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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 2 , PAGES 2 1 6 – 2 3 3

CALCULATIONS OF GRADED ILL-KNOWN SETS

Masahiro Inuiguchi

To represent a set whose members are known partially, the graded ill-known set is pro-
posed. In this paper, we investigate calculations of function values of graded ill-known sets.
Because a graded ill-known set is characterized by a possibility distribution in the power set,
the calculations of function values of graded ill-known sets are based on the extension principle
but generally complex. To reduce the complexity, lower and upper approximations of a given
graded ill-known set are used at the expense of precision. We give a necessary and sufficient
condition that lower and upper approximations of function values of graded ill-known sets are
obtained as function values of lower and upper approximations of graded ill-known sets.

Keywords: ill-known set, lower approximation, upper approximation

Classification: 03E72, 26E25, 68T37

1. INTRODUCTION

Various models have been proposed to represent uncertainty: probability theory [8],
fuzzy sets [10], belief functions [7], possibility theory [12], random sets [5], rough sets [6],
and so on. Most of those models treat the uncertainty of a single-valued variable while
others treat the uncertainty of a set-valued variable. Person’s height, weight and age,
the stock price at expiration and the cost of a cab ride between certain places, etc., are
considered single-valued variables because the true values of those are unique. On the
other hand, someone’s favorite food, person’s belongings, the day when a person stays
in Osaka, candidate for the research topic, and so on are considered set-valued variables
because the true values are not always unique. The former is called a disjunctive variable
while the latter is called a conjunctive variable (see [3, 9]).

While a disjunctive variable takes a value of the universe, a conjunctive variable takes
a subset of the universe. Then the set of possible realizations of conjunctive variables
becomes a collection of subsets and the number of possible realizations is exponentially
many. Therefore, unlike that of a disjunctive variable, the treatment of the uncertainty
of a conjunctive variable becomes complex. Moreover, a conjunctive variable might be
considered less encountered in the real world than a disjunctive variable. Because of
those possible reasons, conjunctive variables have been studied much less than disjunc-
tive variables. Nevertheless, several models such as belief functions [1], ill-known sets [2]
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and graded ill-known sets [4] to represent uncertainty of conjunctive variables have been
proposed.

A variation range of a single-valued (disjunctive) variable can be seen as a conjunctive
variable (see [4]). For example, to predict the variation range of a stock price, we should
treat it as a conjunctive variable. Moreover, the predicted values of stock price by many
experts can also be treated by a conjunctive variable. In addition, from its original
definition, a conjunctive variable is useful to represent a set-valued variable, e. g., a
satisfactory range, feasible range, members of a group, and so on. From these points of
view, conjunctive variables can be encountered as often as disjunctive variables.

In this paper, we concentrate on the graded ill-known set as a model of conjunctive
variable and investigate the calculations of graded ill-known sets. An ill-known set is
a subset whose members are not known exactly. They can be represented by a family
of subsets that can be true. A graded ill-known set is an ill-known set represented by
a family of subsets with possible degrees. In other word, a graded ill-known set can be
represented by a possibility distribution on the power set. The treatments of graded ill-
known sets are primitively very complex because their manipulations are defined in the
power set in principle. Namely, the number of elements in the power set is exponential,
and thus the processing of graded ill-known sets usually requires an exponential order
of computations.

Lower and upper approximations of graded ill-known sets are proposed for its simpli-
fied model. Generally speaking, lower approximation is composed of sure members while
upper approximation is composed of possible members. In some real world problems,
we may know only lower and upper approximations and, in this case, it is shown that
possibility and necessity measures of graded ill-known sets are calculated by its lower
and upper approximations [2, 4]. Because lower and upper approximations are defined
in the universe, the treatments of those approximations are much computationally less
than the treatments of graded ill-known sets. Therefore the results about possibility
and necessity measures of graded ill-known sets defined by their approximations are
very computationally advantageous.

In this paper, we show a similar result about function calculations of graded ill-known
sets. We introduce the extension principle to graded ill-known sets to calculate function
values of graded ill-known sets. The calculations of function values with graded ill-known
sets are performed on the power set. Therefore, as described earlier, it would require a
lot of computational efforts. In some real world applications, it can be sufficient to know
the lower and upper approximations of the function value of graded ill-known sets. From
this point of view, we consider the lower and upper approximations of function value of
graded ill-known sets. We investigate the necessary and sufficient condition for the lower
and upper approximations of function value of graded ill-known sets to be calculated by
the lower and upper approximations of given graded ill-known sets. Moreover, we give
some simpler sufficient conditions useful for the applications of graded ill-known sets to
various fields.

This paper is organized as follows. In Section 2, we briefly review graded ill-known
sets. The main results on calculations of graded ill-known sets are given in Section 3.
In Section 4, a simple example is given. Concluding remarks are given in Section 5.
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2. GRADED ILL-KNOWN SETS

Let X be a universe. Let A be a crisp set whose members are not known exactly. For
example, consider student participants of a conference held 10 years ago in a laboratory
under Prof. X. Prof. X knows that there were six students at that time, say a, b, c, d,
e and f . However, his memory is not certain. He is sure that three students attended
the conference and f was absent at the conference. Moreover, he remembers that a
and b attended the conference. From this memory, we know that the set of the student
participants in Prof. X’s laboratory was {a, b, c}, {a, b, d} or {a, b, e}. Such a crisp set
with imprecise members is called an ill-known set.

To represent an ill-known set, collecting possible realizations of A, we obtain the
following family:

A = {A1, A2, . . . , An}, (1)

where Ai is a crisp set such that A = Ai is consistent with the partial knowledge about A.
Given A, we obtain a set of elements which certainly belong to A, say A− and a set

of elements which possibly belong to A, say A+ are defined as

A− =
⋂
A =

⋂
i=1,...,n

Ai, A+ =
⋃
A =

⋃
i=1,...,n

Ai. (2)

We call A− and A+ “the lower approximation” of A and “the upper approximation” of
A, respectively.

In the previous example about the student participants of a conference in Prof. X’s
laboratory, we may define X = {a, b, c, d, e, f}, A1 = {a, b, c}, A2 = {a, b, d} and A3 =
{a, b, e}. Then we have A− = {a, b} and A+ = {a, b, c, d, e}. A− coincides with the
sure participants in Prof. X’s memory and X − A+ = {f} coincides with the sure non-
participants in Prof. X’s memory.

In the real world, we sometimes may know sure members and sure non-members of
A only. In other words, we know the lower approximation A− as a set of sure members
and the upper approximation A+ as a complementary set of sure non-members. Given
A− and A+ (or equivalently, the complement of A+), we obtain a family Â of possible
realizations as

Â = {Ai | A− ⊆ Ai ⊆ A+}. (3)

We note that A− and A+ are recovered by applying (2) to the family Â induced from A−

and A+ by (3). On the other hand, a given family A of (1) cannot be always recovered
by applying (3) to A− and A+ defined by (2). For example, in the example of the
student participants of a conference in Prof. X’s laboratory, A is not recovered.

If all Ai’s of (1) are not regarded as equally possible, we may assign a possibility
degree πA(A) to each A ⊆ X so that

∃A ⊆ X, π(A) = 1. (4)

A possibility distribution πA : 2X → [0, 1] can be seen as a membership function of a
fuzzy set A in 2X . Thus, we may identify A with A. The ill-known set having such a
possibility distribution is called “a graded ill-known set”.
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For example, assume Prof. X feels {a, b, c} is most conceivable and {a, b, d} is more
conceivable than {a, b, e} in the setting of the previous example. His feeling may be ex-
pressed by a possibility distribution πA({a, b, c}) = 1, πA({a, b, d}) = 0.6, πA({a, b, e}) =
0.3 and πA(A) = 0 for any other subset A ⊆ X = {a, b, c, d, e, f}.

In this case, the lower approximation A− and the upper approximation A+ are de-
fined as fuzzy sets with the following membership functions (see Dubois and Prade [2],
Inuiguchi [4]):

µA−(x) = inf
A⊆X

x6∈A

(1− πA(A)), µA+(x) = sup
A⊆X

x∈A

πA(A). (5)

We have the following property:

∀x ∈ X, µA−(x) > 0 implies µA+(x) = 1. (6)

In the example of possibility distribution for student participants of a conference in
Prof. X’s laboratory, we obtain µA−(a) = µA−(b) = 1, µA−(c) = 0.4 and µA−(x) = 0
for x ∈ {d, e, f}. On the other hand, we obtain µA+(a) = µA+(b) = µA+(c) = 1,
µA+(d) = 0.6, µA+(e) = 0.3 and µA+(f) = 0.

Because the specification of possibility distribution πA may need a lot of information,
as is in the usual ill-known sets, we may know only the lower approximation A− and
the upper approximation A+ as fuzzy sets satisfying (6). The consistent possibility
distribution πA for any A− and A+ is not unique.

However, the following possibility distribution π∗A(Ai) is the maximal possibility dis-
tribution among the consistent possibility distributions

π∗A(A) = min
(

inf
x6∈A

(1− µA−(x)), inf
x∈A

µA+(x)
)
, (7)

where we define inf ∅ = 1. We identify the maximal possibility distribution π∗A(A) with
the given fuzzy sets A− and A+ unless the other information is available.

For example, when πA of X = {a, b, c, d, e, f} are given by µA−(a) = µA−(b) = 1,
µA−(c) = 0.4 and µA−(x) = 0 for x ∈ {d, e, f}, and µA+(a) = µA+(b) = µA+(c) = 1,
µA+(d) = 0.6, µA+(e) = 0.3 and µA+(f) = 0, we obtain π∗A({a, b}) = 0.6, π∗A({a, b, c}) =
1, π∗A({a, b, d}) = 0.6, π∗A({a, b, e}) = 0.3, π∗A({a, b, c, d}) = 0.6, π∗A({a, b, c, e}) = 0.3,
π∗A({a, b, d, e}) = 0.3, π∗A({a, b, c, d, e}) = 0.3 and π∗A(A) = 0 for any other A ⊆ X.

When A− and A+ are obtained from a possibility distribution πA, π∗A obtained from
A− and A+ through (7) is not always same as the original πA. We only have πA(A) ≤
π∗A(A), A ⊆ X. Indeed, this fact can be observed in the examples above. Namely,
the possibility distribution πA defined for the student participants of a conference in
Prof. X’s laboratory has lower and upper approximations A− and A+ which are used
for the calculation of π∗A in the example above. We observe πA(A) ≤ π∗A(A), A ⊆ X.

3. EXTENSION PRINCIPLE FOR GRADED ILL-KNOWN SETS

In this paper, we consider graded ill-known sets in real line R and investigate the cal-
culations of graded ill-known sets in R. Graded ill-known sets in real line R are called
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“graded ill-known sets of quantities”. The set of graded ill-known sets of quantities is
denoted by IQ.

Because graded ill-known sets are characterized by possibility distributions on the
power set which can be seen as a membership function of a fuzzy set in the power set,
the function values of graded ill-known sets of quantities can be defined by the extension
principle [11] in fuzzy set theory.

When a function ψ : (2R)m → 2R is given, we extend this function to a function from
IQm to IQ in the following definition.

Definition 3.1. Let Ai, i = 1, 2, . . . ,m be graded ill-known sets of quantities. Given a
function ψ : (2R)m → 2R, the image ψ(A1,A2, . . . ,Am) is defined by a graded ill-known
set of quantities associated with the following possibility distribution:

πψ(A1,A2,...,Am)(Y )

=


sup

Q1,Q2,...,Qm⊆R
Y=ψ(Q1,...,Qm)

min (πA1(Q1), πA2(Q2), . . . , πAm(Qm)) , if ψ−1(Y ) 6= ∅,

0, if ψ−1(Y ) = ∅,
(8)

where πAi
is a possibility distribution associated with graded ill-known set of quantities

Ai and ψ−1 is the inverse image of ψ.

Note that, function f : Rm → R can be extended to a function f : (2R)m → 2R

by f(A1, A2, . . . , Am) = {f(x1, x2, . . . , xm) | xi ∈ Ai, i = 1, 2, . . . ,m}. The extended
function f : (2R)m → 2R can be further extended to a function f : IQm → IQ by
Definition 3.1.

The calculation of ψ(A1,A2, . . . ,Am) is very complex because we should consider
all elementary sets of power set 2R. This implies that at least an exponential order
of calculations are requested. In this paper, we investigate the necessary and sufficient
condition for the lower and upper approximations of ψ(A1,A2, . . . ,Am) to be calculated
in smaller order of complexity when ψ is the extension of f : Rm → R. The lower and
upper approximations provides the approximated values and, in some special cases, the
exact values (see [2, 4]), Therefore it is very useful to know those approximations.

We obtain the following theorem about the upper approximation.

Theorem 3.2. The upper approximation f+(A1,A2, . . . ,Am) of f(A1,A2, . . . ,Am)
can be calculated by upper approximations of Ai, i = 1, 2, . . . ,m. More concretely,
we obtain

µf+(A1,A2,...,Am)(y) = sup
y∈Y

πf(A1,A2,...,Am)(Y )

= sup
x1,x2,...,xm∈R
y=f(x1,x2,...,xm)

min(µA+
1
(x1), µA+

2
(x2), . . . , µA+

m
(xm))) = µf(A+

1 ,A
+
2 ,...,A

+
m)(y),

(9)
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where µf+(A1,A2,...,Am) is the membership function of f+(A1,A2, . . . ,Am) and µA+
i

is the
membership function of the upper approximation A+

i of Ai. Similarly, µf(A+
1 ,A

+
2 ,...,A

+
m)

is the membership function of the image f(A+
1 , A

+
2 , . . . , A

+
m).

P r o o f . It can be proved straightforwardly from the definitions. �

For the lower approximation, we only have an inequality as shown in the following
theorem.

Theorem 3.3. The membership function of lower approximation f−(A1,A2, . . . ,Am)
of f(A1,A2, . . . ,Am) is not smaller than that of f(A−1 , A

−
2 , . . . , A

−
m), i. e.,

µf−(A1,A2,...,Am)(y) = inf
y 6∈Y

(1− πf(A1,A2,...,Am)(Y ))

≥ sup
x1,x2,...,xm∈R
y=f(x1,x2,...,xm)

min(µA−1 (x1), µA−2 (x2), . . . , µA−m(xm)) = µf(A−1 ,A
−
2 ,...,A

−
m)(y),

(10)

where µA−i is the membership function of lower approximation A−i ofAi. µf(A−1 ,A
−
2 ,...,A

−
m)

is the membership function of the image f(A−1 , A
−
2 , . . . , A

−
m) of fuzzy setsA−1 , A

−
2 , . . . , A

−
m.

P r o o f . For the sake of simplicity, we prove when m = 2. In cases where m 6= 2, it can
be proved in the same way. From the definition, we have

µf−(A1,A2)(y) = inf
y 6∈Y

1− sup
A1,A2

Y=f(A1,A2)

min (πA1(A1), πA2(A2))


= inf

A1,A2
y 6∈f(A1,A2)

max ((1− πA1(A1)) , n (πA2(A2))) .

Assume µf(A−1 ,A
−
2 )(y) ≥ α. By definition of f(A−1 , A

−
2 ), there exist x1 and x2 such that

y = f(x1, x2), (∀A1 63 x1, n(πA1(A1)) ≥ α) and (∀A2 63 x2, n(πA2(A2)) ≥ α). Under
this assumption, we prove µf−(A1,A2)(y) ≥ α. For all A1 and A2 such that y 6∈ f(A1, A2),
from the assumption, we have x1 6∈ A1 or x2 6∈ A2. Moreover, from the assumption,
xi 6∈ Ai implies n(πAi(Ai)) ≥ α (i = 1, 2). Hence, applying those to the equation above,
we obtain µf−(A1,A2)(y) ≥ α. �

The equality of (10) does not hold generally but in special cases. In the following
section, we investigate the necessary and sufficient condition for the equality of (10).
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4. THE MAIN RESULT AND ITS IMPLICATIONS

We obtain the following theorem.

Theorem 4.1. We have f−(A1,A2, . . . ,Am) = f(A−1 , A
−
2 , . . . , A

−
m), i. e.,

µf−(A1,A2,...,Am)(y) = inf
y 6∈Y

(1− πf(A1,A2,...,Am)(Y ))

= sup
x1,x2,...,xm∈R
y=f(x1,x2,...,xm)

min(µA−1 (x1), µA−2 (x2), . . . , µA−m(xm)) = µf(A−1 ,A
−
2 ,...,A

−
m)(y),

(11)

if and only if

∀α ∈ [0, 1),
⋂
{f(Q1, Q2 . . . , Qm) | Q1 ∈ (A1)α, (A2)α, . . . , Qm ∈ (Am)α}

= f
(⋂

(A1)α, (A2)α, . . . ,
⋂

(Am)α
)
, (12)

where (Ai)α = {Q | πAi
(Q) > α}.

P r o o f . For the sake of simplicity, we prove when m = 2. In cases where m 6= 2, it can
be proved in the same way. From Theorem 2, we consider the necessary and sufficient
condition of

µf−(A1,A2)(y) ≤ µf(A−1 ,A
−
2 )(y).

This is equivalent to

∀α ∈ (0, 1], µf−(A1,A2)(y) ≥ α implies µf(A−1 ,A
−
2 )(y) ≥ α. (∗)

Then we consider the equivalent condition of (a) µf−(A1,A2)(y) ≥ α and that of (b)
µf(A−1 ,A

−
2 )(y) ≥ α.

First let us investigate the equivalent condition of (a). By definition, we have

µf−(A1,A2)(y) ≥ α⇔ inf
Y 63y

(1− πf(A1,A2)(Y )) ≥ α

⇔ y 6∈ Y implies πf(A1,A2)(Y ) ≥ 1− α

⇔ πf(A1,A2)(Y ) > 1− α implies y ∈ Y
⇔ sup

Q1,Q2:Y=f(Q1,Q2)

min(πA1(Q1), πA2(Q2)) > 1− α implies y ∈ Y

⇔ y ∈
⋂
{f(Q1, Q2) | Q1 ∈ (A1)1−α, Q2 ∈ (A2)1−α} .
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Now let us investigate the equivalent condition of (b). By definition, we obtain

µf(A−1 ,A
−
2 )(y) ≥ α⇔ sup

x1,x2:y=f(x1,x2)

min
(
µA−1

(x1), µA−2 (x2)
)
≥ α

⇔ ∀ε > 0, ∃x1, x2, y = f(x1, x2), µA−1 (x1) > α− ε, µA−2
(x2) > α− ε

⇔ ∀ε > 0, ∃x1, x2, y = f(x1, x2), inf
Qi 63xi

(1− πAi(Qi)) > α− ε, i = 1, 2

⇔ ∀ε > 0, ∃x1, x2, y = f(x1, x2),
(∀Q1 63 x1, πA1(Q1) < 1− α+ ε), (∀Q2 63 x2, πA2(Q2) < 1− α+ ε)

⇔ ∀ε > 0, ∃x1, x2, y = f(x1, x2),

xi ∈
⋂
{Qi | πAi

(Qi) ≥ 1− α+ ε} , i = 1, 2

⇔ ∃x1, x2, y = f(x1, x2), xi ∈
⋂
{Qi | πAi(Qi) > 1− α} , i = 1, 2

⇔ y ∈ f
(⋂

(A1)1−α,
⋂

(A2)1−α
)
.

From those equivalent conditions of (a) and (b), the necessary and sufficient condition
of (∗) is obtained as

∀α ∈ [0, 1),
⋂
{f(Q1, Q2) | Q1 ∈ (A1)α, Q2 ∈ (A2)α} = f (

⋂
(A1)α,

⋂
(A2)α) .

�

The necessary and sufficient condition for f−(A1,A2, . . . ,Am) = f(A−1 , A
−
2 . . . , A

−
m)

obtained in Theorem 4.1 is not easily confirmed. Then we will give a sufficient conditions
which are easily confirmed. To this end, we define a class IQint ⊆ IQ of graded ill-known
sets of quantities A satisfying the following properties:

∀α ∈ [0, 1), A(α) =
⋂

(A)α is nonempty and convex, and
there exists a family of convex sets {Qj}j∈J
such that Qj ∈ (A)α, j ∈ J and A(α) =

⋂
j∈J Qj . (13)

A graded ill-known set of quantities A satisfying (13) can be seen as an extension of an
interval in R. Then IQint is considered the set of ill-known intervals.

Then we obtain the following theorem.

Theorem 4.2. Let f : Rm → R be continuous and monotone (monotonically increasing
or monotonically decreasing with respect to each argument). Let Ai ∈ IQint, i =
1, 2, . . . ,m. Then we have (11), i. e., f−(A1,A2, . . . ,Am) = f(A−1 , A

−
2 . . . , A

−
m).

P r o o f . By the same reason as Theorem 4.1, we prove when m = 2. Without loss of
generality, we assume f is monotonically increasing with respect to all arguments.

From Ai(α) =
⋂

(Ai)α ⊆ Qi for Qi ∈ (Ai)α, f(A1(α), A2(α)) ⊆
⋂
{f(Q1, Q2) | Q1 ∈

(A1)α, Q2 ∈ (A2)α}. Then we prove

y 6∈ f(A1(α), A2(α)) implies y 6∈
⋂
{f(Q1, Q2) | Q1 ∈ (A1)α, Q2 ∈ (A2)α}. (∗)
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Because f is continuous and Ai(α), i = 1, 2 are nonempty and convex, f(A1(α), A2(α))
becomes an interval (a convex set in the real line). Then we prove (∗) dividing
into two cases: (a) y ≤ inf f(A1(α), A2(α)) and y 6∈ f(A1(α), A2(α)) and (b) y ≥
sup f(A1(α), A2(α)) and y 6∈ f(A1(α), A2(α)).

Because Ai ∈ IQint, there exists a family Qi of convex sets {Qij}j∈Ji
such that

Qij ∈ (Ai)α and Ai(α) =
⋂
j∈Ji

Qij for i = 1, 2. From the convexity of Qij , j ∈ Ji,
i = 1, 2, there exist subfamilies Qi = {Q

ij
}j∈Ji

⊆ Qi and Qi = {Qij}j∈Ji
⊆ Qi such

that supj∈Ji
inf Q

ij
= inf Ai(α) and infj∈Ji

supQij = supAi(α).

From the monotonicity, we obtain

∀r1 ∈ A1(α), ∀r2 ∈ A2(α), y < f(r1, r2) implies
∃k1 ∈ J1, ∃k2 ∈ J2, ∀q1 ∈ Q1k1

, ∀q2 ∈ Q2k2
, y < f(q1, q2),

∀r1 ∈ A1(α), ∀r2 ∈ A2(α), y > f(r1, r2) implies
∃l1 ∈ J1, ∃l2 ∈ J2, ∀q1 ∈ Q1l1 , ∀q2 ∈ Q2l2 , y > f(q1, q2).

Therefore, in case (a) y ≤ inf f(A1(α), A2(α)) and y 6∈ f(A1(α), A2(α)), we have
y 6∈ f(Q

1
, Q

2
). This implies that y 6∈

⋂
{f(Q1, Q2) | Q1 ∈ (A1)α, Q2 ∈ (A2)α}.

Similarly, in case (b) y ≥ sup f(A1(α), A2(α)) and y 6∈ f(A1(α), A2(α)), we have
y 6∈ f(Q1, Q2). This implies that y 6∈

⋂
{f(Q1, Q2) | Q1 ∈ (A1)α, Q2 ∈ (A2)α}.

Hence, (∗) is proved. �

If Ai(α) =
⋂

(Ai)α ∈ (Ai)α, i = 1, 2, . . . ,m for any α ∈ [0, 1), we have (12). From
Theorem 4.1, we have the following corollary.

Corollary 4.3. If Ai(α) ∈ (Ai)α, i = 1, 2, . . . ,m for any α ∈ [0, 1), then we have (11),
i. e., f−(A1,A2, . . . ,Am) = f(A−1 , A

−
2 , . . . , A

−
m).

P r o o f . It suffices to prove thatQ1
i ⊆Q2

i implies f(Q1
1, Q

1
2, . . . , Q

1
m)⊆f(Q2

1, Q
2
2, . . . , Q

2
m).

This is obvious from definition, f(Q1, Q2, . . . , Qm) = {f(x1, x2, . . . , xm) | xi ∈ Qi, i =
1, 2, . . . .m}. �

When Ai(α) ∈ (Ai)α, i = 1, 2, . . . ,m for any α ∈ [0, 1), we have (11) without
any condition on f . The strong condition Ai(α) ∈ (Ai)α, i = 1, 2, . . . ,m for any
α ∈ [0, 1) is satisfied by a graded ill-known set of quantities defined by lower and upper
approximations. This can be understood directly from the following proposition.

Proposition 4.4. Let A be a graded ill-known set defined by lower and upper approx-
imations A− and A+. Then we have

(A)α =
{
A

∣∣∣∣ [A−]1−α ⊆ A ⊆ (A+)α

}
, (14)

where [A−]β is a weak β-level set of A−, i. e., [A−]β = {x | µA−(x) ≥ β}, β ∈ (0, 1] while
(A+)γ is a strong γ-level set of A+, i. e., (A+)γ = {x | µA+(x) > γ}, γ ∈ [0, 1).
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P r o o f . From (7), we obtain the following equivalences:

A ∈ (A)α
⇔ inf

x6∈A
(1− µA−(x)) > α and inf

x∈A
µA+(x) > α

⇔ (x ∈ A implies µA+(x) > α) and (µA−(x) ≥ 1− α implies x ∈ A)
⇔ [A−]1−α ⊆ A ⊆ (A+)α.

�

From Proposition 4.4, we know that A(α) = [A−]1−α if A is defined by lower and
upper approximations A− and A+. Because A+ is not related to A(α), we may have a
weaker sufficient condition for Ai(α) ∈ (Ai)α. Namely, we obtain the following theorem.

Theorem 4.5. If the possibility distribution πAi of a graded ill-known set of quantities
Ai satisfies

πAi
(A) = inf

x6∈A
(1− µA−i

(x)), ∀A such that inf
x6∈A

(1− µA−i
(x)) ≤ inf

x∈A
µA+

i
(x),

i = 1, 2, . . . ,m, (15)

we have (11), i. e., f−(A1,A2, . . . ,Am) = f(A−1 , A
−
2 , . . . , A

−
m), where A−i and A+

i are
lower and upper approximations of Ai, respectively, and µA−i

and µA+
i

are their mem-
bership functions.

P r o o f . From Corollary 4.3, it suffices to prove Ai(α) ∈ (Ai)α under condition (15).
Because

πAi(Ai) ≤ π∗Ai
(A) = min

(
inf
x6∈A

(1− µA−i
(x)), inf

x∈A
µA+

i
(x)

)
≤ inf
x6∈A

(1− µA−i
(x)),

we obtain

πAi(Ai) > α⇒ inf
x6∈A

(1− µA−i
(x)) > α⇔ [A−i ]1−α ⊆ A⇔ [A−i ]1−α ⊆ Ai(α).

Now we prove [A−i ]1−α = Ai(α) =
⋂

(Ai)α using (15). From (6), for ∀ε ∈ (0, 1− α), we
have

inf
x6∈[A−i ]1−α−ε

(1− µA−i
(x)) ≤ inf

x∈[A−i ]1−α−ε

µA+
i
(x).

From (15), we obtain

πAi([A
−
i ]1−α−ε) = inf

x6∈[A−i ]1−α−ε

(1− µA−i
(x)) ≥ α+ ε > α.

Namely, we have [A−i ]1−α−ε ∈ (Ai)α for any ε ∈ (0, 1− α). From the property of weak
level set, we have [A−i ]1−α−ε ⊇ [A−i ]1−α and

⋂
ε∈(0,1−α)[A

−
i ]1−α−ε = [A−i ]1−α. Hence,

we obtain [A−i ]1−α = Ai(α) �
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5. CASES OF F (〈A−1 , A
+
1 〉, . . . , 〈A

−
M , A

+
M 〉) = 〈F (A−1 , . . . , A

−
M ), F (A+

1 , . . . , A
+
M )〉

In this section, we investigate cases where

f(〈A−1 , A
+
1 〉, 〈A

−
2 , A

+
2 〉, . . . , 〈A−m, A+

m〉) = 〈f(A−1 , A
−
2 , . . . , A

−
m), f(A+

1 , A
+
2 . . . , A

+
m)〉.

(16)
Contrary to our expectation, (16) does not always hold. Counter examples are given

as follows.

Example 5.1. Let us consider a function f1 : R2 → R defined by

f1(x1, x2) =

 x1 + x2, if x1 + x2 ≤ 6,
0, if x1 + x2 ∈ (6, 10],
x1 + x2 − 4, if x1 + x2 > 10.

Let A1 and A2 be ill-known sets defined by lower approximations A−1 = [2, 3] and
A−2 = [2, 3] and upper approximations A+

1 = [1, 7] and A+
2 = [1, 8], respectively. Then

we have
[4, 8] 6∈ f1(A1,A2) = f1(〈A−1 , A

+
1 〉, 〈A

−
2 , A

+
2 〉),

but
{0} ∪ [4, 8] ∈ f1(A1,A2) = f1(〈A−1 , A

+
1 〉, 〈A

−
2 , A

+
2 〉).

On the other hand, we obtain f1(A−1 , A
−
2 ) = [4, 6] and f1(A+

1 , A
+
2 ) = {0}∪ [2, 11]. Then

we have
[4, 8] ∈ 〈f1(A−1 , A

−
2 ), f1(A+

1 , A
+
2 )〉.

Therefore, we have

f1(〈A−1 , A
+
1 〉, 〈A

−
2 , A

+
2 〉) 6= 〈f1(A−1 , A

−
2 ), f1(A+

1 , A
+
2 )〉.

Even when function is continuous and monotone, we have a similar result. Consider
the following example.

Example 5.2. Consider a function f2 : R2 → R defined by f2(x1, x2) = x1 + x2.
Let A−i and A+

i (i = 1, 2) be the same as above, i. e., A−1 = [2, 3], A−2 = [2, 3],
A+

1 = [1, 7] and A+
2 = [1, 8]. We have f2(A−1 , A

−
2 ) = [4, 6] and f2(A+

1 , A
+
2 ) = [2, 15].

Then [4, 6] ∪ [11, 12] ∈ 〈f2(A−1 , A
−
2 ), f2(A+

1 , A
+
2 )〉. On the contrary, [4, 6] ∪ [11, 12] 6∈

f2(〈A−1 , A
+
1 〉, 〈A

−
2 , A

+
2 〉). This is because there is no Q1 ⊆ R and Q2 ⊆ R such that

f2(Q1, Q2) = [4, 6] ∪ [11, 12].

From the examples above, we know that we may have

πf(〈A−1 ,A
+
1 〉,〈A

−
2 ,A

+
2 〉,...,〈A

−
m,A

+
m〉)(Y ) = π〈f(A−1 ,A

−
2 ,...,A

−
m),f(A+

1 ,A
+
2 ,...,A

+
m)〉(Y ), (17)

only for Y ∈ f(2R, . . . , 2R).
The following theorem shows that (17) holds for a convex set Y ⊆ R and a monotone

continuous function.
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Theorem 5.3. Let f : Rm → R be continuous and monotone. Let A−i and A+
i be

fuzzy sets showing lower and upper approximations of a graded ill-known set Ai, i =
1, 2, . . . ,m. Then (17) holds for a convex set Y ⊆ R.

P r o o f . We prove (17) when m = 2. (17) can be proved in the same way even when
m > 2. Let f−1(Y ) = {Q1 × Q2 ⊆ R2 | f(Q1, Q2) = Y } for Y ⊆ R and f−1(y) =
{(x1, x2) | f(x1, x2) = y} for y ∈ R. For the sake of simplicity, we define graded ill-
known sets Ai = 〈A−i , A

+
i 〉, i = 1, 2 and F = 〈f(A−1 , A

−
2 ), f(A+

1 , A
+
2 )〉. The proof is

given in two complementary cases: (i) f−1(Y ) = ∅ and (ii) f−1(Y ) 6= ∅.
First we consider (i) f−1(Y ) = ∅. Suppose ∀y ∈ Y , f−1(y) 6= ∅. Then ∀y ∈ Y ,

(Q1 ×Q2) ∩ f−1(y) 6= ∅ implies f(Q1, Q2) ⊃ Y . It is obvious that there exists Q̂1 and
Q̂2 such that (Q̂1 × Q̂2) ∩ f−1(y) 6= ∅. Let qLi = inf Q̂i and qRi = sup Q̂i, i = 1, 2.
Because of the monotonicity, we have f(qL1 , q

L
2 ) ≤ inf Y and f(qR1 , q

R
2 ) ≥ supY . Thus,

we may find 0 ≤ λL ≤ 1 and 0 ≤ λR ≤ 1 such that

f((1− λL)qL1 + λLqR1 , (1− λL)qL2 + λLqR2 ) = inf Y,
and f((1− λR)qR1 + λRqR1 , (1− λR)qR2 + λRqR2 ) = inf Y,

because of the continuity and monotonicity of f . Then we find convex sets Q̄1 ⊆ R and
Q2 ⊆ R such that

inf Q̄1 = (1− λL)qL1 + λLqR1 , inf Q̄2 = (1− λL)qL2 + λLqR2 ,

sup Q̄1 = (1− λR)qR1 + λRqR1 , sup Q̄2 = (1− λR)qR2 + λRqR2 ,

where Q̄1 and Q̄2 include their infimums if Y includes its infimum, and Q̄1 and Q̄2

include their supremums if Y includes its supremum. For Q̄1 and Q̄2, because of the
continuity of f , we have f(Q̄1, Q̄2) = Y . This contradicts f−1(Y ) = ∅. Therefore we
know f−1(Y ) = ∅ implies ∃y ∈ Y , f−1(y) = ∅.

By Definition 3.1, we have πf(A1,A2)(Y ) = 0 from f−1(Y ) = ∅. Moreover,
infy∈Y µf(A+

1 ,A
+
2 )(y) = 0 because µf(A+

1 ,A
+
2 )(y) = 0 for f−1(y) = ∅ from the extension

principle in fuzzy sets. This implies πF (Y ) = 0. Hence, we have (17) when f−1(Y ) = ∅.
We now consider a case where f−1(Y ) 6= ∅. From the assumption, we have

f−(A1,A2) = f(A−1 , A
−
2 ) and f+(A1,A2) = f(A+

1 , A
+
2 ). Because πF is the maximal

possibility distribution of graded ill-known sets having lower and upper approximations
f(A−1 , A

−
2 ) and f(A+

1 , A
+
2 ), πf(A1,A2)(Y ) ≤ πF (Y ). Therefore, we prove

πf(A1,A2)(Y ) ≥ πF (Y ). (∗)

Moreover, because Ai = 〈A−i , A
+
i 〉, i = 1, 2, we have

πf(A1,A2)(Y ) = sup
Q1,Q2⊆R
Y=f(Q1,Q2)

min (πA1(Q1), πA2(Q2))

= sup
Q1,Q2⊆R
Y=f(Q1,Q2)

min
(

min
(

inf
x6∈Q1

(1− µA−1
(x)), inf

x∈Q1
µA+

1
(x)

)
,

min
(

inf
x6∈Q2

(1− µA−2
(x)), inf

x∈Q2
µA+

2
(x)

))
.
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expense Expert 1 Expert 2 Expert 3
Lk [10, 13] [8, 11] [11, 12]
Uk [7, 17] [8, 18] [6, 15]

income Expert 4 Expert 5 Expert 6
Lk [20, 23] [22, 25] [19, 24]
Uk [19, 25] [18, 26] [17, 27]

Tab. 1. Expense and income estimations (×1, 000 $).

From Definition 3.1 and Proposition 4.4, we obtain

πf(A1,A2)(Y ) > α

⇔ ∃(Q1, Q2) such that Y = f(Q1, Q2),

[A−1 ]1−α ⊆ Q1 ⊆ (A+
1 )α and [A−2 ]1−α ⊆ Q2 ⊆ (A+

2 )α. (#)

On the other hand, from the extension principle in fuzzy sets, we obtain

πF (Y ) = min

 inf
y 6∈Y

1− sup
x1,x2∈R
y=f(x1,x2)

min
(
µA−1

(x1), µA−2 (x1)
) ,

inf
y∈Y

 sup
x1,x2∈R
y=f(x1,x2)

min
(
µA+

1
(x1), µA+

2
(x1)

)
 .

In the same way of the proof of Proposition 4.4, we obtain

πF (Y ) > α⇔
⋂
ε>0

f([A−1 ]1−α−ε, [A−1 ]1−α−ε) ⊆ Y ⊆ f((A+
1 )α, (A+

2 )α). (∗∗)

Now we prove (∗) by showing

πF (Y ) > α implies πf(A1,A2)(Y ) > α.

For lower and upper approximations A−i and A+
i , we have µA−i (x)>0 implies µA+

i
(x)=1.

Then we obtain [A−i ]1−α ⊆ [A−i ]1−α−ε ⊆ (A+
i )α for any ε > 0 and for i = 1, 2.

Assume πF (Y ) > α, from (∗∗), we obtain f([A−1 ]1−α, [A−1 ]1−α) ⊆
⋂
ε>0 f([A−1 ]1−α−ε,

[A−1 ]1−α−ε) ⊆ Y . In the same way that we prove f−1(Y ) = implies ∃y ∈ Y , f−1(y) = ∅,
from the continuity and monotonicity of f , the convexity of Y and f([A−1 ]1−α, [A−1 ]1−α) ⊆
Y ⊆ f((A+

1 )α, (A+
2 )α), we find [A−i ]1−α ⊆ Qi ⊆ (A+

i )α, i = 1, 2 such that Y = f(Q1, Q2)
(see Figure 1). Hence, from (#), we obtain πf(A1,A2)(Y ) > α. �

6. A SIMPLE EXAMPLE

In order to give an image of graded ill-known sets in the real world as well as to demon-
strate the efficiency in computation owing to (9) and (11), we consider a virtual profit
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Fig. 1. [A−i ]1−α ⊆ Q̄i ⊆ (A+
i )α.

estimation problem. There is a small project requiring some expenses but producing
incomes in future. To estimate the expected profit of the project, we asked six experts.
Three of them are good at the estimation of expenses while the other three are good
at the estimation of incomes. Although they are experts, due to the uncertain envi-
ronment, they cannot estimate them in univocal values. Their estimations are twofold:
highly possible intervals Lk and somehow possible intervals Uk such that Lk ⊆ Uk. As
shown in Table 1, we assume that the estimations of expenses are Lk and Uk, k = 1, 2, 3
while the estimations of incomes are Lk and Uk, k = 4, 5, 6

Using Lk and Uk such that Lk ⊆ Uk, k = 1, 2, . . . , 6, the possibility distributions πAi
,

i = 1, 2 about expenses A1 and incomes A2 are defined by

πAi(A) =
|{k | Lk ⊆ A ⊆ Uk, k ∈ [3i− 2, 3i]}|

3
, i = 1, 2, (18)

where |B| is the cardinality of set B. For the normality of πAi
, we assume⋃

k=3i−2,3i−1,3i Lk ⊆
⋂
k=3i−2,3i−1,3i Uk, i = 1, 2. Moreover, to satisfy (13), we assume⋂

k=3i−2,3i−1,3i Lk 6= ∅, i = 1, 2, otherwise Âi( 1
3 ) =

⋂
(A) 1

3
= ∅, i = 1, 2.

Here, we note that the information of experts can be modeled by a basic probability
assignment Bpai : 22R → [0, 1], i = 1, 2 such that

Bpai(C) =


1
3
, if ∃k ∈ [3i− 2, 3i], C = {A | Lk ⊆ A ⊆ Uk},

0, otherwise.
(19)

Then πAi , i = 1, 2 of (18) can be seen as contour functions of Bpai, i = 1, 2, i. e., we
have

πAi
(A) =

∑
A∈C⊆2R

Bpai(C), i = 1, 2. (20)
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For i = 1, 2, let us define

Si =

A ⊆ R

∣∣∣∣∣ ⋃
k=3i−2,3i−1,3i

Lk ⊆ A ⊆
⋂

k=3i−2,3i−1,3i

Uk

 , (21)

Mi =

A ⊆ R

∣∣∣∣∣ ⋃
k=3i−2,3i−1

Lk ⊆ A ⊆
⋂

k=3i−2,3i−1

Uk,

⋃
k=3i−1,3i

Lk ⊆ A ⊆
⋂

k=3i−1,3i

Uk or
⋃

k=3i−2,3i

Lk ⊆ A ⊆
⋂

k=3i−2,3i

Uk

 ,

(22)
Wi = {A ⊆ R | L3i−2 ⊆ A ⊆ U3i−2, L3i−1 ⊆ A ⊆ U3i−1 or L3i ⊆ A ⊆ U3i}.

(23)

Then πAi , i = 1, 2 are obtained by

πAi
(A) =



1, if A ∈ Si,
2
3
, if A 6∈ Si and A ∈Mi,

1
3
, if A 6∈ Mi and A ∈ Wi,

0, otherwise.

(24)

From (21) to (24), we easily confirm that Ai, i = 1, 2 satisfy (13), i. e., Ai ∈ IQint,
i = 1, 2. Then we can apply Theorem 4.2.

Let us calculate the range of profit A2 −A1 and ensure Theorems 3.2 and 4.2.

First we apply Definition 3.1 to A2−A1. For parameters shown in Table 1, we obtain

πA2−A1(A)

=



1, if A ∈ S2 − S1,

2
3
, if A 6∈ S2 − S1 and A ∈M2 −M1,

1
3
, if A 6∈ M2 −M1 and A ∈ W2 −W1,

0, otherwise,

=



1, if A ∈ S,
2
3
, if A 6∈ S and A ∈M,

1
3
, if A 6∈ M and A ∈ W,

0, otherwise,
(25)
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where we define

S = {A ⊆ R | [6, 17] ⊆ A ⊆ [4, 17]}, (26)
M = {A ⊆ R | [7, 17] ⊆ A ⊆ [2, 17], [6, 17] ⊆ A ⊆ [1, 18],

[8, 17] ⊆ A ⊆ [4, 17], [7, 17] ⊆ A ⊆ [3, 18], [7, 15] ⊆ A ⊆ [4, 18],
[6, 15] ⊆ A ⊆ [3, 19] or [6, 14] ⊆ A ⊆ [4, 18]}, (27)

W = {A ⊆ R | [9, 15] ⊆ A ⊆ [1, 19], [6, 14] ⊆ A ⊆ [0, 20],
[11, 17] ⊆ [0, 18], [8, 16] ⊆ A ⊆ [−1, 19], [8, 12] ⊆ A ⊆ [4, 19],

[10, 14] ⊆ A ⊆ [3, 20] or [7, 13] ⊆ A ⊆ [2, 21]}. (28)

Applying (5), we obtain the following lower and upper approximations (A2 −A1)− and
(A2 −A1)+:

µ(A2−A1)−(x)

=



1, if x ∈ [11, 12],
2
3
, if x ∈ [8, 11) ∪ (12, 14],

1
3
, if x ∈ [6, 8) ∪ (14, 17],

0, otherwise,

µ(A2−A1)+(x)

=



1, if x ∈ [4, 17],
2
3
, if x ∈ [1, 4) ∪ (17, 19],

1
3
, if x ∈ [−1, 1) ∪ (19, 21],

0, otherwise.

(29)

Now let us calculate A−2 −A−1 and A+
2 −A+

1 . For i = 1, 2, we define

S−i =
⋂

k=3i−2,3i−1,3i

Lk, S+
i =

⋂
k=3i−2,3i−1,3i

Uk,

M−
i =

⋂
k=3i−2,3i−1

Lk ∪
⋂

k=3i−1,3i

Lk ∪
⋂

k=3i−2,3i

Lk,

M+
i =

⋂
k=3i−2,3i−1

Uk ∪
⋂

k=3i−1,3i

Uk ∪
⋂

k=3i−2,3i

Uk,

W−
i =

⋃
k=3i−2,3i−1,3i

Lk and W+
i =

⋃
k=3i−2,3i−1,3i

Uk.

(30)

For parameters given in Table 1, we obtain S−1 = [11, 11], S+
1 = [8, 15], M−

1 = [10, 12],
M+

1 = [7, 17], W−
1 = [8, 13], W+

1 = [6, 18], S−2 = [22, 23], S+
2 = [19, 25], M−

2 = [20, 24],
M+

2 = [18, 26], W−
2 = [19, 25] and W+

2 = [17, 27], We note that those sets always become
closed interval because of

⋂
k=3i−2,3i−1,3i Lk 6= ∅, i = 1, 2.

Then the lower and upper approximations of Ai, i = 1, 2 are obtained as

µA±i
(x) =



1, if x ∈ S±i ,
2
3
, if x 6∈ S±i and x ∈M±

i ,

1
3
, if x 6∈M±

i and x ∈W±
i ,

0, otherwise,

(double sign in same order). (31)
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Applying the extension principle in fuzzy set theory, we obtain

µA−2 −A
−
1
(x)

=



1, if x ∈ [11, 12],
2
3
, if x ∈ [8, 11) ∪ (12, 14],

1
3
, if x ∈ [6, 8) ∪ (14, 17],

0, otherwise,

µA+
2 −A

+
1
(x)

=



1, if x ∈ [4, 17],
2
3
, if x ∈ [1, 4) ∪ (17, 19],

1
3
, if x ∈ [−1, 1) ∪ (19, 21],

0, otherwise.

(32)

We have (A2 − A1)− = A−2 − A−1 and (A2 − A1)+ = A+
2 − A+

1 . Then we could confirm
Theorems 3.2 and 4.2.

Even in this simple case, the calculation of A2 − A1 is rather complex because we
should consider all combinations of minimal and maximal elements of α-level sets. A
part of the complexity can be observed in the definitions of M and W. On the other
hand, as demonstrated above, calculations of (A−2 − A−1 ) and (A+

2 − A+
1 ) are much

simpler.

7. CONCLUDING REMARKS

We investigated the calculations of graded ill-known sets. We showed that the lower and
upper approximations of function values of graded ill-known sets are obtained rather
easily in some cases while the exact calculations are complex. We revealed the necessary
and sufficient condition that lower and upper approximations of function values of graded
ill-known sets are obtained by function values of lower and upper approximations of
graded ill-known sets. Using this condition, we gave the sufficient conditions. From
one of them, we know that the lower and upper approximations of function values of
graded ill-known sets defined by lower and upper approximations are always obtained
by function values of the given lower and upper approximations.

Moreover, we gave counterexamples to show that function values of graded ill-known
sets defined by lower and upper approximations do not always equal to graded ill-known
sets defined by function values of the given lower and upper approximations while their
lower and upper approximations are. However the possibility distributions corresponding
to those function values may take same membership values at function images of sets.
We showed a sufficient condition that those membership values are equal. The results
obtained in this paper are valuable for applications of graded ill-known sets to systems
optimization, decision making, data analysis and so on. Those applications would be
future topics.
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