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SEMILINEAR FRACTIONAL ORDER
INTEGRO-DIFFERENTIAL EQUATIONS

WITH INFINITE DELAY IN BANACH SPACES

Khalida Aissani and Mouffak Benchohra

Abstract. This paper concerns the existence of mild solutions for fractional
order integro-differential equations with infinite delay. Our analysis is based
on the technique of Kuratowski’s measure of noncompactness and Mönch’s
fixed point theorem. An example to illustrate the applications of main results
is given.

1. Introduction

Fractional calculus is a generalization of the ordinary differentiation and integra-
tion to arbitrary non-integer order. The subject is as old as the differential calculus
since, starting from some speculations of G. W. Leibniz (1697) and L. Euler (1730),
it has been progressing up to nowadays. Fractional differential and integral equa-
tions have recently been applied in various areas of engineering, science, finance,
applied mathematics, bio-engineering, radiative transfer, neutron transport and
the kinetic theory of gases and others [5, 10, 11]. There has been a significant
development in ordinary and partial fractional differential equations in recent years;
see the monographs of Abbas et al. [1], Baleanu et al. [6], Diethelm [13], Hilfer
[18], Kilbas et al. [20], Miller and Ross [26], Podlubny [31], Samko et al. [32], and
Tarasov [33], and the papers [2, 3, 8, 14, 23, 24, 28, 29, 30].

The theory of functional differential equations has emerged as an important
branch of nonlinear analysis. Differential delay equations, or functional differential
equations, have been used in modeling scientific phenomena for many years. Often,
it has been assumed that the delay is either a fixed constant or is given as an
integral in which case it is called a distributed delay; see for instance the books
by Hale and Verduyn Lunel [16], Hino et al. [19], Kolmanovskii and Myshkis [21],
Lakshmikantham et al. [22], and Wu [34], and the papers [12, 15].
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In this work we discuss the existence of mild solutions for fractional order
integro-differential equations with infinite delay of the form

(1)
Dq
tx(t) = Ax(t) +

∫ t

0
a(t, s)f(s, xs, x(s))ds , t ∈ J = [0, T ] ,

x(t) = φ(t) , t ∈ (−∞, 0] ,

where Dq
t is the Caputo fractional derivative of order 0 < q < 1, A is a generator

of an analytic semigroup {S(t)}t≥0 of uniformly bounded linear operators on X,
f : J ×B×X −→ X, a : D → R (D = {(t, s) ∈ [0, T ]× [0, T ] : t ≥ s}), φ ∈ B where
B is called phase space to be defined in Section 2. For any function x defined on
(−∞, T ] and any t ∈ J , we denote by xt the element of B defined by

xt(θ) = x(t+ θ) , θ ∈ (−∞, 0] .
Here xt represents the history of the state up to the present time t.

In the present paper we deal with an infinite time delay. Note that in this
case, the phase space B plays a crucial role in the study of both qualitative and
quantitative aspects of theory of functional equations (see [15]).

We present an existence result of mild solutions for the problem (1) by means
of the application of Mönch’s fixed point theorem combined with the Kuratowski
measure of noncompactness. An example illustrating the abstract theory will be
presented.

2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space.
C = C(J,X) be the space of all X-valued continuous functions on J .
L(X) be the Banach space of all linear and bounded operators on X.
L1(J,X) the space of X-valued Bochner integrable functions on J with the norm

‖y‖L1 =
∫ T

0
‖y(t)‖ dt .

L∞(J,R) is the Banach space of essentially bounded functions, normed by
‖y‖L∞ = inf{d > 0 : |y(t)| ≤ d , a.e. t ∈ J} .

Definition 2.1. A function f : J × B ×X −→ X is said to be an Carathéodory
function if it satisfies:

(i) for each t ∈ J the function f(t, ·, ·) : B ×X −→ X is continuous;
(ii) for each (v, w) ∈ B ×X the function f(·, v, w) : J → X is measurable.

Next we give the concept of a measure of noncompactness [7].

Definition 2.2. Let B be a bounded subset of a seminormed linear space Y .
Kuratowski’s measure of noncompactness of B is defined as

α(B) = inf{d > 0 : B has a finite cover by sets of diameter ≤ d} .
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We note that this measure of noncompactness satisfies interesting regularity
properties (for more information, we refer to [7]).

Lemma 2.3.
(1) If A ⊆ B then α(A) ≤ α(B),
(2) α(A) = α(A), where A denotes the closure of A,
(3) α(A) = 0⇔ A is compact (A is relatively compact),
(4) α(λA) = |λ|A, with λ ∈ R,
(5) α(A ∪B) = max{α(A), α(B)},
(6) α(A+B) ≤ α(A) + α(B), where

A+B = {x+ y : x ∈ A, y ∈ B} ,

(7) α(A+ a) = α(A) for any a ∈ Y ,
(8) α(convA) = α(A), where convA is the closed convex hull of A.

For H ⊂ C(J,X), we define

(2)
∫ t

0
H(s)ds =

{∫ t

0
u(s)ds : u ∈ H

}
for t ∈ J ,

where H(s) = {u(s) ∈ X : u ∈ H}.

Lemma 2.4 ([7]). If H ⊂ C(J,X) is a bounded, equicontinuous set, then
(3) α(H) = sup

t∈J
α(H(t)) .

Lemma 2.5 ([17]). If {un}∞n=1 ⊂ L1(J,X) and there exists m ∈ L1(J,R+) such
that ‖un(t)‖ ≤ m(t), a.e. t ∈ J , then α({un(t)}∞n=1) is integrable and

(4) α
({∫ t

0
un(s) ds

}∞
n=1

)
≤ 2

∫ t

0
α({un(s)}∞n=1) ds .

In this paper, we will employ an axiomatic definition for the phase space B
which is similar to those introduced by Hale and Kato [15]. Specifically, B will be a
linear space of functions mapping (−∞, 0] into X endowed with a seminorm ‖.‖B,
and satisfies the following axioms:

(A1): If x : (−∞, T ] −→ X is continuous on J and x0 ∈ B, then xt ∈ B
and xt is continuous in t ∈ J and

(5) ‖x(t)‖ ≤ C‖xt‖B ,
where C ≥ 0 is a constant.
(A2): There exist a continuous function C1(t) > 0 and a locally bounded
function C2(t) ≥ 0 in t ≥ 0 such that

(6) ‖xt‖B ≤ C1(t) sup
s∈[0,t]

‖x(s)‖+ C2(t)‖x0‖B,

for t ∈ [0, T ] and x as in (A1).
(A3): The space B is complete.
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Remark 2.6. Condition (5) in (A1) is equivalent to ‖φ(0)‖ ≤ C‖φ‖B, for all
φ ∈ B.

For our purpose we will only need the following fixed point theorem.

Theorem 2.7 ([4, 27]). Let U be a bounded, closed and convex subset of a Banach
space such that 0 ∈ U , and let N be a continuous mapping of U into itself. If the
implication

V = convN(V ) or V = N(V ) ∪ {0} =⇒ α(V ) = 0

holds for every subset V of U , then N has a fixed point.

Let Ω be a set defined by

Ω =
{
x : (−∞, T ]→ X such that x|(−∞,0] ∈ B, x|J ∈ C(J,X)

}
.

3. Existence of mild solutions

Following [25, 14] we will introduce now the definition of mild solution to (1).

Definition 3.1. A function x ∈ Ω is said to be a mild solution of (1) if x satisfies

(7) x(t) =


φ(t) , t ∈ (−∞, 0] ;

−Q(t)φ(0) +
∫ t

0

∫ s

0
R(t− s)a(s, τ)f(τ, xτ , x(τ)) dτds , t ∈ J ,

where

Q(t) =
∫ ∞

0
ξq(σ)S(tqσ)dσ , R(t) = q

∫ ∞
0

σtq−1ξq(σ)S(tqσ)dσ

and ξq is a probability density function defined on (0,∞) such that

ξq(σ) = 1
q
σ−1− 1

q$q(σ−
1
q ) ≥ 0 ,

where

$q(σ) = 1
π

∞∑
n=1

(−1)n−1σ−qn−1 Γ(nq + 1)
n! sin(nπq) , σ ∈ (0,∞) .

Remark 3.2. Note that {S(t)}t≥0 is a uniformly bounded semigroup, i.e,

there exists a constant M > 0 such that ‖S(t)‖ ≤M for all t ∈ [0, T ] .

Remark 3.3. According to [25], a direct calculation gives that

(8) ‖R(t)‖ ≤ Cq,M tq−1 , t > 0 ,

where Cq,M = qM

Γ(1 + q) .

We make the following assumptions.
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(H1) f : J × B ×X → X satisfies the Carathéodory conditions, and there exist
two positive functions µi(·) ∈ L1(J,R+) (i = 1, 2) with

(9) ‖µ2‖L1(J,R+) <
q

T qaCq,M
,

such that

(10) ‖f(t, v, w)‖ ≤ µ1(t)‖v‖B + µ2(t)‖w‖, (t, v, w) ∈ J × B ×X .

(H2) For any bounded sets D1 ⊂ B, D2 ⊂ X, and 0 ≤ s ≤ t ≤ T , there exists
an integrable positive function η such that

α
(
R(t− s)f(τ,D1, D2)

)
≤ ηt(s, τ)

(
α(D2) + sup

−∞<θ≤0
α(D1(θ))

)
,

where ηt(s, τ) = η(t, s, τ) and sup
t∈J

∫ t

0

∫ s

0
ηt(s, τ)dτds = η∗ <∞.

(H3) For each t ∈ J , a(t, s) is measurable on [0, t] and a(t) = ess sup{|a(t, s)|, 0 ≤
s ≤ t} is bounded on J . The map t→ at is continuous from J to L∞(J,R),
here, at(s) = a(t, s).

Set a = sup
t∈J

a(t).

Theorem 3.4. Suppose that the assumptions (H1)–(H3) hold with

(11) 16aη∗ < 1 ,

then the problem (1) has at least one mild solution on (−∞, T ].

Proof. We transform the problem (1) into a fixed-point problem. Define a mapping
Φ from Ω into itself by

Φ(x)(t) =

φ(t) , t ∈ (−∞, 0] ;

−Q(t)φ(0) +
∫ t

0

∫ s

0
R(t− s)a(s, τ)f

(
τ, xτ , x(τ)

)
dτ ds, t ∈ J .

Clearly, fixed points of the operator Φ are mild solutions of the problem (1).
For φ ∈ B, we will define the function y(·) : (−∞, T ]→ X by

y(t) =
{
φ(t) , if t ∈ (−∞, 0] ;
0 , if t ∈ J .

Then y0 = φ. For each z ∈ C(J,X) with z(0) = 0, we denote by z the function
defined by

z(t) =
{

0, if t ∈ (−∞, 0] ;
z(t) , if t ∈ J .
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If x(·) verifies (7), we can decompose it as x(t) = y(t) + z(t), for t ∈ J , which
implies xt = yt + zt, for every t ∈ J and the function z(t) satisfies

z(t) = −Q(t)φ(0) +
∫ t

0

∫ s

0
R(t− s)a(s, τ)f

(
τ, yτ + zτ , y(τ) + z(τ)

)
dτ ds .

Let
Z0 = {z ∈ Ω : z0 = 0} .

For any z ∈ Z0, we have

‖z‖Z0 = sup
t∈J
‖z(t)‖+ ‖z0‖B = sup

t∈J
‖z(t)‖ .

Thus (Z0, ‖ · ‖Z0) is a Banach space. We define the operator Φ̃ : Z0 → Z0 by:

Φ̃(z)(t) = −Q(t)φ(0) +
∫ t

0

∫ s

0
R(t− s)a(s, τ)f

(
τ, yτ + zτ , y(τ) + z(τ)

)
dτ ds .

Obviously, the operator Φ has a fixed point is equivalent to Φ̃ has one, so it turns
to prove that Φ̃ has a fixed point. Let r > 0 and consider the set

Br = {z ∈ Z0 : ‖z‖Z0 ≤ r} .

�

We need the following lemma.

Lemma 3.5. Set

(12) C∗1 = sup
t∈J

C1(t) ; C∗2 = sup
η∈J

C2(η) .

Then for any z ∈ Br we have

‖yt + zt‖B ≤ C∗2‖φ‖B + C∗1r := r∗ ,

and

(13) ‖f(t, yt + zt, y(t) + z(t)‖ ≤ µ1(t)r∗ + µ2(t)r .

Proof. Using (6), (12) and (10), we obtain

‖yt + zt‖B ≤ ‖yt‖B + ‖zt‖B
≤ C1(t) sup

0≤τ≤t
‖y(τ)‖+ C2(t)‖y0‖B + C1(t) sup

0≤τ≤t
‖z(τ)‖+ C2(t)‖z0‖B

≤ C2(t)‖φ‖B + C1(t) sup
0≤τ≤t

‖z(τ)‖

≤ C∗2‖φ‖B + C∗1r := r∗.

Also, we get

‖f(t, yt + zt, y(t) + z(t)‖ ≤ µ1(t)‖yt + zt‖B + µ2(t)‖y(t) + z(t)‖
≤ µ1(t)r∗ + µ2(t)r.

The lemma is proved. �
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Now we prove that Φ̃ has a fixed point. The proof will be given in three steps.

Step 1: Φ̃ is continuous.
Let {zk}k∈N be a sequence such that zk → z in Br as k →∞. Then for each t ∈ J ,
we have

‖Φ̃(zk)(t)− Φ̃(z)(t)‖ ≤
∫ t

0

∫ s

0
‖R(t− s)a(s, τ)

[
f
(
τ, yτ + zkτ , y(τ) + zk(τ)

)
− f

(
τ, yτ + zτ , y(τ) + z(τ)

)]
‖ dτ ds

≤ a Cq,M
∫ t

0

∫ s

0
(t− s)q−1‖f

(
τ, yτ + zkτ , y(τ) + zk(τ)

)
− f

(
τ, yτ + zτ , y(τ) + z(τ)

)
‖ dτ ds.

Since f is of Carathéodory type, we have by the Lebesgue Dominated Convergence
Theorem that

‖Φ̃(zk)(t)− Φ̃(z)(t)‖ → 0 when k →∞ .

Consequently,
lim
k→∞

‖Φ̃(zk)− Φ̃(z)‖Z0 = 0 .

Thus Φ̃ is continuous.

Step 2: Φ̃ maps Br into itself. Let

r ≥
M‖φ‖B + T qaCq,Mr

∗‖µ1‖L1(J,R+)
q

1− T qaCq,M‖µ2‖L1(J,R+)
q

.

Then for each z ∈ Br and t ∈ J we have

‖Φ̃(z)(t)‖ ≤ ‖Q(t)φ(0)‖

+
∫ t

0

∫ s

0
‖R(t− s)a(s, τ)f

(
τ, yτ + zτ , y(τ) + z(τ)

)
‖ dτ ds

≤M‖φ‖B + a Cq,M

∫ t

0

∫ s

0
(t− s)q−1 [µ1(τ)r∗ + µ2(τ)r] dτ ds

≤M‖φ‖B + a Cq,Mr
∗
∫ t

0

∫ s

0
(t− s)q−1µ1(τ) dτ ds

+ a Cq,Mr

∫ t

0

∫ s

0
(t− s)q−1µ2(τ) dτ ds

≤M‖φ‖B + T qa Cq,M
q

[
r∗‖µ1‖L1(J,R+) + r‖µ2‖L1(J,R+)

]
≤ r .

Step 3: Φ̃(Br) is bounded and equicontinuous.
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By Step 2, it is obvious that Φ̃(Br) ⊂ Br is bounded. For the equicontinuity of
Φ̃(Br). Let τ1, τ2 ∈ J with τ1 > τ2, and let z ∈ Br. Then∥∥Φ̃(z)(τ1)− Φ̃(z)(τ2)

∥∥ ≤ ‖Q(τ1)−Q(τ2)‖‖φ(0)‖

+ ‖
∫ τ1

0

∫ s

0
R(τ1 − s)a(s, τ)f

(
τ, yτ + zτ , y(τ) + z(τ)

)
dτ ds

−
∫ τ2

0

∫ s

0
R(τ2 − s)a

(
s, τ)f(τ, yτ + zτ , y(τ) + z(τ)

)
dτ ds‖ .

Set
G
(
·, y· + z·, y(·) + z(·)

)
=
∫ ·

0
a(·, τ)f

(
τ, yτ + zτ , y(τ) + z(τ)

)
dτ ,

then ∥∥Φ̃(z)(τ1)− Φ̃(z)(τ2)
∥∥ ≤ ‖Q(τ1)−Q(τ2)‖‖φ(0)‖

+ ‖
∫ τ1

0
R(τ1 − s)G

(
s, ys + zs, y(s) + z(s)

)
ds

−
∫ τ2

0
R(τ2 − s)G

(
s, ys + zs, y(s) + z(s)

)
ds‖

≤ ‖Q(τ1)−Q(τ2)‖‖φ(0)‖

+ ‖
∫ τ2

0
R(τ1 − s)G

(
s, ys + zs, y(s) + z(s)

)
ds

+
∫ τ1

τ2

R(τ1 − s)G
(
s, ys + zs, y(s) + z(s)

)
ds

−
∫ τ2

0
R(τ2 − s)G

(
s, ys + zs, y(s) + z(s)

)
ds‖

≤ ‖Q(τ1)−Q(τ2)‖‖φ(0)‖

+
∥∥∥∥∫ τ2

0
[R(τ1 − s)−R(τ2 − s)]G

(
s, ys + zs, y(s) + z(s)

)
ds

∥∥∥∥
+
∫ τ1

τ2

‖R(τ1 − s)‖‖G
(
s, ys + zs, y(s) + z(s)

)
‖ ds

≤ I1 + I2 + I3 ,

where
I1 = ‖Q(τ1)−Q(τ2)‖‖φ(0)‖

I2 =
∥∥∥∫ τ2

0
[R(τ1 − s)−R(τ2 − s)]G

(
s, ys + zs, y(s) + z(s)

)
ds
∥∥∥

I3 =
∫ τ1

τ2

‖R(τ1 − s)‖‖G
(
s, ys + zs, y(s) + z(s)

)
‖ ds.
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I1 tends to zero as τ2 → τ1, since Q(t) is a strongly continuous operator.
For I2, using (8) and (13), we have

I2 ≤
∥∥∥∫ τ2

0
[q
∫ ∞

0
σ(τ1 − s)q−1ξq(σ)S

(
(τ1 − s)qσ

)
dσ

− q
∫ ∞

0
σ(τ2 − s)q−1ξq(σ)S

(
(τ2 − s)qσ

)
dσ]G

(
s, ys + zs, y(s) + z(s)

)
ds
∥∥∥

≤ q
∫ τ2

0

∫ ∞
0

σ‖[(τ1 − s)q−1 − (τ2 − s)q−1]ξq(σ)S
(
(τ1 − s)qσ

)
×G

(
s, ys + zs, y(s) + z(s)

)
‖ dσ ds

+ q

∫ τ2

0

∫ ∞
0

σ(τ2 − s)q−1ξq(σ)‖S
(
(τ1 − s)qσ

)
− S

(
(τ2 − s)qσ

)
‖

× ‖G(s, ys + zs, y(s) + z(s))‖ dσ ds

≤ Cq,M
∫ τ2

0

∣∣(τ1 − s)q−1 − (τ2 − s)q−1∣∣ ‖G(s, ys + zs, y(s) + z(s)
)
‖ ds

+ q

∫ τ2

0

∫ ∞
0

σ(τ2 − s)q−1ξq(σ)‖S
(
(τ1 − s)qσ

)
− S

(
(τ2 − s)qσ

)
‖

× ‖G
(
s, ys + zs, y(s) + z(s)

)
‖ dσ ds

≤ a
[
r∗‖µ1‖L1(J,R+) + r‖µ2‖L1(J,R+)

]
× [Cq,M

∫ τ2

0

∣∣(τ1 − s)q−1 − (τ2 − s)q−1∣∣ ds
+ q

∫ τ2

0

∫ ∞
0

σ(τ2 − s)q−1ξq(σ)‖S
(
(τ1 − s)qσ

)
− S

(
(τ2 − s)qσ

)
‖ dσ ds] .

Clearly, the first term on the right-hand side of the above inequality tends to zero
as τ2 → τ1. From the continuity of S(t) in the uniform operator topology for t > 0,
the second term on the right-hand side of the above inequality tends to zero as
τ2 → τ1. In view of (13), we have

I3 ≤ Cq,M
∫ τ1

τ2

(τ1 − s)q−1‖G(s, ys + zs, y(s) + z(s))‖ ds

≤ a Cq,M
[
r∗‖µ1‖L1(J,R+) + r‖µ2‖L1(J,R+)

] ∫ τ1

τ2

(τ1 − s)q−1 ds .

As τ2 → τ1, I3 tends to zero.
So Φ̃(Br) is equicontinuous.

Now let V be a subset of Br such that V ⊂ conv(Φ̃(V ) ∪ {0}). Moreover, for
any ε > 0 and bounded set D, we can take a sequence {vn}∞n=1 ⊂ D such that
α(D) ≤ 2α({vn}) + ε ([9, p.125]). Thus, for {vn}∞n=1 ⊂ V , and using Lemmas
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2.3–2.5 and (H2), we get

α
(
Φ̃V
)
≤ 2α

({
Φ̃vn

})
+ ε = 2 sup

t∈J
α
({

Φ̃vn(t)
})

+ ε

= 2 sup
t∈J

α
({∫ t

0
R(t− s)

∫ s

0
a(s, τ)f

(
τ, yτ + vnτ , y(τ) + vn(τ)

)
dτ ds

})
+ ε

≤ 4 sup
t∈J

∫ t

0
α
({
R(t− s)

∫ s

0
a(s, τ)f

(
τ, yτ + vnτ , y(τ) + vn(τ)

)
dτ ds

})
+ ε

≤ 8 sup
t∈J

∫ t

0

∫ s

0
α({R(t− s)a(s, τ)f

(
τ, yτ + vnτ , y(τ) + vn(τ)

)
dτ ds}) + ε

≤ 8 a sup
t∈J

∫ t

0

∫ s

0
α
(
{R(t− s)f

(
τ, yτ + vnτ , y(τ) + vn(τ)

)
dτ ds}

)
+ ε

≤ 8 a sup
t∈J

∫ t

0

∫ s

0
ηt(s, τ)

[
α(vn(τ)) + sup

−∞<θ≤0
α(vn(θ + τ))

]
dτ ds+ ε

≤ 8 a sup
t∈J

∫ t

0

∫ s

0
ηt(s, τ)

[
α(vn) + sup

0<µ≤τ
α(vn(µ))

]
dτ ds+ ε

≤ 16 a α(vn) sup
t∈J

∫ t

0

∫ s

0
ηt(s, τ) dτ ds+ ε

≤ 16 a η∗α(V ) + ε .

Therefore, in view of Lemma 2.3, we have

α(V ) ≤ α(Φ̃V ) ≤ 16 a η∗α(V ) + ε ,

since ε is arbitrary we obtain that

α(V ) ≤ 16 a η∗α(V ) .

This means that
α(V )(1− 16 a η∗) ≤ 0 .

By (11) it follows that α(V ) = 0. In view of the Ascoli-Arzelà theorem, V is
relatively compact in Br. Applying now Theorem 2.7, we conclude that Φ̃ has a
fixed point which is a solution of the problem (1).

4. An example

In this section we give an example to illustrate the above results. Consider the
following fractional integrodifferential equations

(14)

∂q

∂tq
v(t, ζ) = ∂2

∂ζ2 v(t, ζ) +
∫ t

0
(t− s)

∫ 0

−∞
γ1(θ) sin(s|v(s+ θ, ζ)|) dθ ds

+
∫ t

0
(t− s)s

2

2 sin |v(s, ζ)|
∫ s

0
cos v(ι, ζ) dι ds

v(θ, ζ) = v0(θ, ζ), −∞ < θ ≤ 0 ,
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where t, ζ ∈ [0, 1], γ1 : (−∞, 0] → R, v0 : (−∞, 0] × [0, 1] → R are continuous

functions, and
∫ 0

−∞
|γ1(θ)| dθ <∞.

Set X = L2([0, 1],R) and define A by
D(A) = H2 ((0, 1)) ∩H1

0 ((0, 1)) ,

Au = u
′′
.

Then, A generates a compact, analytic semigroup S(t) of uniformly bounded,
linear operators such that ‖S(t)‖ ≤ 1.
Let the phase space B = C((−∞, 0], X), the space of bounded uniformly continuous
functions endowed with the following norm:

‖ϕ‖B = sup
−∞<θ≤0

|ϕ(θ)| , ∀ϕ ∈ B ,

then we can see that C1(t) = 0 in (6).

For t ∈ [0, 1], ζ ∈ [0, 1] and ϕ ∈ C((−∞, 0], X), we set
x(t)(ζ) = v(t, ζ) ,

φ(θ)(ζ) = v0(θ, ζ), θ ∈ (−∞, 0] ,

a(t, s) = t− s ,

f
(
t, ϕ, x(t)

)
(ζ) =

∫ 0

−∞
γ1(θ) sin

(
s|ϕ(θ)(ζ)|

)
dθ + s2

2 sin |x(t)(ζ)|
∫ s

0
cosx(ι)(ζ) dι .

Thus, problem (14) can be rewritten as the abstract problem (1).
Moreover, for t ∈ [0, 1], we can see

‖f(t, ϕ, x(t))(ζ)‖ ≤ t‖ϕ‖B
∫ 0

−∞
|γ1(θ)|dθ + t3

2 ‖x(t)‖

= µ1(t)‖ϕ‖B + µ2(t)‖x(t)‖ ,
where

µ1(t) = t

∫ 0

−∞
|γ1(θ)| dθ , µ2(t) = t3/2 .

Then (14) has a mild solution by Theorem 3.4.
For example, if we put

γ1(θ) = eθ , q = 1
2 ,

then
Cq,M = 1

Γ
( 1

2
) = 1/

√
π , ‖µ2‖L1(J,R+) = 1/8 .

Thus, we see
aT qCq,M‖µ2‖L1(J,R+)

q
= 1

4
√
π
< 1 .
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