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Ideal-simple endomorphism semirings of semilattices are investigated.

This note is an immediate continuation of [2] and [3].

1. S e m i l a t t i c e s

In this section, let M (= M(+)) be a semilattice (i.e., an idempotent commutative
semigroup). Setting a ≤ b iff b ∈ S + a, we get a compatible ordering and a + b =
= sup(a, b) for all a, b ∈ M. An element w is the smallest (greatest, resp.) element
iff w is neutral (absorbing, resp.). We denote this fact by w = 0 = 0M (w = 1 = 1M ,
resp.).

A non-empty subset N of M is an ideal of M if M +N ⊆ N. Such an ideal is called
prime if a+ b � N for all a, b ∈ M \N (i.e., either N = M or M \N is a subsemilattice
of M). We denote by P(M) the set of proper prime ideals of M.

For every a ∈ M, the set { x ∈ M | a ≤ x } is an ideal of M. The set { y ∈ M | a < y }
is either empty or an ideal.

A one-element set {w} is an ideal iff w = 1M . This ideal is prime iff 1 is irreducible.
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For every a ∈ M, the set Qa = {z ∈ M | z �≤ a } is either empty or a prime ideal of
M. Anyway, Qa = ∅ iff a = 1M . Moreover, a � Qa, and hence Qa ∈ P(M) for every
a � 1M . Notice that M \ Qa = { u ∈ M | u ≤ a }.
1.1 Lemma. Let a ∈ M and let I be an ideal of M such that a � I. Then I ⊆ Qa.

Proof. It is obvious. �

1.2 Lemma.. Let ∈ P(M). Then P = ∩Qa, a ∈ M \ P.

Proof. Use 1.1. �

1.3 Lemma. (i) Qa ⊆ Qb iff b ≤ a.
(ii) Qa = Qb iff a = b.

Proof. It is easy. �

1.4 Lemma. Let P ∈ P(M), Then:
(i) If P = Qa for some a ∈ M, a � 1M, then u ≤ a for every u ∈ M \ P.
(ii) If a ∈ M \ P is such that u ≤ a for every u ∈ M \ P then P = Qa.

Proof. Use 1.2 and 1.3. �

1.5 Corollary. Let P ∈ P(M) be such that the set M \ P is finite. Then P = Qa, where
a =
∑

x, x ∈ M \ P. �

1.6 Corollary. If M is finite then P(M) = {Qa | a ∈ M, a � 1M }. �

2. E n d o m o r p h i s m s o f s e m i l a t t i c e s ( a )

Let M be a semilattice and E = End(M) the full endomorphism semiring of M.

2.1 Proposition. (i) The semiring E is additively idempotent and the identity auto-
morphism idM is the multiplicatively neutral element of E.
(ii) E has an additively neutral element if and only if 0M ∈ M. Then the constant
endomorphism x �→ 0 is the additively neutral element and it is left multiplicatively
absorbing.
(iii) E has an additively absorbing element if and only if 1M ∈ M. Then the constant
endomorphism x �→ 1 is the additively absorbing element and it is left mulitplica-
tively absorbing.
(iv) If |M| ≥ 2 then E has no right multiplicatively absorbing element.
(v) E is non-trivial iff M is so.

Proof. It si easy. �
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For every n ≥ 1, let R(n) = { f ∈ E | | f (M)| ≤ n } and R(ω) = ∪R(n), n ≥ 1. For every
1 ≤ n ≤ ω, let E(n) be the subsemiring of E generated by R(n).

2.2 Proposition. (i) R(1) = E(1) ⊆ E(2) ⊆ E(3) ⊆ · · · ⊆ E(ω) = R(ω).
(ii) All the semirings E(1), E(2),. . . ,E(ω) are ideals of the semiring E.

Proof. It is easy. �

2.3 Proposition. The following conditions are equivalent:
(i) M is finite.

(ii) E is finite.
(iii) E(ω) = E.
(iv) idM ∈ E(ω).
(v) E(m) = E for some m ≥ 1.

Proof. It is easy. �

2.4 Proposition. E(n) = {∑m
i=1 fi |m ≥ 1, fi ∈ R(n) } for every 1 ≤ n ≤ ω.

Proof. It is easy. �

For all a, x ∈ M, let σa(x) = a; we have σa ∈ E(1).

2.5 Proposition. (i) E(1) = R(1) = {σa | a ∈ M }.
(ii) σa + σb = σa+b for all a, b ∈ M.
(iii) σa f = σa and fσa = σ f (a) for all a ∈ M and f ∈ E.

Proof. It is easy. �

2.6 Corollary. (i) The semiring E(1) is ideal-simple if and only if |M| ≥ 2. Then E(1)

is left-ideal-free.
(ii) The semiring E(1) is right-ideal-simple if and only if |M| = 2. �

2.7 Lemma. The following conditions are equivalent.
(i) |M| = 1.

(ii) idM ∈ E(1).
(iii) |E(1)| = 1.
(iv) E(1) = E.
(v) E(1) = E(n) for some n ≥ 2.

Proof. It is obvious. �

2.8 Proposition. The full endomorphism semiring E is never ideal-simple.

Proof. If E is non-trivial then |M| ≥ 2 and E(1) is a proper non-trivial ideal of E
(combine 2.2 and 2.7). �
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2.9 Proposition. Let a, b ∈ M, a ≤ b, and let P ∈ P(M). Define a transformation
� = �a,b,P of M by �(P) = {b} and �(M \ P) = {a}. Then � ∈ R(2) and:
(i) �(M) = {a, b} and � ∈ E(2).
(ii) If a = b then � = σa.
(iii) If 0 ∈ M then �(0) = 0 iff a = 0.
(iv) If 1 ∈ M then �(1) = 1 iff b = 1.
(v) If 0, 1 ∈ M then �(0) = 0 and �(1) = 1 iff a = 0 and b = 1.

Proof. It is easy. �

2.10 Proposition. Let f ∈ R(2). Then:
(i) There are a, b ∈ M such that f (M) = {a, b} and a ≤ b.
(ii) P = { x ∈ M | f (x) = b } is a prime ideal and P ∈ P(M) iff a � b.
(iii) If a � b then f = �a,b,P.
(iv) If a = b and |M| ≥ 2 then P(M) � ∅ and f = σa = �a,a,Q for any Q ∈ P(M).

Proof. It is easy. �

2.11 Corollary. Let |M| ≥ 2. Then P(M) � ∅ and R(2) = { �a,b,P | a, b ∈ M, a ≤ b, P ∈
∈ P(M) }. �

2.12 Propostion. The semiring E(2) is never ideal-simple.

Proof. We can proceed similarly as in the proof of 2.8. �

2.13 Lemma. Let a, b ∈ M, a ≤ b, and let P ∈ P(M) and f ∈ E. Then f�a,b,P =

= � f (a), f (b),P and we put g = �a,b,P f , K = { x ∈ M | f (x) � P } and L = { x ∈ M | f (x) ∈
∈ P }. Now:
(i) M = K ∪ L and K ∩ L = ∅.
(ii) If K = M (or L = ∅) then g = σa = �a,a,P.
(iii) If K = ∅ (or L = M) then g = σb = �b,b,P.
(iv) If K � ∅ � L then L ∈ P(M) and g = �a,b,L.

Proof. It is easy. �

For every triple a, b, c of elements from M, where a ≤ b, denote by �a,b,c the
transformation of M defined by �a,b,c(x) = a if x ≤ c and �a,b,c(x) = b otherwise.

2.14 Lemma. Let a, b, c ∈ M, a ≤ b. If c � 1M then �a,b,c = �a,b,Qc . If c = 1M then
�a,b,c = σa.

Proof. It is obvious. �
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Denote by F the subsemiring of E generated by all the endomorphisms �a,b,c,
a, b, c ∈ M, a ≤ b.

2.15 Proposition. (i) E(1) ⊆ F ⊆ E(2).
(ii) F = E(1) iff |M| = 1.

Proof. It is easy. �

2.16 Proposition. The semiring F is never ideal-simple.

Proof. Use 2.15. �

2.17 Proposition. Let E be an ideal-simple subsemiring of E, E(1) = E ∩ E(1) and
E(2) = E ∩ E(2). Then:
(i) If E(1) � ∅ then E(1) is an ideal of E.
(ii) If |E(1)| = 1 then E(1) = {σv} for some v ∈ M and f (v) = v for every f ∈ E.
(iii) If |E(1)| ≥ 2 then E = E(1) ⊆ E(1).
(iv) If |E(2)| ≥ 2 then E = E(2) ⊆ E(2).

Proof. It is easy. �

2.18 Lemma. Let a, b, c ∈ M, a ≤ b, and let f ∈ E. Then:
(i) f�a,b,c = � f (a), f (b),c.
(ii) �a,b,c f = g, where g = σa if f (M) ≤ c, g = σb if f (x) �≤ c for every x ∈ M and
g = �a,b,L if ∅ � L = { x ∈ M | f (x) �≤ c } � M (then L ∈ P(M)).

Proof. It is easy. �

2.19 Lemma. Let a1, a2, b1, b2, c1, c2 ∈ M, a1 ≤ b1, a2 ≤ b2. Put h = �a1,b1,c1�a2,b2,c2 .
Then:
(i) If b2 ≤ c1 then h = σa1 .
(ii) If b2 �≤ c1 and a2 ≤ c1 then h = �a1,b1,c2 .
(iii) If a2 �≤ c1 then h = σb1 .

Proof. It is easy. �

2.20 Lemma. Let a1, a2, b1, b2, c1, c2 ∈ M, a1 ≤ b1, a2 ≤ b2. Let f ∈ E and
k = �a1,b1,c1 f�a2,b2,c2 . Then:
(i) If f (b2) ≤ c1 then k = σa1 .
(ii) If f (b2) �≤ c1 and f (a2) ≤ c1 then k = �a1,b1,c1 .
(iii) If f (a2) �≤ c1 then k = σb1 .

Proof. It follows from 2.19, since k = �a1,b1,c1� f (a2), f (b2), f (c2). �
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2.21 Lemma. (cf. 2.14) Let a, b ∈ M, a ≤ b, and let P ∈ P(M). The following
conditions are equivalent:

(i) �a,b,P = �a,b,c for some c ∈ M.
(ii) �a,b,P = �a,b,c for some c ∈ M, c � 1M.

(iii) There is c ∈ M such that M \ P = { x ∈ M | x ≤ c }.
(iv) The set M \ P has the greatest element (if M \ P is finite then

∑
M \ P is the

greatest element).

Proof. It is easy. �

2.22 Lemma. Let a1, a2, b1, b2, c ∈ M be such that a1 ≤ b1, a2 ≤ b2, and let P ∈
∈ P(M). Put g = �a1,b1,P�a2,b2,c. Then:
(i) If a2 ∈ P then g = σb1 .
(ii) If b2 � P then g = σa1 .
(iii) If a2 � P and b2 ∈ P then g = �a1,b1,c.

Proof. Use 2.13. �

2.23 Proposition. (i) F is a left ideal of E.
(ii) F = {∑n

i=1 �ai,bi,ci | n ≥ 1, ai, bi, ci ∈ M, ai ≤ bi }.
(iii) E(2) is generated by F as an ideal of itself.
(iv) If M is finite then F = E(2).

Proof. (i) Use 2.18(i).
(ii) Use 2.19.
(iii) We have �a,b,a�a,b,P = �a,b,P by 2.13.
(iv) Use 2.21. �

2.24 Remark. (i) Let a0 ∈ M and R0 = { x ∈ M | a0 ≤ x }. Then a0 ∈ R0 and R0 is an
ideal of M. Clearly, R0 is a proper ideal iff a0 � 0M . Similarly, R0 is a prime ideal iff
u + v + a0 � u + v whenever u, v ∈ M are such that u + a0 � u and v + a0 � v (then a0
is irreducible). Now, if R0 ∈ P(M) and a, b ∈ M are such that a ≤ b then �a,b,R0 = a if
a �≤ x and �a,b,R0 (x) = b if a0 ≤ x.
(ii) Let a1 ∈ M and R1 = { x ∈ M | a1 < x }. Clearly, a1 � R1 and if R1 � ∅ then R1 is a
proper ideal. If R1 is a prime ideal and a, b ∈ M are such that a ≤ b then �a,b,R1 (x) = a
if a1 ≮ x and �a,b,R1 (x) = b if a1 < x.

2.25 Remark. The following results are proved in [1] ([1, 3.2, 3.3, 3.4, 4.2]).
(i) The full endomorphism semiring E (that is not ideal-simple by 2.3) is congruence-
simple if and only if 0M , 1M ∈ M and 0M � 1M .
(ii) If M is finite then E is congruence-simple if and only if |M| ≥ 2 and 0M ∈ M.
(iii) The semiring F (that is not ideal-simple by 2.16) is congruence-simple if and
only if |M| ≥ 2.
(iv) The following conditions are equivalent:
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(a) F = E.
(b) The semiring F has a left (right, resp.) multiplicatively neutral element.
(c) idM ∈ F (idM ∈ E(2)).
(d) M is finite, 0M ∈ M and M is distributive as a lattice.

(v) Let |M| ≥ 2. Proceeding similarly as in the proof of [1,3.4], one can show
that the semiring E(2) is congruence-simple. If 0M ∈ M then all the semirings
E(2), E(3), . . . , E(ω) are congruence-simple. If |M| = 3 and 0M � M then E(3) = E is
not congruence-simple. The semiring E(1) is ideal-simple and it is congruence-simple
if and only if |M| = 2.

3. E n d o m o r p h i s m s o f s e m i l a t t i c e s ( b )

Let M be a semilattice such that 0 = 0M ∈ M. Put E0 = { f ∈ E | f (0) = 0 }.
Clearly, E0 is a subsemiring of the full endomorphisms semiring E and idM ∈ E0. If
|M| ≥ 2 then E(1) � E0, and hence E0 � E.

3.1 Proposition. (i) The semiring E0 is additively idempotent and the identity auto-
morphism idM is the multiplicatively neutral element of E0.
(ii) The constant endomorphism σ0 ∈ E0 is both additively neutral and multiplica-
tively absorbing.
(iii) {σ0} = E(1) ∩ E0 is an ideal of E0.

Proof. It is easy. �

For every n ≥ 1, let R(n)
0 = { f ∈ E0 | | f (M)| ≤ n } and we put R(ω)

0 = ∪R(n)
0 , n ≥ 1.

For every 1 ≤ n ≤ ω, let E(n)
0 be the subsemiring of E0 generated by R(n)

0 .

3.2 Proposition. (i) R(n)
0 = R(n) ∩ E0 for every a ≤ n ≤ ω.

(ii) E(n)
0 = E0 ∩ E(n) for every 1 ≤ n ≤ ω.

(iii) {σ0} = R(1)
0 = _0(1) ⊆ E(2)

0 ⊆ E(3)
0 ⊆ · · · ⊆ E(ω)

0 = R(ω)
0 .

(iv) All the semirings E(1)
0 , E

(2)
0 , . . . , E

(ω)
0 are ideals of the semiring E0.

Proof. It is easy (use 2.2 and the fact that if f , g ∈ E are such that f + g ∈ E0 then
f , g ∈ E0). �

3.3 Proposition. The following conditions are equivalent.
(i) M is finite.

(ii) E0 is finite.
(iii) E(ω)

0 = E0.
(iv) idM ∈ E(ω)

0 .
(v) E(m)

0 = E0 for some m ≥ 1.

Proof. It is easy. �
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3.4 Proposition. E(n)
0 = {

∑m
i=1 fi |m ≥ 1, fi ∈ R(n)

0 } for every 1 ≤ n ≤ ω.

Proof. It is easy. �

3.5 Lemma. R(2)
0 = {σ0} ∪ { �0,a,P | a ∈ M, P ∈ P(M) }.

Proof. Combine 2.9 and 2.10. �

In the sequel, we put �a,P = �0,a,P. We have �0,P = σ0 and if |M| ≥ 2 then
R(2)

0 = { �a,P | a ∈ M, P ∈ P(M) }.
3.6 Corollary. Let |M| ≥ 2. Then E(2)

0 = {
∑m

i=1 �ai,Pi |m ≥ 1, ai ∈ M, Pi ∈ P(M) }. �

3.7 Lemma. Let a ∈ M, P ∈ P(M) and f ∈ E0. Then f�a,P = � f (a),P and we put
g = �a,P f , K = { x ∈ M | f (x) � P } and L = { x ∈ M | f (x) ∈ P }. Then:
(i) 0 ∈ K, M = K ∪ L and K ∩ L = ∅.
(ii) If K = M (or L = ∅) then g = σ0.
(iii) If K � M (or L � ∅) then L ∈ P(M) and g = �a,L.

Proof. Use 2.13. �

Put �a,b = �0,a,b for all a, b ∈ M. That is, �a,b(x) = 0 if x ≤ b and �a,b(x) = a
otherwise. We have �0,b = σ0.

3.8 Lemma. Let a, b ∈ M. If b � 1M then �a.b = �0,a,Qb = �a,Qb . If b = 1M then
�a,b = σ0.

Proof. Use 2.14. �

Denote by F0 the subsemiring of E0 generated by all the endomorphisms �a,b,
a, b ∈ M.

3.9 Proposition. (i) E(1)
0 ⊆ F0 ⊆ E(2)

0 .
(ii) F0 = E(1)

0 iff |M| = 1.

Proof. It is easy. �

3.10 Lemma. Let a, b ∈ M and f ∈ E0. Then:
(i) f�a,b = � f (a),b.
(ii) �a,b f = g, where g = σ0 if f (M) ≤ b and g = �a,b if ∅ � L = { x ∈ M | f (x) �≤ b }
(then L ∈ P(M)).

Proof. Use 2.18 (or 3.7). �

3.11 Lemma. Let a1, a2, b1, b2 ∈ M and h = �a1,b1�a2,b2 . Then h = σ0 if a2 ≤ b1 and
h = �a1,b2 otherwise.

Proof. Use 2.19 (or 3.10). �

math_12_2.indd   38 1.3.2013   9:45:38



39

3.12 Lemma. Let a1, a2, b1, b2 ∈ M, f ∈ E0 and k = �a1,b1 f�a2,b2 . Then k = σ0 if
f (a2) ≤ b1 and k = �a1,b2 otherwise.

Proof. Use 2.20 (or 3.11 and the fact that k = �a1,b1� f (a2),b2 ). �

3.13 Lemma. (cf. 3.8) Let a ∈ M and P ∈ P(M). The following conditions are
equivalent:

(i) �a,P = �a,b for some b ∈ M.
(ii) �a,P = �a,b for some b ∈ M, b � 1M.

(iii) There is b ∈ M such that M \ P = { x ∈ M | x ≤ b }.
(iv) The set M \ P has the greatest element (if M \ P is finite then

∑
M \ P is the

greatest element).

Proof. Use 2.21. �

3.14 Proposition. (i) F0 is a left ideal of E0.
(ii) F0 = {

∑n
i=1 �ai,bi | n ≥ 1, ai, bi ∈ M }.

(iii) E(2)
0 is generated by F0 as an ideal of itself.

(iv) If M is finite then F0 = E(2)
0 .

Proof. (i) Use 3.10(i).
(ii) Use 3.11.
(iii) By 3.7, �a,0�a,P = �a,P.
(iv) See 3.13. �

3.15 Lemma. Let E be a subsemiring of E0 such that F0 ⊆ E. If I is a non-trivial
ideal of E then F0 ⊆ I.

Proof. Since I is non-trivial, there is f ∈ I, f � σ0. Then f (u) = v � 0 for some
u, v ∈ M. Of course, u � 0 as well. Now, ga,b = �a,0�v,b = �a,0 f�u,b ∈ I for all
a.b ∈ M. But ga,b = �a,b by 3.11. �

3.16 Corollary. Let |M| ≥ 2 and E be a subsemiring of E0 such that F0 ⊆ E and E is
generated by F0 as an ideal of itself. Then E is ideal-simple and E ⊆ E(2)

0 . �

3.17 Proposition. Let |M| ≥ 2. Then the semirings F0 and E(2)
0 are ideal-simple.

Proof. Use 3.16 and 3.14(iii). �

3.18 Lemma. Let E be a subsemiring of E0 such that E(2)
0 ⊆ E. If I is a non-trivial

ideal of E then E(2)
0 ⊆ I.

Proof. We have �a,0 f�u,P = �a,0�v,P−�a,P, f (u) = v � 0 (see the proof of 3.15). �
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3.19 Corollary. Let |M| ≥ 2 and E be a subsemiring of E0 such that E(2)
0 ⊆ E.

Then E(2)
0 is the smallest non-trivial ideal of E and E is ideal-simple if and only if

E = E(2)
0 . �

3.20 Lemma. The semiring E0 (E(2)
0 , F0, resp.) has an additively absorbing element

iff 1M ∈ M (e.g., M finite).

Proof. It is easy. �

3.21 Remark. The following results are proved in [4]:
(i) The semiring E0 is congruence-simple if and only if 1M ∈ M and 0M � 1M .
(ii) The semiring F0 (E(2)

0 , resp.) is congruence-simple if and only if |M| ≥ 2.
(iii) The following conditions are equivalent:

(a) F0 = E0 (E(2)
0 = E0, resp.).

(b) The semiring F0 (E(2)
0 , resp.) has a left (right, resp.) multiplicatively neutral

element.
(c) idM ∈ F0 (idM ∈ E(2)

0 , resp.).
(d) M is finite and distributive as a lattice.

3.22 Proposition. The semiring E0 is ideal-simple if and only if M is non-trivial finite
and distributive as a lattice.

Proof. First, assume that E0 is ideal-simple. Then |M| ≥ 2 and E0 = E(2)
0 by

3.2(iv). Now, M is finite by 3.3 and F0 = E(2)
0 = E0 by 3.14(iv) and 3.19. Conse-

quently, M is a distributive lattice by 3.21 (iii).
Conversely, assume that M is a finite distributive lattice. Then E0 = F0 and 3.17

applies. �

3.23 Remark. Assume that M is finite and not distributive as a lattice. Then |M| =
= m ≥ 5 and E0 = E(m)

0 . By 3.22, E(m)
0 is not ideal-simple.

4. E n d o m o r p h i s m s o f s e m i l a t t i c e s ( c )

Let M be a semilattice such that 1 = 1M ∈ M. Put E1 = { f ∈ E | f (1) = 1 }.
Clearly, E1 is a subsemiring of the full endomorphism semiring E and idM ∈ E1. If
|M| ≥ 2 then E(1) � E1, and hence E1 � E.

4.1 Proposition. (i) The semiring E1 is additively idempotent and the identuty auto-
morphism idM is the multiplicatively neutral element of E1.
(ii) The constant endomorphism σ1 ∈ E1 is bi-absorbing.
(iii) {σ1} = E(1) ∩ E1 is an ideal of E1.

Proof. It is easy. �
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For every n ≥ 1, let R(n)
1 = { f ∈ E1 | | f (M)| ≤ n } and we put R(ω)

1 = ∪R(n)
1 , n ≥ 1.

For every 1 ≤ n ≤ ω, let E(n)
1 be the subsemiring of E1 generated by R(n)

1 .

4.2 Proposition. (i) R(n)
1 = R(n) ∩ E1 for every 1 ≤ n ≤ ω.

(ii) E(n)
1 = E1 ∩ E(n) for every 1 ≤ n ≤ ω.

(iii) {σ1} = R(1)
1 = E(1)

1 ⊆ E(
12) ⊆ E(3)

1 ⊆ · · · ⊆ E(ω)
1 = R(ω)

1 .
(iv) All the subsemirings E(1)

1 , E
(2)
1 , . . . , E

(ω)
1 are ideals of the semiring E1.

Proof. Everything is easy (use 2.2), nevertheless (ii) deserves a short proof (per-
haps).

Clearly, E(n)
1 ⊆ E1 ∩ E(n). On the other hand, if f ∈ E1 ∩ E(n) then f =

∑
fi,

fi ∈ R(n). Now, define fi by fi(x) = f (x) for x � 1 and fi(1) = 1. One sees easily that
fi ∈ R(n)

1 and f =
∑

fi. Thus f ∈ E(n)
1 . �

4.3 Proposition. The following conditions are equivalent:
(i) M is finite.

(ii) E1 is finite.
(iii) E(ω)

1 = E1.
(iv) idM ∈ E(ω)

1 .
(v) E(m)

1 = E1 for some m ≥ 1.

Proof. It is easy. �

4.4 Propostion. E(n)
1 = {

∑m
i=1 fi |m ≥ 1, fi ∈ R(n)

1 } for every 1 ≤ n ≤ ω.

Proof. It is easy. �

4.5 Lemma. R(2)
1 = {σ1} ∪ { �a,1,P | a ∈ M, P ∈ P(M) }.

Proof. Combine 2.9 and 2.10. �

In the sequel, we put τa,P = �a,1,P. We have τ1,P = σ1 and if |M| ≥ 2 then
R(2)

1 = { τa,P | a ∈ M, P ∈ P(M) }.

4.6 Corollary. Let |M| ≥ 2. Then E(2)
1 = {

∑m
i=1 τai,Pi |m ≥ 1, ai ∈ M, Pi ∈ P(M) }. �

4.7 Lemma. Let a ∈ M, P ∈ P(M) and f ∈ E1. Then f τa,P = τ f (a),P and we put
g = τa,P f , K = { x ∈ M | f (x) � P } and L = { x ∈ M | f (x) ∈ P }. Then:
(i) 1 ∈ L, M = K ∪ L and K ∩ L = ∅.
(ii) If L = M (or K = ∅) then g = σ1.
(iii) If L � M (or K � ∅) the L ∈ P(M) and g = τa,L.

Proof. Use 2.13. �
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Put τa,b = �a,1,b for all a, b ∈ M, b � 1. That is, τa,b(x) = a if x ≤ b and τa,b = 1
otherwise.

4.8 Lemma. Let a, b ∈ M, b � 1. Then τa,b = �a,1,Qb = τa,Qb .

Proof. Use 2.14. �

Denote by F1 the subsemiring of E1 generated by all the endomorphisms τa,b,
a, b ∈ M, b � 1 (F1 = {σ1} if |M| = 1).

4.9 Proposition. (i) E(1)
1 ⊆ F1 ⊆ E(2)

1 .
(ii) F1 = E(1)

1 iff |M| = 1.

Proof. It is obvious. �

4.10 Lemma. Let a, b ∈ M, b � 1, and f ∈ E1. Then:
(i) f τa,b = τ f (a),b.
(ii) τa,b f = g, where g = σ1 if f (x) �≤ b for every x ∈ M and g = τa,L if L = { x ∈
∈ M | f (x) �≤ b } � M.

Proof. Use 2.18 (or 4.7) �

4.11 Lemma. Let a1, a2, b1, b2 ∈ M, b1 � 1 � b2, and h = τa1.b1τa2,b2 . Then h = τa1,b2

if a2 ≤ b1 and h = σ1 otherwise.

Proof. Use 2.19 (or 4.10). �

4.12 Lemma. Let a1, a2, b1, b2 ∈ M, b1 � 1 � b2, f ∈ E1 and k = τa1,b1 f τa2,b2 . Then
k = τa1,b2 if f (a2) ≤ b1 and k = σ1 otherwise.

Proof. Use 2.20 (or 4.11 and the fact that k = τa1,b1τ f (a2),b2 ). �

4.13 Lemma. (cf. 4.8) Let a ∈ M and P ∈ P(M). The following conditions are
equivalent:

(i) τa,P = τa,b for some b ∈ M, b � 1.
(ii) There is b ∈ M such that M \ P = { x ∈ M | x ≤ b }.

(iii) The set M \ P has the greatest elemeng (if M \ P is finite then
∑

M \ P is the
greatest element).

Proof. Use 2.21. �

4.14 Proposition. (i) F1 is a left ideal of E1.
(ii) F1 = {

∑n
i=1 τai,bi | n ≥ 1, ai, bi ∈ M, bi � 1 }.

(iii) E(2)
1 is generated by F1 as an ideal of itself.

(iii) If M is finite then F1 = E(2)
1 .
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Proof. (i) Use 4.10(i).
(ii) Use 4.11.
(iii) By 4.7, τa,bτa,P = τa,P for all a, b ∈ M, b � 1, P ∈ P(M).
(iv) See 4.13. �

4.15 Lemma. Let E be a subsemiring of E1 such that F1 ⊆ E. If I is a non-trivial
ideal of E then F1 ⊆ I.

Proof. Since I is non-trivial, there is f ∈ I, f � σ1. Then f (u) = v � 1 for some
u, v ∈ M. Of course, u � 1 as well. Now, ga,b = τa,vτv,b = τa,v f τu,v ∈ I for all
a, b ∈ M, b � 1. But ga,b = τa,b by 4.11. �

4.16 Corollary. Let |M| ≥ 2 and E be a subsemiring of E1 such that F1 ⊆ E and E is
generated by F1 as an ideal of itself. Then E is ideal-simple and E ⊆ E(2)

1 . �

4.17 Proposition. Let |M| ≥ 2. Then the semirings F1 and E(2)
1 are ideal-simple.

Proof. Use 4.16 and 4.14(iii). �

4.18 Lemma. Let E be a subsemiring of E1 such that E(2)
1 ⊆ E. If I is a non-trivial

ideal of E then E(2)
1 ⊆ I.

Proof. We have τa,v f τu,P = τa,vτv,P = τa,P, f (u) = v � 1 (see the proof of 4.15).
�

4.19 Corollary. Let |M| ≥ 2 and E be a subsemiring of E1 such that E(2)
1 ⊆ E.

Then E(2)
1 is the smallest non-trivial ideal of E and E is ideal-simple if and only if

E = E(2)
1 . �

4.20 Lemma. (i) The semiring E1 (E(2)
1 , resp.) has an additively neutral element iff

0M ∈ M and the element 1 = 1M is irreducible (if |M| ≥ 2 then τ0,{1} is the additively
neutral element.
(ii) The semiring F1 has an additively neutral element iff either |M| = 1 or |M| ≥ 2
and the set M \ {1} has the greatest element (if w is that element then τ0,w is the
additively neutral element of F1).

Proof. Assume that |M| ≥ 2. Now, let f ∈ F1 be such that f + τa,b = τa,b for all
a, b ∈ M, b � 1. Then 0M ∈ M and f (x) = 0 for every x ∈ M, x � 1.

Next, assume that 0M ∈ M and define a transformationα of M by α(1) = 1 and
α(x) = 0 for every x � 1. Then α ∈ E1 iff 1 is irreducible. Then α = τ0,{1}. The rest is
clear. �
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4.21 Example. Put M = ω + 1 = {0, 1, . . . , ω}. Then 0 = 0M , ω = 1M and the
semiring E(2)

1 has an additively neutral element by 4.10. On the other hand, F1 has no
additively neutral element.

4.22 Lemma. If idM ∈ E(2)
1 then|M| ≤ 2.

Proof. Assume |M| ≥ 2. Then idM =
∑
τai,Pi and M \ {1} = M \ ∪Pi, ∪Pi = {1}

and Pi = {1}. Furthermore, ai ∈ M \ {1} and M \ {1} = {∑ ai}. Thus |M| = 2. �

4.23 Corollary. F1 = E1 (E(2)
1 = E1, resp.) if and only if |M| ≤ 2. �

4.24 Corollary. The semiring E1 is ideal-simple if and only if |M| = 2 (then |E1| =
= 2). �

5. E n d o m o r p h i s m s o f s e m i l a t t i c e s ( d )

Let M be a semilattice such that 0 = 0M ∈ M, 1 = 1M ∈ M and 0 � 1. Put
E01 = { f ∈ E | f (0) = 0 and f (1) = 1 }. Clearly, E01 is a subsemiring of the full
endomorphism semiring E and idM ∈ E01. If |M| = 2 then E01 = {idM}. Furthermore,
E01 � E, E0, E1.

5.1 Proposition. The semiring E01 is additively idempotent and the identity automor-
phism idM is the multiplicatively neutral element of E01.

Proof. It is easy. �

For every n ≥ 1, let R(n)
01 = { f ∈ E01 | | f (M)| ≤ n } and we put R(ω)

01 = ∪R(n)
01 , n ≥ 1.

For every 2 ≤ n ≤ ω, let E(n)
01 be the subsemiring of E01 generated by R(n)

01 (we have
R(1)

01 = ∅).
5.2 Proposition. (i) R(n)

01 = R(n) ∩ E01 for every 1 ≤ n ≤ ω.
(ii) E(n)

01 = E01 ∩ E(n) for every 2 ≤ n ≤ ω.
(iii) ∅ = R(1)

01 ⊆ E(2)
01 ⊆ E(3)

01 ⊆ · · · ⊆ E(ω)
01 = R(ω)

01 .
(iv) All the subsemirings E(2)

01 , E
(3)
01 , . . . , E

(ω)
01 are ideals of the semiring E01.

Proof. Use 4.2. �

5.3 Proposition. The following conditions are equivalent:
(i) M is finite.

(ii) E01 is finite.
(iii) E(ω)

01 = E01.
(iv) idM ∈ E(ω)

01 ,
(v) E(m)

01 = E01 for some m ≥ 2.
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Proof. It is easy. �

5.4 Proposition. E(n)
01 = {

∑m
i=1 fi |m ≥ 1, fi ∈ R(n)

01 } for every 2 ≤ n ≤ ω.

Proof. It is easy. �

5.5 Lemma. R(2)
01 = { �0,1,P | P ∈ P(M) }.

Proof. Use 4.5. �

In the sequel we put λP = �0,1,P for every P ∈ P(M); λP(P) = {1} and λP(M \ P) =
= {0}. We have λP = �1,P = τ0,P.

5.6 Proposition. (i) E(2)
01 = { λP | P ∈ P(M) }.

(ii) λP1 + λP2 = λP1∪P2 and λP1λP2 = λP2 for all P1, P2 ∈ P(M).

Proof. It is easy. �

5.7 Corollary. The following conditions are equivalent:
(i) E(2)

01 is ideal-simple.
(ii) E(2)

01 is right ideal-free.
(iii) |E(2)

01 | ≥ 2.
(iv) |M| ≥ 3. �

5.8 Lemma. Let P ∈ P(M) and f ∈ E01. Then fλP = λP and we put g = λP f and
L = { s ∈ M | f (s) ∈ P }. Then 1 ∈ L, 0 � L, L ∈ P(M) and g = λL.

Proof. It is easy. �

Put λa = �0,1,a for every a ∈ M, a � 1. That is, λa(x) = 0 if x ≤ a and λa(x) = 1
otherwise. We have λa = �1,a = τ0,a.

5.9 Lemma. Let a ∈ M, a � 1. Then λa = �0,1,Qa = λQa .

Proof. It is easy. �

Let F01 be the subsemiring of E01 generated by all the endomorphisms λa, a ∈ M,
a � 1.

5.10 Lemma. (i) F01 = {
∑n

i=1 λai | n ≥ 1, ai ∈ M, ai � 1 }.
(ii) λaλb = λb for all a, b ∈ M, a � 1 � b.
(iii) λa + λb = λQa∪Qb for all a, b ∈ M, a � 1 � b.
(iv)
∑n

i=1 λai = λ∪Qai
for all ai ∈ M, ai � 1.

Proof. It is easy. �

5.11 Corollary. The following conditions are equivalent:
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(i) F01 is ideal-simple.
(ii) F01 is right-ideal-free.

(iii) |F01| ≥ 2.
(iv) |M| ≥ 3. �

5.12 Proposition. The semiring E01 is never ideal-simple.

Proof. If E01 is ideal-simple then M is finite and |M| ≥ 3. Since E(2)
01 is a non-

trivial ideal of E01, we have E01 = E(20
01 and idM ∈ E(2)

01 . But then |idM(M)| = 2 by
5.6(i), and hence |M| = 2, a contradiction. �
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