ A1 the relation |z− y| >

|z|/2 holds, hence

(4.11) |R1| 6 C(1 + |z|)−1−|α|/2

∫

B|z|/2

H(y, t) dy 6 C(1 + |z|)−1−|α|/2,
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where we used Lemma 2.2. For y ∈ A2 we have |y| > |z|/2 and |z − y| 6 3|z|, in
particular A2 ⊂ {y ∈ R

3 : |z − y| 6 3|z|}. It follows from Lemma 2.1 that

(4.12) |R2| 6 C

∫

A2

(|y|2 + t)−3/2(1 + |z − y|)−1−|α|/2 dy

6 C|z|−3

∫

|z−y|63|z|

(1 + |z − y|)−1−|α|/2 dy 6 C|z|−1−|α|/2.

Finally, for y ∈ A3 we have |z − y| > |y| − |z| > |y|/2, hence Lemma 2.1 yields

|R3| 6 C

∫

Bc
2|z|

(|y|2 + t)−3/2(1 + |y|)−1−|α|/2 dy 6 C

∫

Bc
2|z|

|y|−4−|α|/2 dy,

so that |R3| 6 C|z|−1−|α|/2. Therefore, by virtue of (4.10)–(4.12),

(4.13)

∣

∣

∣

∣

∫

R3

H(y, t)∂αb̃(z − y) dy

∣

∣

∣

∣

6 Cγ|z|−1−|α|/2.

Since |z| − z1 6 1, we have 1 > ν1(z)/2. Thus (4.9) follows from (4.13). �

Lemma 4.7. Let z ∈ R
3 with z1 < 0. Suppose that κ0 > 0. Then

∣

∣

∣

∣

∫

R3

∂α
z H(z − y, t)b̃(y) dy

∣

∣

∣

∣

6 C(κ0)γ|z1|−2−|α|.

P r o o f. For y ∈ R
3 with y1 > 0 we have |z1−y1| = |z1|+y1. Using this equation,

Lemma 2.1, (4.6) and (2.7), we get

(4.14)

∣

∣

∣

∣

∫

y1>0

∂α
z H(z − y, t)b̃(y) dy

∣

∣

∣

∣

6 Cγ

∫

y1>0

|z − y|−3−|α|(1 + |y′|)−2−2κ0 dy

6 Cγ

∫

y1>0

(|z1| + y1 + |z′ − y′|)−3−|α|(1 + |y′|)−2−2κ0 dy

= Cγ

∫

R2

∫ ∞

0

(|z1| + r + |z′ − η|)−3−|α|(1 + |η|)−2−2κ0 dr dη

= Cγ

∫

R2

(|z1| + |z′ − η|)−2−|α|(1 + |η|)−2−2κ0 dη

6 Cγ|z1|−2−|α|

∫

R2

(1 + |η|)−2−2κ0 dη 6 C(κ0)γ|z1|−2−|α|.

Abbreviating H := {y ∈ R
3 : y1 6 0}, we get by integration by parts that

(4.15)

∫

H

∂α
z H(z − y, t)b̃(y) dy = A1 + A2,
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with

A1 :=

∫

H

H(z − y, t)∂αb̃(y) dy, A2 := −
∫

∂H

H(z − y, t)b̃(y)(e1 · α) doy.

This integration by parts is possible because b̃ and ∂αb̃ are bounded according to

(4.6), and H(z − y, t) and ∂αH(z − y, t) decay exponentially for |y| → ∞. Observe
that for y ∈ H we have ν1(y) > 1 + |y|. Therefore, using (4.6) and Lemma 2.1, we
get in the case |z| > 1 that

(4.16) |A1| 6

∫

H

H(z − y, t)(1 + |y|)−2−|α|−2κ0 dy

6 Cγ

(
∫

B|z|/2

|z − y|−3(1 + |y|)−2−|α|−2κ0 dy

+

∫

Bc
|z|/2

H(z − y, t)(1 + |y|)−2−|α| dy

)

6 Cγ

(

|z|−3

∫

B|z|/2

(1 + |y|)−2−|α|−2κ0 dy

+ |z|−2−|α|

∫

Bc
|z|/2

H(z − y, t) dy

)

.

In the case α = 0, we observe that
∫

B|z|/2

(1 + |y|)−2−|α|−2κ0 dy 6

∫

B|z|/2

(1 + |y|)−2 dy 6 C|z|.

If |α| = 1, we use the estimate
∫

B|z|/2

(1 + |y|)−2−|α|−2κ0 dy 6

∫

R3

(1 + |y|)−3−2κ0 dy 6 C(κ0).

Recalling Lemma 2.2, we thus deduce from (4.16) that

(4.17) |A1| 6 C(κ0)γ|z|−2−|α|.

Noting that ν1(y) = 1+ |y| for y ∈ ∂H , we further find by Lemma 2.1 and (4.6) that

(4.18) |A2| 6 |α|Cγ
∫

∂H

|z − y|−3(1 + |y|)−2−2κ0 doy

6 |α|Cγ
∫

R2

(|z1| + |z′ − η|)−3(1 + |η|)−2−2κ0 dη

6 |α|Cγ|z1|−3

∫

R2

(1 + |η|)−2−2κ0 dη 6 |α|C(κ0)γ|z1|−3

6 C(κ0)γ|z1|−2−|α|.

Combining (4.14), (4.15), (4.17) and (4.18), we obtain the lemma. �
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Lemma 4.8. Let z ∈ R
3 with z1 < 0. Then

∣

∣

∣

∣

∫

R3

∂α
z H(z − y, t)b̃(y) dy

∣

∣

∣

∣

6 C(σ0)γ(1 + t)σ0 |z1|−2−|α|.

Note that contrary to Lemma 4.7, we do not suppose in Lemma 4.8 that κ0 > 0.

P r o o f of Lemma 4.8. Proceed as in the proof of Lemma 4.7, but use Lemma 2.6

with ε = 2σ0 instead of Lemma 2.1. Thus, when revisiting (4.14) and (4.18), we may

exploit the fact that

∫

R2

(1 + |z′ − η|)−2σ0(1 + |η|)−2 dη 6 C(σ0),

as follows by Hölder’s inequality. Concerning (4.16), we observe that by Lemma 2.6,

∫

B|z|/2

H(z − y, t)(1 + |y|)−2−|α| dy

6 C(σ0)(1 + t)σ0

∫

B|z|/2

|z − y|−3(1 + |z − y|)−2σ0(1 + |y|)−2−|α| dy

6 C(σ0)(1 + t)σ0 |z|−3−2σ0

∫

B|z|/2

(1 + |y|)−2−|α| dy.

In view of this inequality, the estimate in (4.16) may be modified in an obvious way.

�

Lemma 4.9. Let z ∈ R
3 \ {0} with |z′| > |z|/2. Suppose that κ0 > 0. Then

∣

∣

∣

∣

∫

R3

∂α
z H(z − y, t)b̃(y) dy

∣

∣

∣

∣

6 C(κ0)γ|z|−2−|α|.

P r o o f. Put H := {y ∈ R
3 : |y′| 6 |z|/4}. Then, by integration by parts,

(4.19)

∣

∣

∣

∣

∫

R3

∂α
z H(z − y, t)b̃(y) dy

∣

∣

∣

∣

6

3
∑

i=1

Bi,

with

B1 :=

∣

∣

∣

∣

∫

H

∂α
z H(z − y, t)b̃(y) dy

∣

∣

∣

∣

, B2 :=

∣

∣

∣

∣

∫

R3\H

H(z − y, t)∂αb̃(y) dy

∣

∣

∣

∣

,

B3 :=

∣

∣

∣

∣

∫

∂H

H(z − y, t)b̃(y)((0, y′) · α)/|y′| doy

∣

∣

∣

∣

.
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Due to the decay properties of H(·, t) and b̃, this integration by parts is possible
although H is unbounded. Now (4.6), Lemma 2.1 and (2.7) yield

(4.20) |B1| 6 Cγ

∫

H

|z − y|−3−|α|((1 + |y|)ν1(y))−1−κ0 dy

6 Cγ

∫

H

(|z1 − y1| + |z′ − y′|)−3−|α|(1 + |y′|)−2−2κ0 dy

= Cγ

∫

{η∈R2 : |η|6|z|/4}

∫ ∞

0

(r + |z′ − η|)−3−|α|(1 + |η|)−2−2κ0 dr dη

6 Cγ

∫

{η∈R2 : |η|6|z|/4}

|z′ − η|−2−|α|(1 + |η|)−2−2κ0 dη.

But for η ∈ R
2 with |η| 6 |z|/4, we find by our assumption on z that |z′ − η| >

|z′| − |η| > |z|/2 − |η| > |z|/4. Therefore we may conclude

(4.21) |B1| 6 Cγ|z|−2−|α|

∫

R2

(1 + |η|)−2−2κ0 dη 6 C(κ0)γ|z|−2−|α|.

For y ∈ R
3 \H we have |y′| > |z|/4. Therefore, by (4.6) and (2.7),

(4.22) |B2| 6 γ

∫

R3\H

H(z − y, t)(1 + |y′|)−2−|α| dy

6 Cγ|z|−2−|α|

∫

R3\H

H(z − y, t) dy 6 Cγ|z|−2−|α|,

where the last inequality follows from Lemma 2.2. For y ∈ ∂H, the equation |y′| =

|z|/4 holds. Recalling (4.6) and (2.7), we thus get

|B3| 6 |α|Cγ
∫

∂H

H(z − y, t)(1 + |y′|)−2 doy

6 |α|Cγ(1 + |z|)−2

∫

∂H

H(z − y, t) doy.

Next we use Lemma 2.1 to conclude that

|B3| 6 |α|Cγ|z|−2

∫

∂H

|z − y|−3 doy

6 |α|Cγ|z|−2

∫

∂H

(|z1 − y1| + |z′ − y′|)−3 doy

= |α|Cγ|z|−1

∫

{η∈R2 : |η|=1}

∫ ∞

0

(r + |z′ − (|z|/4)η|)−3 dr doη

6 |α|Cγ|z|−1

∫

{η∈R2 : |η|=1}

|z′ − (|z|/4)η|−2 doη.
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But for η ∈ R
2 with |η| = 1, the estimate |z′ − (|z|/4)η| > |z′| − |z|/4 > |z|/4 holds.

(Recall we have assumed |z′| > |z|/2.) Thus we arrive at the inequality

(4.23) |B3| 6 |α|Cγ|z|−3 6 Cγ|z|−2−|α|.

The lemma follows from (4.19) and (4.21)–(4.23). �

Lemma 4.10. Let z ∈ R
3 \ {0} with |z′| > |z|/2. Then

(4.24)

∣

∣

∣

∣

∫

R3

∂α
z H(z − y, t)b̃(y) dy

∣

∣

∣

∣

6 C(σ0)γ(1 + t)σ0 |z|−2−|α|.

P r o o f. The proof is almost identical to that of Lemma 4.9; only the estimate of

the term B1 must be modified. In fact, by (4.6), (2.7), and using Lemma 2.6 with

ε = 2σ0 instead of Lemma 2.1, we get

(4.25) |B1| 6 C(σ0)γ(1 + t)σ0

∫

H

|z − y|−3−|α|(1 + |z − y|)−2σ0(1 + |y′|)−2 dy,

with H defined as in the proof of Lemma 4.9. By starting with (4.25), and then

proceeding as in (4.20) and (4.21), we find

|B1| 6 C(σ0)γ(1 + t)σ0 |z|−2−|α|

∫

R2

(1 + |z′ − η|)−2σ0 (1 + |η|)−2 dη.

But the last integral is bounded by a constant only depending on σ0, as follows from

Hölder’s inequality. Combining this estimate of B1 with (4.19), (4.22) and (4.23),

we arrive at (4.24). �

Corollary 4.1. Let z ∈ R
3 with z1 < 0. If κ0 > 0, then

(4.26)

∣

∣

∣

∣

∫

R3

∂α
z H(z − y, t)b̃(y) dy

∣

∣

∣

∣

6 C(κ0)γ|z|−2−|α|.

In any case, we have

(4.27)

∣

∣

∣

∣

∫

R3

∂α
z H(z − y, t)b̃(y) dy

∣

∣

∣

∣

6 C(σ0)γ(1 + t)σ0 |z|−2−|α|.

P r o o f. For any z ∈ R
3 \ {0}, at least one of the two relations |z1| > |z|/2

and |z′| > |z|/2 is valid. Therefore inequality (4.26) follows from Lemma 4.7 (if
|z1| > |z|/2) or from Lemma 4.9 (if |z′| > |z|/2), whereas (4.27) is a consequence of
Lemma 4.8 and 4.10. �

Now we are in a position to prove a decay estimate of |∂α
x I

(1)(b̃)(x, t)|.
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Theorem 4.1. Let x ∈ R
3. If κ0 > 0, we have

(4.28) |∂α
x I

(1)(b̃)(x, t)| 6 C(κ0)γ(|x|ν1(x))−1−|α|/2.

Otherwise,

(4.29) |∂α
x I

(1)(b̃)(x, t)| 6 C(σ0)γ(1 + t)σ0 (|x|ν1(x))−1−|α|/2.

P r o o f. Suppose that κ0 > 0. Abbreviate xt := x − te1. We first determine

a bound of I
(1)(b̃)(x, t) in terms of |xt|ν1(xt). Then we use this bound in order

to establish (4.28). We distinguish several cases. First assume that xt1 > 0 and

|xt| − xt1 > 1. In this case, we start from Lemma 4.4, observing that

(4.30) |∂α
x I

(1)(b̃)(x, t)| 6 |M1| + |M2|,

with

(4.31) M1 :=

∫

R3

H(y, t)ψ(y)∂αb̃(xt − y) dy,

M2 :=

∫

R3

H(y, t)(1 − ψ(y))∂αb̃(xt − y) dy.

We observe that the conditions xt1 > 0, |xt| − xt1 > 1 together with (2.7) imply

|x′t|2 = (|xt| + xt1)(|xt| − xt1) > |xt|, so that |x′t| > |xt|1/2. On the other hand, it is

obvious that |x′t| 6 |xt|. Thus there is a σ ∈ [1/2, 1] such that |x′t| = |xt|σ. It follows
by (2.7) and the assumption xt1 > 0 that

(4.32) |xt|2σ = |x′t|2 > |xt|(|xt| − xt1) > |xt|ν1(xt)/2,

where the last inequality holds because of the assumption |xt| − xt1 > 1.

Now put G := {y ∈ R
3 : |y′| > |xt|σ/2}. Using (4.32), we find for y ∈ R

3 \ G
(hence |y′| 6 |xt|σ/2) that

|x′t − y′| > |x′t| − |y′| = |xt|σ − |y′| > |xt|σ/2 > C(|xt|ν1(xt))
1/2,

so that by virtue of (2.7),

(4.33) (1 + |xt − y|)ν1(xt − y) > C|x′t − y′|2 > C|xt|2σ > C|xt|ν1(xt).
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Now we may conclude using (4.6) that

(4.34)

∣

∣

∣

∣

∫

R3\G

H(y, t)ψ(y)∂αb̃(xt − y) dy

∣

∣

∣

∣

6 Cγ

∫

R3\G

H(y, t)((1 + |xt − y|)ν1(xt − y))−1−|α|/2 dy

6 Cγ(|xt|ν1(xt))
−1−|α|/2

∫

R3\G

H(y, t) dy 6 Cγ(|xt|ν1(xt))
−1−|α|/2,

where the last inequality follows from Lemma 2.2. We further obtain by integration

by parts that

(4.35)

∫

G

H(y, t)ψ(y)∂αb̃(xt − y) dy =
3

∑

i=1

Bi,

with

B1 :=

∫

G

∂α
y H(y, t)ψ(y)b̃(xt − y) dy,

B2 := |α|
∫

G

H(y, t)∂αψ(y)b̃(xt − y) dy,

B3 :=

∫

∂G

H(y, t)ψ(y)b̃(xt − y)((0, y′) · α)2|xt|−σ dy.

For y ∈ R
3 with ψ(y) 6= 0 we have |y| > 1, so that |y| > C(1+ |y|). As a consequence,

we may deduce from Lemma 2.1 and (4.6) that

(4.36) |B1| 6 Cγ

∫

G

(1 + |y|)−3−|α|((1 + |xt − y|)ν1(xt − y))−1−κ0 dy.

But for y ∈ G, the inequality 1 + |y| > |y| > |y′| > |xt|σ/2 holds. Hence

|B1| 6 Cγ|xt|−σ(2+|α|)

∫

G

(1 + |y|)−1((1 + |xt − y|)ν1(xt − y))−1−κ0 dy.

Therefore, (2.8) and (4.32), imply

(4.37) |B1| 6 C(κ0)γ|xt|−σ(2+|α|) 6 C(κ0)γ(|xt|ν1(xt))
−1−|α|/2.

Since |b̃(xt −y)| 6 Cγ for y ∈ R
3 by (4.6), and because |y| > |y′| > |xt|σ/2 for y ∈ G,

hence H(y, t) 6 C|xt|−3σ for such y (Lemma 2.1), we see that

|B2| 6 |α|Cγ|xt|−3σ

∫

G

|∂αψ(y)| dy.
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But if |α| = 1, we have ∂αψ(y) = 0 for y ∈ Bc
2, so that

(4.38) |B2| 6 |α|Cγ|xt|−3σ

∫

B2

|∂αψ(y)| dy 6 |α|Cγ|xt|−3σ

6 |α|Cγ(|xt|ν1(xt))
−3/2

6 Cγ(|xt|ν1(xt))
−1−|α|/2,

where we have again used (4.32). Once more referring to (4.6) and Lemma 2.1, we

get

|B3| 6 |α|Cγ
∫

∂G

|y|−3((1 + |xt − y|)ν1(xt − y))−1 doy.

But for y ∈ ∂G, the relation |y′| = |xt|σ/2 holds, so that

|y| > C(|y1| + |y′|) > C(|y1| + |xt|σ).

Moreover, inequality (4.33) holds for y ∈ ∂G. Therefore we may conclude that

(4.39) |B3| 6 |α|Cγ|xt|−2σ

∫

∂G

(|y1| + |xt|σ)−3 doy.

On the other hand,

∫

∂G

(|y1| + |xt|σ)−3 doy =

∫ ∞

0

∫

{η∈R2 : |η|=1}

(|xt|σ/2)(r + |xt|σ)−3 doη dr

6 C|xt|σ
∫ ∞

0

(r + |xt|σ)−3 dr = C|xt|−σ,

so that from (4.39) and (4.32),

(4.40) |B3| 6 |α|Cγ|xt|−3σ 6 |α|Cγ(|xt|ν1(xt))
−3/2

6 Cγ(|xt|ν1(xt))
−1−|α|/2.

By Lemma 4.5 we have |M2| 6 Cγ(|xt|ν1(xt))
−1−|α|/2, so we may conclude from

(4.30), (4.34), (4.35), (4.37), (4.38) and (4.40) that

(4.41) |∂α
x I

(1)(b̃)(x, t)| 6 C(κ0)γ(|xt|ν1(xt))
−1−|α|/2.

This estimate was shown under the assumptions that xt1 > 0 and |xt| − xt1 > 1.

If these assumptions do not hold, we may use the previous lemmas. In fact, if

|xt| − xt1 6 1, Lemma 4.4 and 4.6 yield inequality (4.41) even with a constant that

does not depend on κ0. In the case xt1 < 0 and |xt| > 1, estimate (4.41) follows

from (2.3), (4.26) and the inequality

|xt| > 1
2 (1 + |xt|) > 1

2 (1 + 1
2 (|xt| − xt1)) > 1

4ν1(xt).
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Finally, if |xt| 6 1, we may use Lemma 4.4 and Lemma 4.3 with K = 1, z = xt

in order to obtain (4.41), again with a constant independent of κ0. Thus we have

shown (4.41) for all cases.

Now we turn to estimates in terms of |x|ν1(x). First suppose that |x| − x1 > 1,

x1 > 0. Then (2.7), implies

|xt|ν1(xt) > 1
2 (|xt| + xt1)(|xt| − xt1) = 1

2 |x
′
t|2 = 1

2 |x
′|2

= 1
2 (|x| + x1)(|x| − x1) > 1

2 |x|(|x| − x1) > C|x|ν1(x);

note that |x| − x1 > 1
2ν1(x) because |x| − x1 > 1. It thus follows from (4.41) that

(4.28) holds. Next suppose that x1 < 0. Then xt1 = x1 − t < 0, so that by (2.3) and

(4.26),

(4.42) |∂α
x I

(1)(b̃)(x, t)| 6 C(κ0)γ|xt|−2−|α|.

Moreover, we have x1t = x1 − t < x1 < 0, so that |xt| > |x|. In the case |x| > 1,

we additionally observe that |x| > 1
2 (1 + |x|) > 1

4ν1(x). Thus, under our assumption

x1 < 0, and if |x| > 1, we see that inequality (4.28) follows from (4.42). In the case

x1 < 0, |x| 6 1, we still have |xt| > |x|, and inequality (4.42) continues to hold. If
|xt| > 1, we may conclude from that latter estimate and the relation |xt| > |x| that
|∂α

x I
(1)(b̃)(x, t)| 6 C(κ0)γ|x|−1−|α|/2. The same inequality follows from Lemma 4.4

and Lemma 4.3 with K = 1, z = xt if |xt| 6 1. On the other hand, the relation

|x| 6 1 implies that 1 > 1
3ν1(x). Thus we see that inequality (4.28) holds also in the

case x1 < 0, |x| 6 1. Suppose that |x| − x1 6 1 and |xt| > 1
2 |x|. Then

|xt|ν1(xt) > |xt| > 1
2 |x| > 1

4 |x|ν1(x).

Hence inequality (4.28) follows from (4.41). Consider the case |x| − x1 6 1, |xt| 6
1
2 |x|, |x| 6 1. The first of these three relations yields 1 > ν1(x)/2. The second and

the third imply |xt| 6 1
2 . Thus, by Lemma 4.4 and Lemma 4.3 with K = 1

2 , z = xt,

we have

|∂α
x I

(1)(b̃)(x, t)| 6 Cγ 6 Cγ(|x|ν1(x))−1−|α|/2,

so that (4.28) is valid once more. This leaves us to consider the situation that the

conditions |x| − x1 6 1, |xt| 6 |x|/2 and |x| > 1 hold. The inequalities |xt| 6 1
2 |x|

and |x| > 1 yield

(4.43) t = |x− xt| > |x| − |xt| > 1
2 |x| > 1

2 .
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Thus, by (2.3), (4.6) and Lemma 2.1,

(4.44) |∂α
x I

(1)(b̃)(x, t)| 6 Cγ

∫

R3

(|xt − y|2 + t)−3/2−|α|/2((1 + |y|)ν1(y))−1−κ0 dy

6 Cγt−1−|α|/2

∫

R3

(|xt − y| +
√
t)−1((1 + |y|)ν1(y))−1−κ0 dy

6 Cγ|x|−1−|α|/2

∫

R3

(|xt − y| + 1)−1((1 + |y|)ν1(y))−1−κ0 dy,

where we have used (4.43) in the last inequality. Now (2.8) implies the estimate

|∂α
x I

(1)(b̃)(x, t)| 6 C(κ0)γ|x|−1−|α|/2. Since 1 > ν1(x)/2 because of the condition

|x| − x1 6 1, we see that (4.28) is valid in the present situation as well. This

completes the proof of (4.28). Turning to the proof of (4.29), we suppose that

xt1 > 0, |xt| − xt1 > 1. Then, using Lemma 2.6 instead of Lemma 2.1, we may

replace (4.36) by

|B1| 6 C(σ0)γ(1 + t)σ0

∫

G

(1 + |y|)−3−|α|−2σ0((1 + |xt − y|)ν1(xt − y))−1 dy.

Starting from this estimate, we continue as in the passage following (4.36), but refer

to (2.9) instead of (2.8). In this way we obtain

(4.45) |B1| 6 C(σ0)γ(1 + t)σ0 (|xt|ν1(xt))
−1−|α|/2.

In the case xt1 < 0, |xt| > 1, we apply (4.27) instead of (4.26) to obtain

(4.46) |∂α
x I

(1)(b̃)(x, t)| 6 C(σ0)γ(1 + t)σ0(|xt|ν1(xt))
−1−|α|/2.

Similarly, if x1 < 0 (hence xt1 = x1 − t < 0), we again refer to (4.27) instead of

(4.26) in order to replace (4.42) by

(4.47) |∂α
x I

(1)(b̃)(x, t)| 6 C(σ0)γ(1 + t)σ0 |xt|−2−|α|.

We finally have to modify (4.44). To this end, we suppose as in (4.44) that |x|−x1 6

1, |xt| 6 1
2 |x| and |x| > 1, and then use Lemma 2.6 instead of Lemma 2.1, to obtain

by (4.43) that

|∂α
x I

(1)(b̃)(x, t)| 6 C(σ0)γ(1 + t)σ0

∫

R3

(|xt − y|2 + t)−3/2−|α|/2

× (1 + |xt − y|)−2σ0((1 + |y|)ν1(y))−1 dy

6 C(σ0)γ(1 + t)σ0 |x|−1−|α|/2

∫

R3

(1 + |xt − y|)−1−2σ0((1 + |y|)ν1(y))−1 dy.
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Now (2.9) implies

(4.48) |∂α
x I

(1)(b̃)(x, t)| 6 C(σ0)γ(1 + t)σ0 |x|−1−|α|/2.

All the other estimates used in the proof of (4.28) need not be modified. These

estimates combined with (4.45)–(4.48) imply (4.29). �

Theorem 4.1 and Lemma 4.1 imply

Corollary 4.2. Let x ∈ R
3 \ {0}. If κ0 > 0, we have

|∂α
x I

(1)(b)(x, t)| 6 C(κ0)γ(|x|ν1(x))−1−|α|/2(χ(4,∞)(|x|) + χ(0,4](|x|)|x|−κ0 ).

Otherwise, |∂α
x I

(1)(b)(x, t)| 6 C(σ0)γ(1 + t)σ0(|x|ν1(x))−1−|α|/2.

Comparing (4.1) with (3.6), we may deduce the following result from Corollary 4.2:

Corollary 4.3. Let x ∈ R
3 \ {0}. If κ0 > 0, we have

|∂α
x I

(1)(ãS)(x, t)| 6 C(S0, S, κ0)δ|α|(1 + τ−|α|/2)τ1+κ0 (|x|ν1(x))−1−|α|/2

× (χ(4,∞)(|x|) + χ(0,4](|x|)|x|−κ0 ),

else

|∂α
x I

(1)(ãS)(x, t)| 6 C(S0, S, κ0)δ|α|(1 + τ−|α|/2)τ(1 + t)σ0(|x|ν1(x))−1−|α|/2.

5. Proof of Theorem 1.1

The first statement of Theorem 1.1 is true according to Lemma 2.3. Let t ∈ (0,∞),

x ∈ Bc
S . Suppose that κ0 > 0. Then, by Lemma 3.3 and Corollary 4.3,

(5.1) |∂α
x I

(τ)(ϕsa)(x, t)| = τ |α||∂α
y I

(1)(ãS)(y, τ2t)|y=τx|
6 C(S0, S, κ0)δ|α|(τ

|α|/2 + 1)(|x|ντ (x))−1−|α|/2

× (χ(4,∞)(|τx|)τκ0 + χ(0,4](|τx|)|x|−κ0 ).

If |τx| 6 4, we have χ(4,∞)(|τx|)τκ0 +χ(0,4](|τx|)|x|−κ0 = |x|−κ0 6 C(S). In the case

|τx| > 4, the equation χ(4,∞)(|τx|)τκ0 +χ(0,4](|τx|)|x|−κ0 = τκ0 holds. Thus we may

deduce from (5.1) that

|∂α
x I

(τ)(ϕsa)(x, t)| 6 C(S0, S, κ0, τ)δ|α|(|x|ντ (x))−1−|α|/2.
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Hence by virtue of Lemma 3.1,

(5.2) |∂α
x I

(τ)(a)(x, t)| 6 C(S0, S, κ0, τ)(δ|α| + ‖a|BS0
‖1)(|x|ντ (x))−1−|α|/2.

Since we chose α as an arbitrary multiindex with |α| 6 1 (see at the beginning of

Section 3), inequalities (1.8) and (1.11) follow from (5.2). The estimates in (1.9) and

(1.12) may be deduced in a similar way from Corollary 4.3 and Lemma 3.1.
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