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Abstract. Shelah’s pcf theory describes a certain structure which must exist if ℵω is
strong limit and 2ℵω

> ℵω1
holds. Jech and Shelah proved the surprising result that this

structure exists in ZFC. They first give a forcing extension in which the structure exists then
argue that by some absoluteness results it must exist anyway. We reformulate the statement
to the existence of a certain partially ordered set, and then we show by a straightforward,
elementary (i.e., non-metamathematical) argument that such partially ordered sets exist.
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Using Shelah’s pcf theory, Jech and Shelah described in [1] a certain structure that

must be present on ω1 if ℵω is strong limit and 2ℵω > ℵω1
(the consistency of the

latter statement is one of the major problems of the set theory). They proved the

surprising fact that such a structure exists in ZFC. The original proof was given first

by a forcing argument then arguing that structures supplemented by forcing notions

with certain properties exist outright in ZFC (the main result of [2]). Here we offer

a more direct, forcing-free argument.

Notation and definitions. If f is a function, A is a subset of its domain, then

we denote {f(x) : x ∈ A} by f [A].

In what follows we construct partially ordered sets of the following type. The

underlying set is T =
⋃

{Tα : α < ω1} where each Tα = {tαi : i < ω} is countable.

Set T<α =
⋃

{Tβ : β < α}, T>α =
⋃

{Tβ : β > α}, T (β, α) =
⋃

{Tγ : β < γ < α},

T (β, α] =
⋃

{Tγ : β < γ 6 α}. Further, define functions h : T → ω1, d : T → ω by

h(tαi ) = α, d(tαi ) = i.
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We are going to construct a partial ordering < of the following type: if y < x,

y ∈ Tβ, x ∈ Tα then β < α. The construction of the partial order requires that

we specify for every element x ∈ T the set {y : y < x}. For technical reasons we

construct a function f such that f(x) ⊆ T<α if x ∈ Tα and then set y ∈ f∗(x) if there

is a sequence y = xn, xn−1, . . ., x0 = x such that xi+1 ∈ f(xi) (i < n). Specifically,

x ∈ f∗(x). That is, f∗ is the transitive closure of f , it is the set of all elements y for

which y 6 x holds.

We are going to construct partially ordered sets which are sufficiently “random”

in the sense that for any finite subset there are points being in a predetermined

position, assuming that some trivial conditions hold.

Theorem 1. There is a function f as above such that

(1) if y ∈ f(x), then d(y) > d(x);

(2) if y 6= y′ ∈ f(x), then d(y) 6= d(y′);

(3) if β < ω1, W, Z ⊆ T>β , |W |, |Z| < ω, f∗[Z] ∩ W = ∅, then there are infinitely

many r ∈ Tβ such that r ∈ f(w) (w ∈ W ), r /∈ f∗(z) (z ∈ Z).

P r o o f. We construct f(x) for all x ∈ Tα, by transfinite recursion on α. Assume

that we are at stage α and f(y) is determined for all y ∈ T<α.

At step i = 0, 1, . . . we construct finite sets fi(x), gi(x) for x ∈ Tα such that

fi(x), gi(x) ⊆ T<α, ∅ = f0(x) ⊆ f1(x) ⊆ . . ., ∅ = g0(x) ⊆ g1(x) ⊆ . . ., and gi(x) ∩

f∗[fi(x)] = ∅ (specifically fi(x)∩gi(x) = ∅) will always hold. After ω steps we define

f(x) =
⋃

{fi(x) : i < ω} for x ∈ Tα. Our sets fi(x), gi(x) are approximations: at

step i; we determine that the elements of fi(x) will be in f(x), and that the elements

of gi(x) will not be in f∗(x).

We fix an enumeration {(β0, W0, Z0), (β1, W1, Z1), . . .} of all triples (β, W, Z) where

β < α, W , Z are finite subsets of T (β, α) such that each triple occurs infinitely often.

At step i < ω we either determine that (βi, Wi, Zi) is such that it cannot occur in (3)

of the theorem or we construct fi+1, gi+1 such that it will guarantee the existence

of an element r ∈ Tβ to satisfy (3) of the theorem.

Assume that we have arrived at step i and we are given (β, W, Z) = (βi, Wi, Zi).

Set W+ = W ∩Tα, W
− = W ∩T<α, Z

+ = Z ∩Tα, Z
− = Z ∩T<α. We have to treat

the triple (β, W, Z) only if W ∩ f∗[Z] = ∅ holds after the construction is finished.

This implies that W− ∩ f∗[Z−] = ∅ and

W− ∩ (fi(x) ∪ f∗[fi(x)]) = ∅

holds for x ∈ Z+. If either of them does not hold, then we let fi+1(x) = fi(x),

gi+1(x) = gi(x) for x ∈ Tα.
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We therefore assume that the above two equalities do hold. Set

Z∗ = Z− ∪ (fi[Z
+] ∩ T (β, α)) ∪

⋃

{f∗[fi(x)] ∩ T (β, α) : x ∈ Z+}.

AsW∩f∗[Z∗] = ∅, we can find r ∈ Tβ which is appropriate for (W, Z∗), r /∈ fi(x)∩Tβ

(x ∈ Z+), and d(r) > d(x) for every x ∈ W+ ∪ fi[W
+].

Define

fi+1(x) =

{

fi(x) ∪ {r} x ∈ W+,

fi(x) x ∈ Tα − W,

and

gi+1(x) =

{

gi(x) ∪ {r} x ∈ Z+,

gi(x) x ∈ Tα − Z.

We have to show that f∗[fi+1(x)] ∩ gi+1(x) = ∅ still holds for x ∈ Tα. If x ∈ W+,

then we have to show that f∗(r)∩ gi(x) = ∅. But this is true, as for every element u

of f∗(r) and every element v of gi(x) we have d(u) > d(r) > d(v) by our choice. If

x ∈ Z+, we have to show that r /∈ f∗[fi(x)]. Indeed, if u ∈ fi(x), then this holds for

u ∈ T (β, α) by our definition of Z∗; if u ∈ Tβ, then it holds as r 6= u by our choice

of r, and finally, if u ∈ T<β, then it trivially holds, as f∗(u) ⊆ T<β.

We claim that r will be as required for the triple (β, W, Z). Indeed, r ∈ f(w) for

w ∈ W− as r is good for (W, Z∗). If w ∈ W+, then r ∈ f(w), as r ∈ fi+1(w) ⊆ f(w).

If z ∈ Z−, then r /∈ f∗(z), as r was appropriate for (W, Z∗) and Z∗ ⊇ Z−. Finally,

if z ∈ Z+, then r ∈ gi+1(z), therefore r will not be an element of f∗(z). �

Lemma 2. If f is as in Theorem 1, then for every x ∈ T , i < ω, the set

A(x, i) = {β : tβi ∈ f∗(x)} is finite.

P r o o f. We prove this by induction on α, where x ∈ Tα. By our construction,

we either have

A(x, i) = A(y0, i) ∪ . . . ∪ A(ym, i)

or

A(x, i) = {x} ∪ A(y0, i) ∪ . . . ∪ A(ym, i)

where {y ∈ f(x) : d(x) < d(y) 6 i} = {y0, . . . , ym}. As h(y) < h(x) whenever

y ∈ f(x), the sets on the right hand side are finite, and then so is A(x, i). �
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Corollary 3 (Jech-Shelah). There exist a partition {An : n < ω} of ω1 and

a family {Xα : α < ω1} of subsets of ω1 such that

(1) max(Xα) = α (α < ω1);

(2) if β ∈ Xα then Xβ ⊆ Xα;

(3) |Xα ∩ An| < ℵ0 (α < ω1, n < ω);

(4) if λ < ω1 is limit, λ 6 α < ω1, α1, . . . , αk < α, γ < λ then

Xα ∩ λ 6⊆ γ ∪ Xα1
∪ . . . ∪ Xαk

.

P r o o f. Let f be a function as in Theorem 1. Define

Xαω+i = {βω + j : tβj ∈ f∗(tαi )}

for α < ω1, i < ω, that is, identify Tα with the α-th interval of type ω, [ωα, ω(α+1)).

Set An = {αω + n : α < ω1} for n < ω. Then (1) is obvious. (2) follows as

f∗(y) ⊆ f∗(x) for y ∈ f∗(x). (3) holds by the Lemma 2. Finally, for (4) we have to

show that

[βω, (β + 1)ω) ∩ Xαω+m − (Xαω ∪ . . . ∪ Xαω+m−1 ∪ Xβ1ω+i1 ∪ . . . ∪ Xβkω+ik
)

is infinite when β < α, m < ω, β1, . . . , βk < α, and i1, . . . , ik < ω. Translating this

back to our construction, we have to prove that

(Tβ ∩ f∗(tαm)) − (f∗(tα0 ) ∪ . . . ∪ f∗(tαm−1) ∪ f∗(tβ1

i1
) ∪ . . . ∪ f∗(tβk

ik
))

is infinite. This follows from Theorem 1 if we set W = {tαm},

Z = {tα0 , . . . , tαm−1, t
β1

i1
, . . . , tβk

ik
}

and notice that f∗[Z] ∩ W = ∅ as f∗[Z] ∩ Tα = {tα0 , . . . , tαm−1}. �

Theorem 4. There is a function f such that if β < ω1, U, V ⊆ T<β , W, Z ⊆ T>β

are finite sets such that

(1) U ⊆ f∗(w) (w ∈ W ),

(2) f∗[U ] ∩ V = ∅,

(3) f∗[Z] ∩ W = ∅, then there are infinitely many r ∈ Tβ such that

(a) U ⊆ f∗(r);

(b) V ∩ f∗(r) = ∅;

(c) r ∈ f∗(w) (w ∈ W );

(d) r /∈ f∗(z) (z ∈ Z).

580



P r o o f. Similarly to the proof of Theorem 1, we determine f(x), hence f∗(x)

for every x ∈ Tα, by transfinite recursion on α. Assume, therefore, that we are at

stage α, and so f(x) is already defined for x ∈ T<α.

We call a quintuple (β, U, V, W, Z) satisfying (1)–(3) consistent. If r ∈ Tβ sat-

isfies (a)–(d), we say that r is good for (β, U, V, W, Z). Enumerate all quintuples

(β, U, V, W, Z) with β 6 α, U, V ⊆ T<β, W, Z ⊆ T (β, α] such that U , V , W , Z are

finite, either β = α or else (W ∪ Z) ∩ Tα 6= ∅ as {(βi, Ui, Vi, Wi, Zi) : i < ω} so that

each such quintuple occurs infinitely many times.

We are going to define finite sets fi(x), gi(x) ⊆ T<α for all x ∈ Tα and i < ω such

that

(1) ∅ = f0(x) ⊆ f1(x) ⊆ . . .,

(2) ∅ = g0(x) ⊆ g1(x) ⊆ . . .,

(3) for every i < ω, fi(x) = gi(x) = ∅ holds for all but finitely many x ∈ Tα,

(4) gi(x) ∩ f∗[fi(x)] = ∅ (i < ω, x ∈ Tα).

After ω steps we let f(x) =
⋃

{fi(x) : i < ω} for x ∈ Tα. This means that at step

i < ω, for every x we have finitely many commitments: if y ∈ fi(x) we promise that

y ∈ f(x), if y ∈ gi(x), we promise that y /∈ f∗(x) will hold.

Assume first that we are at step i < ω and we have to treat a quintuple

(βi, Ui, Vi, Wi, Zi) where βi = α, and consequently Wi = Zi = ∅. If f∗[Ui] ∩ Vi 6= ∅,

we do nothing, i.e., leave fi+1(x) = fi(x), gi+1(x) = gi(x) (x ∈ Tα) as this quintuple

will not occur among those for which the theorem applies. If, however, f∗[Ui]∩Vi = ∅,

then select an x ∈ Tα such that fi(x) = gi(x) = ∅ and set fi+1(x) = Ui, gi+1(x) = Vi,

and fi+1(y) = fi(y), gi+1(y) = gi(y) (y ∈ Tα − {x}).

Assume next that we are at step i < ω and we are to handle (β, U, V, W, Z) =

(βi, Ui, Vi, Wi, Zi) with β < α. Set W+ = W ∩Tα, W
− = W ∩T (β, α), Z+ = Z∩Tα,

Z− = Z ∩ T (β, α).

We do nothing, if either (β, U, V, W−, Z−) is inconsistent, or there is an x ∈ W+

such that gi(x) ∩ f∗[U ] 6= ∅, or there is an x ∈ Z+ such that f∗[fi(x)] ∩W− 6= ∅. In

these cases we set fi+1(x) = fi(x), gi+1(x) = gi(x) for every x ∈ Tα. After finishing

the construction of f on Tα, we will have that (β, U, V, W, Z) is inconsistent.

We can, therefore, assume that (β, U, V, W−, Z−) is consistent, gi(x) ∩ f∗[U ] = ∅

(x ∈ W+) and f∗[fi(x)] ∩ W− = ∅ (x ∈ Z+).

Define

V ∗ = V ∪
⋃

{gi(x) ∩ T<β : x ∈ W+}

and

Z∗ = Z− ∪
⋃

{fi(x) ∩ T (β, α) : x ∈ Z+}.
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Claim 1. (β, U, V ∗, W−, Z∗) is consistent.

P r o o f. We have to check (1)–(3) for (β, U, V ∗, W−, Z∗).

(1) holds as (β, U, V, W−, Z−) is consistent.

For (2), we have to show that f∗[U ]∩V ∗ = ∅. On the one hand, f∗[U ]∩V = ∅, as

(β, U, V, W−, Z−) is consistent, on the other hand, f∗[U ] ∩ gi(x) = ∅ holds for every

x ∈ W+ by our assumptions.

For (3), we have to show that f∗[Z∗] ∩ W− = ∅. This holds as, on the one

hand, f∗[Z−] ∩ W− = ∅, as (β, U, V, W−, Z−) is consistent, on the other hand,

f∗[fi(x)] ∩ W = ∅ holds by our assumptions (x ∈ Z+). �

By Claim 1 and by the inductive hypothesis, we can find an r ∈ Tβ which satisfies

(a)–(d) for (β, U, V ∗, W−, Z∗) and r /∈
⋃

{gi(x) : x ∈ W+}.

Now define

fi+1(x) =

{

fi(x) ∪ {r} x ∈ W+,

fi(x) x ∈ Tα − W,

and

gi+1(x) =

{

gi(x) ∪ {r} x ∈ Z+,

gi(x) x ∈ Tα − Z.

Claim 2. gi+1(x) ∩ f∗[fi+1(x)] = ∅ (x ∈ Tα).

P r o o f. As gi(x) ∩ f∗[fi(x)] = ∅ holds by the inductive hypothesis, we have to

show that r /∈ f∗[fi(x)] (x ∈ Z+), and f∗(r) ∩ gi(x) = ∅ (x ∈ W+). The former

holds, as r is good for (β, U, V ∗, W−, Z∗) and fi(x) ∩ T>β ⊆ Z∗. The latter holds,

as r /∈ gi(x) by our choice and r is good for (β, U, V ∗, W−, Z∗) and gi(x) ⊆ V ∗ and

therefore f∗(r) ∩ T<β ∩ gi(x) = ∅. �

Finally we claim that r will be good for (β, U, V, W, Z). Indeed, if x ∈ W+, then

r ∈ fi+1(x) ⊆ f(x), if x ∈ Z+, then r ∈ gi+1(x), so r /∈ f∗(x). All other statements

are obvious. �
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