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WAKAMATSU TILTING MODULES WITH

FINITE INJECTIVE DIMENSION

Guoqiang Zhao, Lirong Yin, Hangzhou
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Abstract. Let R be a left Noetherian ring, S a right Noetherian ring and Rω a Wakamatsu
tilting module with S = End(Rω). We introduce the notion of the ω-torsionfree dimension
of finitely generated R-modules and give some criteria for computing it. For any n > 0, we
prove that l.idR(ω) = r.idS(ω) 6 n if and only if every finitely generated left R-module and
every finitely generated right S-module have ω-torsionfree dimension at most n, if and only
if every finitely generated left R-module (or right S-module) has generalized Gorenstein
dimension at most n. Then some examples and applications are given.

Keywords: Wakamatsu tilting module; ω-k-torsionfree module; X -resolution dimension;
injective dimension; ω-torsionless property

MSC 2010 : 16E10, 16E30

1. Introduction

Let R be a ring. We use ModR (resp. ModRop) to denote the category of left

(resp. right) R-modules, and use mod R (resp. mod Rop) to denote the category of

finitely generated left (resp. right) R-modules. For a module M in ModR (resp.

ModSop), we use l.idR(M), l.pdR(M) and l.fdR(M) (resp. r.idS(M), r.pdS(M) and

r.fdS(M)) to denote the injective dimension, projective dimension and flat dimension

of RM (resp. MS), respectively.

We define gen∗(RR) = {X ∈ mod R; there exists an exact sequence . . . → Pi → . . .

→ P1 → P0 → X → 0 inmod R with Pi projective for any i > 0} (see [15]). A module

Rω in mod R is called selforthogonal if Exti
R(Rω, Rω) = 0 for any i > 1.

The research was supported by National Natural Science Foundation of China (Grant
Nos. 11126092, 11226062 and 11201220) and Science Research Foundation of Hangzhou
Dianzi University (Grant No. KYS075610050).
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Definition 1.1 ([13]). A selforthogonal module Rω in gen∗(RR) is called aWaka-

matsu tilting module (sometimes it is also called a generalized tilting module) if there

exists an exact sequence:

0 → RR → ω0 → ω1 → . . . → ωi → . . .

such that: (1) ωi ∈ addR ω for any i > 0, where addR ω denotes the full subcategory

of mod R consisting of all modules isomorphic to direct summands of finite sums of

copies of Rω, and (2) after applying the functor HomR(−, Rω) the sequence is still

exact.

LetR and S be any rings. Recall that a bimodule RωS is called a faithfully balanced

bimodule if the natural maps R → End(ωS) and Sop → End(Rω) are isomorphisms.

By [15, Corollary 3.2], we have that RωS is faithfully balanced and selforthogonal

with Rω ∈ gen∗(RR) and ωS ∈ gen∗(SS) if and only if Rω is Wakamatsu tilting with

S = End(Rω) if and only if ωS is Wakamatsu tilting with R = End(ωS).

In the following, we always assume that R is a left Noetherian ring and S is

a right Noetherian ring (unless stated otherwise) and RωS is a faithfully balanced

selforthogonal bimodule.

Huang in [9] posed the following two questions: (1) Do the injective dimensions

of Rω and ωS coincide provided both of them are finite? (2) If one of the injec-

tive dimensions of Rω and ωS is finite, is the other also finite? The author showed

that the answer to first question is always affirmative (see [9, Theorem 2.7]) and

gave some partial answers to the question (2). He proved that if the injective di-

mension of ωS is equal to n and the U -limit dimension of each of the first n − 1

terms is finite, then the injective dimension of Rω is also equal to n. In addition,

he proved that the left and right injective dimensions of Rω and ωS are identical

if one of them is quasi-Gorenstein. Note that, for Artin algebras, the affirmative

answer to the second question is equivalent to the validity of the Wakamtsu Tilting

Conjecture (WTC). This conjecture states that every Wakamtsu tilting module with

finite injective dimension is cotilting. Moreover, WTC implies the validity of the

Gorenstein Symmetry Conjecture (GSC), which states that if one of the left and

right self-injective dimensions of R is finite than the other is also finite (see [4]). In

a recent paper [10], Huang further gave some equivalent conditions that the injective

dimension of ωS is finite implies that of Rω is also finite.

On the other hand, Huang and Tang showed in [12] that l.idR(ω) = r.idS(ω) 6 n

if and only if every module in mod R and every module in modSop have finite

generalized Gorenstein dimension at most n, where n is a negative integer. So, it is

natural to ask whether l.idR(ω) = r.idS(ω) 6 n if and only if every module in mod R

(or in mod Sop) has finite generalized Gorenstein dimension at most n. In this paper,
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to solve the above problem, we introduce the notion of the ω-torsionfree dimension of

finitely generated modules, which is “simpler” than that of the generalized Gorenstein

dimension of finitely generated modules. Then we show that the answer to this

question is always affirmative. As an application, we give some other equivalent

conditions that the injective dimension of Rω is finite implies that of ωS is also finite.

Then we give some examples to illustrate the main result and other applications are

also given. Finally, we provide some equivalent descriptions when ⊥n
Rω has the

ω-torsionless property and then extend the main result of [9, Theorem 2.7]. The

question when ⊥
Rω has the ω-torsionless property is also considered.

2. Preliminaries

For any k > 1, let ⊥k
Rω = {M ∈ mod R; ExtiR(M, ω) = 0 for any 1 6 i 6 k}

(resp. ⊥kωS = {N ∈ mod Sop; Exti
Sop(N, ω) = 0 for any 1 6 i 6 k}) and ⊥

Rω =
⋂

k>1

⊥k
Rω (resp. ⊥ωS =

⋂

k>1

⊥kωS). We use (−)ω to denote Hom(−, ω). Suppose that

A ∈ mod R. Let σA : A → Aωω defined via σA(x)(f) = f(x), for any x ∈ A and

f ∈ Aω, be the canonical evaluation homomorphism. Then, we call A ω-torsionless

(or ω-reflexive) if σA is a monomorphism (an isomorphism, respectively).

Now let P1

f
→ P0 → A → 0 be a projective resolution of A in mod R. Then we

have an exact sequence 0 → Aω → Pω
0

fω

→ Pω
1 → Coker fω → 0. For the sake of

convenience, we denote Coker fω by TrωA. For a positive integer k, a module A in

mod R is called ω-k-torsionfree if TrωA ∈ ⊥kωS and A is called ω-∞-torsionfree if A

is ω-k-torsionfree for all k. We know from [8] that the definition does not depend on

the choice of the projective resolution of A. A is called ω-k-syzygy if there is an exact

sequence 0 → A → X0 → X1 → . . . → Xk−1 with all Xi in addR ω. We remark that

a module is ω-torsionless (resp. ω-reflexive) if and only if it is ω-1-torsionfree (resp.

ω-2-torsionfree) (see [8]).

Put RωS = RRR. Then, in this case, the notions of ω-k-torsionfree modules and

ω-k-syzygy modules are just the k-torsionfree modules and k-syzygy modules, respec-

tively (see [1] for the definitions of k-torsionfree modules and k-syzygy modules). We

use T k
ω (R) (resp. Tω(R)) to denote the full subcategory of mod R consisting of ω-k-

torsionfree modules (resp. ω-∞-torsionfree modules) and Ωk
ω(R) to denote the full

subcategory of mod R consisting of ω-k-syzygy modules.

Lemma 2.1 ([8, Theorem 1]). Let M ∈ modR and k be a positive integer. Then

the following statements are equivalent.

(1) M is an ω-k-torsionfree module.
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(2) There is an exact sequence 0 → M
f1
−→ X1

f2
−→ . . .

fk
−→ Xk such that each

Im fi → Xi is a left addR ω-approximation of Im fi, 1 6 i 6 k.

Proposition 2.2. For any k > 1, a module in mod R is ω-k-torsionfree if and only

if it is an ω-1-syzygy of an ω-(k− 1)-torsionfree module A in mod R with A ∈ ⊥1
Rω.

In particular, a module in mod R is ω-∞-torsionfree if and only if it is an ω-1-syzygy

of an ω-∞-torsionfree module A in mod R with A ∈ ⊥1
Rω.

P r o o f. This is an immediate consequence of Lemma 2.1. �

Recall from [3] that a module M in mod R is said to have generalized Gorenstein

dimension zero (with respect to ω), denoted by G-dimω(M) = 0, if the following

conditions hold: (1) M is ω-reflexive, and (2) M ∈ ⊥
Rω and Mω ∈ ⊥ωS . We

use Gω(R) to denote the full subcategory of mod R consisting of the modules with

generalized Gorenstein dimension zero.

Lemma 2.3. For any M ∈ mod R, the following statements are equivalent.

(1) G-dimω(M) = 0.

(2) M ∈ ⊥
Rω and TrωM ∈ ⊥ωS.

P r o o f. Note that, for any M ∈ mod R, we have an exact sequence 0 → Mω →

Pω
0 → Pω

1 → TrωM → 0. So ExtiS(Mω, ω) = Exti+2
S (TrωM, ω) for any i > 1. Then

it is easy to see that the assertion holds by [12, Lemma 2.1]. �

Definition 2.4 ([3]). For any n > 0, M in mod R is said to have generalized

Gorenstein dimension at most n (with respect to ω), denoted by G-dimω(M) 6 n,

if there is an exact sequence 0 → Mn → . . . → M1 → M0 → M → 0 in mod R with

G-dimω(Mi) = 0 for any 0 6 i 6 n.

3. Injective dimensions of Rω and ωS

Let X be a full subcategory of mod R and M a module in mod R. If there exists

an exact sequence . . . → Xn → . . . → X1 → X0 → M → 0 in mod R with each

Xi ∈ X for any i > 0, then we define the X -resolution dimension of M , denoted

by X -res.dimR(M), as inf{n; there exists an exact sequence 0 → Xn → . . . →

X1 → X0 → M → 0 in mod R with each Xi ∈ X for any 0 6 i 6 n}. We set X -

res.dimR(M) to be infinity if there does not exist such an integer (see [2]). We call

Tω-res.dimR(M) the ω-torsionfree dimension of M and ⊥ω-res.dimR(M) the ω-left

orthogonal dimension of M .
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Lemma 3.1. Let 0 → M1

f
→ M2 → M3 → 0 be an exact sequence in mod R.

Then we have exact sequences 0 → Mω
3 → Mω

2 → Mω
1 → Coker fω → 0 and

0 → Coker fω → TrωM3 → TrωM2 → TrωM1 → 0 in mod Sop.

P r o o f. Let Q1 → P1 → M1 → 0 and Q3 → P3 → M3 → 0 be projective

resolutions of M1 and M3 in mod R, respectively. We get an exact commutative

diagram

0 // Q1
//

��

Q2

��

// Q3

��

// 0

0 // P1
//

��

P2

��

// P3

��

// 0

0 // M1
//

��

M2
//

��

M3
//

��

0

0 0 0

with P2 = P1 ⊕P3 and Q2 = Q1⊕Q3. Applying the functor HomR(−, ω), we obtain

the exact commutative diagram

0

��

0

��

0

��

Mω
3

//

��

Mω
2

��

// Mω
1

��

0 // Pω
3

//

��

Pω
2

��

// Pω
1

��

// 0

0 // Qω
3

//

��

Qω
2

//

��

Qω
1

//

��

0

TrωM3
//

��

TrωM2
//

��

TrωM1

��

0 0 0

By the snake lemma, we have an exact sequence 0 → Mω
3 → Mω

2

fω

→ Mω
1 →

TrωM3 → TrωM2 → TrωM1 → 0 in mod Sop. We are done. �

The following result gives some criteria for computing ω-torsionfree dimension.

Proposition 3.2. Let M ∈ mod R and n > 0. Then the following statements are

equivalent.

(1) Tω-res.dimR(M) 6 n.

(2) There is an exact sequence 0 → M → H → T → 0 in mod R with addR ω-

res.dimR(H) 6 n and T ∈ Tω(R) ∩ ⊥1
Rω.
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(3) There is an exact sequence 0 → H ′ → T ′ → M → 0 in mod R with T ′ ∈ Tω(R)

and addR ω-res.dimR(H ′) 6 n − 1.

P r o o f. (1) ⇒ (2) Suppose that Tω-res.dimR(M) 6 n, we proceed by induction

on n. If n 6 1, then there is an exact sequence 0 → T1 → T0 → M → 0 in

mod R with both T0 and T1 in Tω(R). By Proposition 2.2, there is an exact sequence

0 → T1 → ω1 → A1 → 0 in mod R with ω1 ∈ addR ω and A1 ∈ Tω(R) ∩ ⊥1
Rω.

Consider the following push-out diagram:

0

��

0

��

0 // T1
//

��

T0

��

// M // 0

0 // ω1

��

// T ′
0

��

// M // 0

A1

��

A1

��

0 0

Because A1 ∈ ⊥1
Rω, we have an exact sequence 0 → TrωA1 → TrωT ′

0 → TrωT0 → 0

by Lemma 3.1 and the exactness of the middle column. Note that both A1 and T0 are

in Tω(R), thus TrωT ′
0 ∈ ⊥ωS, and hence T ′

0 ∈ Tω(R). Thus there is an exact sequence

0 → T ′
0 → ω0 → A0 → 0 in mod R with ω0 ∈ addR ω and A0 ∈ Tω(R) ∩ ⊥1

Rω again

by Proposition 2.2. So we get the following push-out diagram:

0

��

0

��

0 // ω1 // T ′
0

��

// M //

��

0

0 // ω1 // ω0

��

// H //

��

0

A0

��

A0

��

0 0

It is clear that the third column is the desired sequence.

Now assume n > 1, then there is an exact sequence 0 → K1 → T0 → M → 0

with T0 ∈ Tω(R) and Tω-res.dimR(K1) 6 n − 1. By induction hypothesis, there is

an exact sequence 0 → K1 → H1 → A1 → 0 with addR ω-res.dimR(H1) 6 n − 1
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and A1 ∈ Tω(R) ∩ ⊥1
Rω. By the foregoing proof, there exist exact sequences 0 →

H1 → ω0 → H → 0 and 0 → M → H → A0 → 0, where ω0 ∈ addR ω and

A0 ∈ Tω(R) ∩ ⊥1
Rω. It is easy to see that 0 → M → H → A0 → 0 is the required

sequence.

(2) ⇒ (3) By (2), there is an exact sequence:

0 → M → H → T → 0

in mod R with addR ω-res.dimR(H) 6 n and T ∈ Tω(R) ∩ ⊥1
Rω. So there ex-

ists an exact sequence 0 → H ′ → ω0 → H → 0 with ω0 ∈ addR ω and addR ω-

res.dimR(H ′) 6 n − 1. Consider the following pull-back diagram:

0

��

0

��

H ′

��

H ′

��

0 // T ′ //

��

ω0

��

// T // 0

0 // M

��

// H

��

// T // 0

0 0

Since T ∈ Tω(R) ∩ ⊥1
Rω, it is easy to see that T ′ ∈ Tω(R) by Proposition 2.2. Then

the first column 0 → H ′ → T ′ → M → 0 is as desired.

(3) ⇒ (1) is trivial. �

Lemma 3.3 ([11, Lemma 17.2.4]). r.idS(ω) = sup{l.fdS(HomR(ω, E)); E is in-

jective in ModR}. Moreover, r.idS(ω) = l.fdS(HomR(ω, Q)) for any injective cogen-

erator Q for ModR.

The following result is crucial in proving the main result.

Theorem 3.4. For any n > 0, if every module in mod R has ω-torsionfree dimen-

sion at most n, then r.idS(ω) 6 n.

P r o o f. Let E be an injective module in ModR. Then by [14, Exercise 2.32],

E = lim−→
i∈I

Mi, where {Mi; i ∈ I} is the set of all finitely generated submodules of E

and I is a directed index set. By Proposition 3.2, for any i ∈ I, there is an exact

sequence 0 → Mi
fi
→ Hi in mod R with addR ω-res.dimR(Hi) 6 n.
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For each i, j ∈ I, because I is directed, there exists k ∈ I with i 6 k and j 6 k.

Set H =
⊕

k∈I

Hk. For any i 6 j, we have the following commutative diagram:

Mi

ϕi
k

//

ϕi
j

��

Mk

fk
// Hk

λk
// H

Mj

ϕ
j

k
// Mk

fk
// Hk

λk
// H

where ϕi
j : Mi → Mj and λk : Hk → H are the embedding homomorphisms. It is

clear that H is a constant direct system over index set I. So by [14, Theorem 2.18],

the sequence 0 → E → lim−→
i∈I

H is exact. Thus we get an exact sequence

0 → HomR (ω, E) → HomR

(

ω, lim−→
i∈I

H
)

which is split. Since Rω is finitely generated, HomR

(

ω, lim−→
i∈I

H
)

∼= lim−→
i∈I

HomR(ω, H) ∼=

lim−→
i∈I

⊕

k∈I

HomR(ω, Hk) by [6, Lemma 1.2.5]. Because addRω-res.dimR(Hk) 6 n,

l.pdS(HomR(ω, Hk)) 6 n. Therefore l.fdS

(

lim−→
i∈I

⊕

k∈I

HomR(ω, Hk)
)

6 n since the

functor Tor commutes with lim
−→
i∈I

by [14, Theorem 8.11]. It follows this inequality

l.fdS(HomR(ω, E)) 6 n and hence r.idS(ω) 6 n by Lemma 3.3. �

Lemma 3.5 ([10, Proposition 3.1]). For a non-negative integer n, l.idR(ω) 6 n if

and only if ⊥ω-res.dimR(M) 6 n for any M ∈ mod R.

Theorem 3.6. For any n > 0, the following statements are equivalent.

(1) l.idR(ω) = r.idS(ω) 6 n.

(2) Every module in mod R and every module in mod Sop have ω-left orthogonal

dimension at most n.

(3) Every module in mod R and every module in mod Sop have ω-torsionfree di-

mension at most n.

(4) Every module in mod R has generalized Gorenstein dimension at most n.

(5) Every module in mod Sop has generalized Gorenstein dimension at most n.

P r o o f. (1) ⇔ (2) follows from Lemma 3.5 and its symmetric version.

(3) ⇒ (1) follows from Theorem 3.4 and its symmetric version.

(1) ⇒ (4) + (5) follows from [12, Theorem 3.5].

(4) ⇒ (1) Let M be any module in mod R. By hypothesis, G-dimω(M) 6 n and

hence Tω-res.dimR(M) 6 n by Lemma 2.3. Thus r.idS(ω) 6 n from Theorem 3.4.
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On the other hand, because ⊥ω-res.dimR(M) 6 G-dimω(M) 6 n, l.idR(ω) 6 n by

Lemma 3.5.

Symmetrically, we get (5) ⇒ (1).

(4) + (5)⇒ (3) Because Tω-res.dimR(M) 6 G-dimω(M) and Tω-res.dimSop(N) 6

G-dimω(N) for any M ∈ mod R and N ∈ mod Sop, the assertion follows. �

Now, we construct a Wakamatsu tilting module and give an example to illustrate

the main result.

Example 3.7. Assume R is a Gorenstein Artin algebra with gl.dim(R) = ∞.

Let C = ⊕Ij , where Ij are all the indecomposable and nonisomorphic direct sum-

mands of modules appeared in the minimal injective resolution of R. Then C is

a Wakamatsu tilting module. In this case, every finitely generated R-module has

generalized Gorenstein dimension zero. On the other hand, the class of finitely

generated R-modules in addC is just the class of all finitely generated injective R-

modules. However, it is clear that there exists an R-module which is not projective

and injective.

Remark 3.8. It is easy to see that every projective R-module and R-module

in addRC are in GC(R). The above example also gives a “nontrivial” example of

modules having generalized Gorenstein dimension zero.

As an application, we give some other equivalent conditions that the injective

dimension of Rω is finite implies that of ωS is also finite.

Proposition 3.9. Let R be a left Noetherian ring, S a right Noetherian ring and

Rω a Wakamatsu tilting module with S = End(Rω). If the injective dimension of Rω

is finite, then the following statements are equivalent for a nonnegative integer n.

(1) The injective dimension of ωS is at most n.

(2) Tω-res.dimR(M) 6 n for any M ∈ mod R.

(3) For any M ∈ mod R, there is an exact sequence 0 → M → H → T → 0 in

mod R with addRω-res.dimR(H) 6 n and T ∈ Tω(R) ∩ ⊥1
Rω.

(4) For any M ∈ mod R, there is an exact sequence 0 → H ′ → T ′ → M → 0 in

mod R with T ′ ∈ Tω(R) and addRω-res.dimR(H ′) 6 n − 1.

P r o o f. (1) ⇒ (2) follows from Theorem 3.6 and [9, Theorem 2.7].

(2) ⇒ (1) by Theorem 3.4.

(2) ⇔ (3) ⇔ (4) by Proposition 3.2. �

Recall that a ring R is called n-Gorenstein, if R is two-sided Noetherian and

l.idR(R) = r.idR(R) 6 n. By specializing Theorem 3.6 to the case Rω =R R, we

obtain the main result proved by Hoshino in [7].
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Corollary 3.10 ([7, Theorem]). The following statements are equivalent:

(1) R is n-Gorenstein.

(2) Every module in mod R has Gorenstein dimension at most n.

Recall from [10] that a full subcategory X ofmod R is said to have the ω-torsionless

property if every module in X is ω-torsionless.

Proposition 3.11. For any n > 1, the following statements are equivalent.

(1) ⊥n
Rω ⊆ T 1

ω (R), i.e., ⊥n
Rω has the ω-torsionless property.

(2) ⊥n
Rω ⊆ Tω(R).

(3) ⊥nωS =⊥ ωS .

(4) Every module in ⊥n
Rω has ω-torsionfree dimension at most n.

P r o o f. (1) ⇔ (2) ⇔ (3) follows from [12, Lemma 3.3] and its proof. (2) ⇒ (4)

is trivial.

(4) ⇒ (2) Suppose that M ∈ ⊥n
Rω. Then Tω-res.dimR(M) 6 n by assumption.

By Proposition 3.2, there is an exact sequence 0 → H ′ → T ′ → M → 0 in mod R

with T ′ ∈ Tω(R) and addRω-res.dimR(H ′) 6 n − 1. Because M ∈ ⊥n
Rω, the above

short exact sequence splits, which implies that M ∈ Tω(R). �

From the above Proposition 3.11, it is clear that if r.idS(ω) 6 n, then ⊥n
Rω has

the ω-torsionless property. The following result extends [9, Theorem 2.7], which

states that l.idR(ω) = r.idS(ω) provided both of them are finite.

Corollary 3.12. If n = min{t; ⊥t
Rω has the ω-torsionless property} and m =

min{r; ⊥rωS has the ω-torsionless property}, then n = m.

P r o o f. We may assume that n 6 m. Because ⊥n
Rω has the ω-torsionless

property, ⊥nωS = ⊥ωS by Proposition 3.11. Note that
⊥ωS ⊆ ⊥mωS and

⊥mωS has

the ω-torsionless property, so ⊥nωS has the ω-torsionless property. Thus n > m by

the minimality of m. We are done. �

From [10, Proposition 2.3], the fact that ⊥
Rω has the ω-torsionless property is

equivalent to the condition that ⊥
Rω = Gω(R). Since Gω(R) = ⊥

Rω ∩ Tω(R) by

Lemma 2.3, it is interesting to consider the following question:

Question. When Tω(R) = Gω(R)?

In the case of RωS =R RR, we have the following result.
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Theorem 3.13. ⊥RR has the R-torsionless property if and only if TR(R) =

GR(R).

We first prove the following lemma.

Lemma 3.14. The following statements are equivalent.

(1) ⊥RR ⊆ T 1
R(Rop), i.e., ⊥RR has the R-torsionless property.

(2) ⊥RR ⊆ TR(Rop).

(3) TR(R) ⊆ ⊥
RR.

P r o o f. (2) ⇒ (1) is trivial.

(1) ⇒ (2) Assume that M ∈ ⊥RR. Then M is R-torsionless by (1). So, by

the symmetric version of Proposition 2.2, we have an exact sequence 0 → M →

P0 → M1 → 0 in mod Rop with P0 projective and M1 ∈ ⊥1RR, which yields that

M1 ∈ ⊥RR. Then M1 is R-torsionless by (1), and again by the symmetric version of

Proposition 2.2, we have an exact sequence 0 → M1 → P1 → M2 → 0 in mod Rop

with P1 projective and M2 ∈ ⊥1RR, which implies that M2 ∈ ⊥RR. Repeating this

procedure, we get an exact sequence:

0 → M → P0 → P1 → . . . → Pi → . . .

in mod Rop with Pi projective and Im (Pi → Pi+1) ∈ ⊥RR, which implies that

M ∈ TR(Rop) by Lemma 2.1.

(2) ⇒ (3) Let P1 → P0 → A → 0 be a projective resolution of A in mod R. Then

we have an exact sequence 0 → (Tr A)R → PRR
1 → PRR

0 → TrTr A → 0. Thus A and

TrTr A are projectively equivalent. Assume A ∈ TR(R), Tr A ∈ ⊥RR ⊆ TR(Rop). So

TrTr A ∈ ⊥
RR, and hence A ∈ ⊥

RR since A and TrTr A are projectively equivalent.

Similarly, (3) ⇒ (2) holds true. �

P r o o f of Theorem 3.13. (⇒) If ⊥RR ⊆ T 1
R(Rop), TR(R) ⊆ ⊥

RR by Lemma 3.14.

Thus TR(R) = ⊥
RR ∩ TR(R) = GR(R).

(⇐) If TR(R) = GR(R), then TR(R) ⊆ ⊥
RR. The assertion follows from

Lemma 3.14 again. �
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