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A NOTE ON THE CAHN-HILLIARD EQUATION IN H1(RN )

INVOLVING CRITICAL EXPONENT

Jan W. Cholewa, Katowice, Anibal Rodriguez-Bernal, Madrid

(Received September 27, 2013)

Abstract. We consider the Cahn-Hilliard equation in H1(RN ) with two types of critically
growing nonlinearities: nonlinearities satisfying a certain limit condition as |u| → ∞ and

logistic type nonlinearities. In both situations we prove the H2(RN )-bound on the solutions
and show that the individual solutions are suitably attracted by the set of equilibria. This
complements the results in the literature; see J.W.Cholewa, A.Rodriguez-Bernal (2012).
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1. Introduction

We consider the Cauchy problem for the Cahn-Hilliard equation

ut +∆2u+∆f(x, u) = 0, t > 0, x ∈ R
N ,(1.1)

u(0, x) = u0(x), x ∈ R
N ,(1.2)

with initial data in H1(RN ). We single out H1(RN ) as a phase space for (1.1) since,

under some mild assumptions on f , involving even weakly integrable potentials, the

Lyapunov type functional

(1.3) E(u) =
1

2

∫

RN

|∇u|2 −

∫

RN

F (x, u), where F (x, u) =

∫ u

0

f(x, s) ds
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is well defined in H1(RN ). Our concern is the situation when the nonlinear term

satisfies a certain critical growth condition.

In bounded domains, see e.g. [32], [31] and references therein, the past decades

have witnessed an extensive study of the Cahn-Hilliard model, which was originally

derived in [9] as a phenomenological equation describing phase transition problems

in binary metallic alloys. Several variations of the model were also considered, like

multi-component alloys models [20], [12], [26], models with viscosity or inertial terms

[19], [30], [28], [11], [21], Cahn-Hilliard-Oono model [29] and Cahn-Hilliard-Cook

equations [4], [5].

In contrast with the case of bounded domains, merely a few references seem to

deal with the Cahn-Hilliard problem in unbounded domains or in R
N ; see [8], [7],

[25], [6], [27], [18], [17], [15], [34] in the chronological order.

In [8] the authors were concerned with the existence of an L∞(RN ) bound for the

solutions in the case when a nonlinear term grew linear at infinity.

In [7], and then in [25], stability of a particular steady state solution, the so called

kink solution, was considered.

In [6] the viscous model in a channel like unbounded domain in dimensionsN = 2, 3

was studied with the aid of weighted spaces and the existence of an attractor was

proved.

In [27], and after that in [18], some temporal decay estimates of the solutions have

been reported.

In [17] for the viscous model in the subcritical case the concept of the so called

H-solutions was developed.

In [15] the critical exponent

(1.4) ̺c := 1 +
4

N − 2
, N > 3,

naturally appeared when proving local well posedness of (1.1)–(1.2) in H1(RN )

whereas the analysis of the dissipative mechanism was then carried out in the sub-

critical case ̺ < ̺c.

Recently, in [34], the 3-dimensional model has been studied in the so called locally

uniform spaces and the existential result has been obtained under suitably chosen

assumptions on f .

In this note we set forth the analysis of (1.1) in the ‘energy’ space H1(RN ). Our

goal is to extend from the subcritical to the critical case some of the results obtained

in [15] for the unperturbed Cahn-Hilliard equation (1.1). This includes the global

well posedness in H1(RN ) and a suitable notion of dissipativeness.

Following [15] we will assume that f : R
N × R → R in (1.1) is of the form

(1.5) f(x, u) = g(x) +m(x)u + f0(x, u), x ∈ R
N , u ∈ R,
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with

g ∈ L2(RN ),(1.6)

f0(x, 0) = 0, x ∈ R
N ,(1.7)

f0 : R
N × R → R locally Lipschitz in u ∈ R uniformly for x ∈ R

N(1.8)

and

(1.9) m ∈ Lr
U (R

N ) for some r >
N

2
, r > 2,

where the above space Lr
U (R

N ) is defined, for 1 6 r 6 ∞, as

Lr
U (R

N )
def
= {ϕ ∈ Lr

loc(R
N ) : ‖ϕ‖Lr

U (RN ) = sup
y∈RN

‖ϕ‖Lr(B(y,1)) <∞}

(see e.g. [24], [3]). Also the growth of f will be restricted by the condition

∃c > 0∃̺, 1 < ̺ 6 ̺c ∀u1, u2 ∈ R ∀x ∈ R
N(1.10)

|f0(x, u1)− f0(x, u2)| 6 c|u1 − u2|(1 + |u1|
̺−1 + |u2|

̺−1),

where ̺c is as in (1.4).

Taking into account the form of f in (1.5) one can also require (∂f0/∂u)(·, 0) = 0

(see [15]) however here we omit this because it is not necessary for further consider-

ation.

We remark that with the above assumptions one can view (1.1)–(1.2) as the ab-

stract parabolic problem

(1.11)

{

u̇+ P 2
0 u = P0(f(·, u)) =: F(u), t > 0,

u(0) = u0 ∈ H1(RN ),

where

(1.12) P0 = −∆: dom(P0) ⊂ L2(RN ) → L2(RN ), dom(P0) = H2(RN ),

and that the following local well posedness result then holds (see [15], Corollary 2.3).
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Proposition 1.1. Assume (1.4)–(1.10). Then, for any u0 ∈ H1(RN ), there is a

unique solution u ∈ C([0, τ0), H
1(RN )) of (1.1)–(1.2) defined on a maximal interval

of existence [0, τu0) and satisfying

u(t) = e−∆2tu0 +

∫ t

0

e−∆2(t−s)(−∆)(f(·, u(s))) ds, t ∈ [0, τ0),

or, equivalently,

u(t) = e−∆2tu0 +

∫ t

0

(−∆)e−∆2(t−s)(f(·, u(s))) ds, t ∈ [0, τ0).

Furthermore,

u ∈ C((0, τ0), H
2(RN )) ∩ C1((0, τ0), H

s(RN )), s < 2,(1.13)

∆u(t) + f(·, u(t)) ∈ H2(RN ), t ∈ (0, τu0),

and for t ∈ (0, τu0) we have

ut + (−∆)(−∆u − f(x, u)) = 0 in L2(RN ).

As for reaction-diffusion equations and problems with higher order diffusion (see

[14], [2]) in the studies of global solutions of (1.1)–(1.2) the cooperation between

diffusion and reaction terms in the equation becomes crucial. This cooperation is

exhibited in the structure condition

(1.14) vf(x, v) 6 C(x)v2 +D(x)|v|, x ∈ R
N , v ∈ R,

where

C ∈ Lσ(RN ), σ > max
{N

2
, 1
}

,(1.15)

0 6 D ∈ Ls(RN ), max
{

1,
2N

N + 2

}

6 s 6 2,

and C is such that

(1.16) ∃ω0 > 0 ∀ϕ ∈ H1(RN )

∫

RN

(|∇ϕ|2 − C(x)ϕ2) > ω0‖ϕ‖
2
L2(RN );

that is, the solutions of the linear problem

{

ut = ∆u+ C(x)u, t > 0, x ∈ R
N ,

u(0) = u0 ∈ L2(RN )

are uniformly exponentially decaying as t→ ∞ (see [15], Appendix A).
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Note that assuming (1.4)–(1.10), (1.14)–(1.16) and using the energy (1.3) we obtain

for the solutions of (1.1)–(1.2) the a priori bound of the form

(1.17) ‖u‖2H1(RN ) 6 c1E(u) + c2 6 c1E(u0) + c2

where c1, c2 are some positive constants (see [15], Lemma 3.5). If, in addition, the

growth of f is restricted to a subcritical case, that is for

(1.18) ̺ < ̺c,

then the following result holds (see [15]).

Theorem 1.2. For the Cahn-Hilliard problem (1.1)–(1.2)

(i) the local solution through u0 ∈ H1(RN ) as in Proposition 1.1 exists globally in

time and the associated semigroup {S(t) : t > 0} in H1(RN ),

S(t)u0 = u(t;u0), t > 0, u0 ∈ H1(RN ),

has bounded positive orbits of bounded sets,

(ii) the positive orbit γ+(B) of any set B bounded in H1(RN ) is immediately

bounded in H2(RN ); that is,

S(t)γ+(B) is bounded in H2(RN )

for any t > 0,

(iii) the set E of equilibria of {S(t) : t > 0},

E = {ϕ ∈ H2(RN ) : −∆ϕ = f(·, ϕ) in R
N},

is nonvoid and for each u0 ∈ H1(RN ) and any sequence tn → ∞ there is

a subsequence {tnk
} and an equilibrium ψ ∈ E such that

u(tnk
)
k→∞
−→ ψ in Hs

loc(R
N ) and in Hs

ϕ(R
N ) for any s < 2,

where the weight is given by ϕ(x) = (1 + |x|2)−ν with ν > N/2.

Furthermore, if in (1.14) we have, in addition to (1.15),

D ∈ Lσ(RN ) ∩ Ls(RN ), σ > N/2, max
{

1,
2N

N + 2

}

6 s 6 2,

then
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(iv) there are two ordered extremal equilibria ϕm, ϕM in H1(RN ), minimal and

maximal, respectively, such that any equilibrium ψ in H1(RN ) satisfies

ϕm(x) 6 ψ(x) 6 ϕM (x), x ∈ R
N ,

(v) the order interval [ϕm, ϕM ]H1(RN ) attracts ‘pointwise asymptotic dynamics’

of (1.1) in the sense that for each u0 ∈ H1(RN ) and any sequence tn → ∞,

there is a subsequence {tnk
} such that

ϕm(x) 6 lim
k→∞

u(tnk
, x;u0) 6 ϕM (x)

for a.e. x ∈ R
N .

Note that Theorem 1.2 concerns some weak form of dissipativity and that a strong

dissipativity, the one which relies on the asymptotic compactness in H1(RN ), cannot

be obtained in general (see [15]). In particular, a global attractor in the sense of [22]

will not generally exist in H1(RN ) (see [15], Proposition 4.6).

In what follows our concern will be to ensure validity of Theorem 1.2 in the case

when the critical exponent ̺ = ̺c appears in the nonlinear term in the equation. We

will thus assume (1.4)–(1.10), (1.14)–(1.16) but not (1.18).

In Section 2 we will consider critical nonlinearities f(x, u) satisfying a certain limit

condition as |u| → ∞.

In Section 3 we will discuss critically growing logistic type nonlinearities of the

form f(x, u) = g(x) +m(x)u − u|u|̺c−1.

In the closing Section 4 we will include some final comments concerning the critical

exponent.

2. Critical nonlinearities satisfying a limit condition as |u| → ∞

In this section we will consider nonlinearities satisfying uniformly for x ∈ R
N the

limit condition

(2.1) lim
|u|→∞

|(∂f0/∂u)(x, u)|

|u|̺c−1
= 0.

Theorem 2.1. Theorem 1.2 applies for critical nonlinearities satisfying the limit

condition as in (2.1).

In the proof of Theorem 2.1 we will use the following three lemmas. To avoid

too many technicalities, instead of (1.9) we will use some stronger local integrability

property of m requiring that

(2.2) m ∈ Lr
U (R

N ), r >
N̺c
̺c + 1

=
N

2
+ 1.
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Then we will come back to the original assumption (1.9) in Remark 2.5, which closes

this section.

Lemma 2.2. If (1.8), (2.1) hold and f0(·, 0) = 0 then, given η > 0, there exist

a positive constant Cη and maps f
η
01, f

η
02 such that

fη
01(·, 0) = fη

02(·, 0) = 0,

f0(x, v) = fη
01(x, v) + fη

02(x, v), x ∈ R
N , v ∈ R,(2.3)

fη
01(x, ·) is a Lipschitz map uniformly for x ∈ R

N ,(2.4)

and

(2.5) |fη
02(x, v1)− fη

02(x, v2)| 6 η|v1 − v2|(|v1|
̺c−1 + |v2|

̺c−1), v1, v2 ∈ R.

P r o o f. Fix η > 0, choose sη > 1 such that

(2.6)
∣

∣

∣

∂f0
∂s

(x, s)
∣

∣

∣
6 η|s|̺c−1 for |s| > sη

and define

fη
01(x, v) =











f0(x, v), x ∈ R
N , |v| 6 sη,

f0(x, sη), x ∈ R
N , v > sη,

f0(x,−sη), x ∈ R
N , v < −sη,

fη
02(x, v) = f0(x, v)− fη

01(x, v), x ∈ R
N , v ∈ R.

Since f0(x, v) is locally Lipschitz in v ∈ R uniformly for x ∈ R
N , choosing Lη > 0

as a Lipschitz constant for f0 restricted to R
N × [−sη, sη] and using the definition

of fη
01, we have that

|fη
01(x, v1)− fη

01(x, v2)| 6 Lη|v1 − v2|, x ∈ R
N , v1, v2 ∈ R.

Considering then the difference fη
02(x, v1)−f

η
02(x, v2), using the definition of f

η
02, the

mean value theorem and (2.6) we get (2.5). �

275



Lemma 2.3. Besides (1.4)–(1.10) assume the limit condition as in (2.1) and (2.2).

Then for any η > 0 there exists Cη > 0 such that F in (1.11) satisfies

‖F(v)−F(w)‖H−2(RN )

6 c‖v − w‖H1+1/̺c (RN )(Cη + η‖v‖̺−1
H1+1/̺c (RN )

+ η‖w‖̺−1
H1+1/̺c (RN )

)

for any v, w ∈ H1+1/̺c(RN ).

P r o o f. Due to (1.5), (2.3), given η > 0 we have that

F(u) = Fη
1 (u) + Fη

2 (u) + F3(u),

where

Fη
1 (u) = P0(f

η
01(·, u) + g), Fη

2 (u) = P0(f
η
02(·, u)) and F3(u) = P0(m(·)u).

Using (2.5) and repeating the proof of [15], Lemma B.2, we obtain

‖Fη
2 (v1)−Fη

2 (v2)‖H−2(RN )

6 cη‖v1 − v2‖H1+1/̺c (RN )(‖v1‖
̺c−1
H1+1/̺c (RN )

+ ‖v2‖
̺c−1
H1+1/̺c (RN )

).

On the other hand, from (2.4) we get

‖Fη
1 (v1)−Fη

1 (v2)‖H−2(RN ) = ‖(P0 + Id)−1P0(f
η
01(·, v1)− fη

01(·, v2))‖L2(RN )

6 c‖fη
01(·, v1)− fη

01(·, v2)‖L2(RN )

6 cLη‖v1 − v2‖L2(RN ) 6 c̃Lη‖v1 − v2‖H1+1/̺c (RN )

6 ‖v1 − v2‖H1+1/̺c (RN )

(

c̃Lη + cη‖v1‖
̺c−1
H1+1/̺c (RN )

+ cη‖v2‖
̺c−1
H1+1/̺c (RN )

)

.

To deal with F3 let us denote by Qi the open cube in R
N centered at i ∈ Z

N and

having unitary edges parallel to the axes. Then RN =
⋃

i∈ZN

Qi, Qi ∩Qj = ∅ for i 6= j

and we have

∫

RN

|m(x)|2|v1 − v2|
2 =

∑

i∈ZN

∫

Qi

|m(x)|2|v1 − v2|
2

6
∑

i∈ZN

‖m‖2Lr(Qi)
‖v1 − v2‖

2
L2r/(r−2)(Qi)

6 c‖m‖2Lr
U(RN )

∑

i∈ZN

‖v1 − v2‖
2
H1+1/̺c (Qi)

,

where, following (2.2), Hölder’s inequality and the embedding H1/2+1/(2̺c)(Qi) →֒

L2r/(r−2)(Qi) were used. Due to [2], Lemma 2.4,
∑

i∈ZN

‖v1 − v2‖2H1+1/̺c (Qi)
can be
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bounded by a multiple of ‖v1 − v2‖2H1+1/̺c (RN )
and hence we get

‖F3(v1)−F3(v2)‖H−2(RN ) = ‖(P0 + Id)−1P0(mv1 −mv2)‖L2(RN )

6 c‖m(v1 − v2)‖L2(RN ) 6 ĉ‖v1 − v2‖H1+1/̺c (RN )

6 ‖v1 − v2‖H1+1/̺c (RN )(ĉ+ c̃Lη + cη‖v1‖
̺c−1
H1+1/̺c (RN )

+ cη‖v2‖
̺c−1
H1+1/̺c (RN )

).

The result now follows easily. �

Lemma 2.4. If the assumptions of Lemma 2.3 hold then Proposition 1.1 applies

and the solution therein satisfies the blow-up H1(RN )-alternative; namely,

either τu0 = ∞ or lim sup
t→τ−

u0

‖u(t;u0)‖H1(RN ) = ∞.

Furthermore, given R > 0, a ball BH1(RN )(v0, R) in H
1(RN ) of radius R > 0

around v0 ∈ H1(RN ) and any 0 < θ < ̺cε = 1/4, u0 ∈ BH1(RN )(v0, R) we have that

tθ‖u(t;u0)‖H1+4θ(RN ) → 0 as t→ 0+.

Also,

tθ‖u(t;u01)− u(t;u02)‖H1+4θ(RN ) 6 C′‖u01 − u02‖H1(RN )

whenever t ∈ [0, τ0], 0 6 θ < ̺cε = 1/4 and u01, u02 ∈ BH1(RN )(v0, R).

P r o o f. By Lemma 2.3 there are c > 0, ε = 1/(4̺c) and, given η > 0, there

exists Cη > 0 such that

‖F(v)−F(w)‖H−3+4̺cε(RN )

6 c‖v − w‖H1+4ε(RN )(Cη + η‖v‖̺−1
H1+4ε(RN )

+ η‖w‖̺−1
H1+4ε(RN )

)

for any v, w ∈ H1+4ε(RN ). Recall also that the scale of fractional power spaces,

{Eα, α ∈ R}, associated with the linear main part operator P 2
0 in (1.11)–(1.12), is

given by

Eα = H4α(RN ) for − 1 6 α 6 1.

Following [10], Definition 2.1, the right hand side F in (1.11) can be thus viewed

as an almost critical ε-regular map relative to spaces X1 = E1/4 and X = E−3/4.

Consequently, application of [10], Theorem 2.1, gives the result. �
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P r o o f of Theorem 2.1. Part (i) follows from (1.17) and Lemma 2.4.

Proceeding next as in [15], Lemma 5.1, we observe via Lemma 2.4 that the positive

orbits of bounded subsets of H1(RN ) are immediately bounded in Hs(RN ) for any

s < 2. Similarly to [15], Lemma 5.2, we then obtain the H2(RN )-bound of the orbits

stated in part (ii).

Once we have the H2(RN )-bound of the orbits, the proof of parts (iii)–(v) in

Theorem 1.2 follows the same lines as in [15]. �

R em a r k 2.5. Condition (2.2) is not necessary and can be replaced by (1.9). This

requires however a longer argument involving the decomposition of F into a sum of

εi-regular maps Fi, i = 1, 2, 3, with different parameters εi (see [1], Theorem 2.2).

This is a matter we do not pursue here.

3. Critically growing logistic type nonlinearities

In this section we consider critically growing logistic type nonlinearities

(3.1) f(x, u) = g(x) +m(x)u − u|u|̺c−1, x ∈ R
N , u ∈ R.

We thus focus now on the problem (1.1)–(1.2) with f as in (3.1).

Theorem 3.1. Theorem 1.2 applies for (1.1)–(1.2) with critically growing logistic

type nonlinearities.

The following observation concerning the abstract counterpart of (1.1)–(1.2) will

be useful.

Lemma 3.2. If (3.1) holds with ̺c, g, m as in Section 1, that is

(3.2) ̺c =
N + 2

N − 2
, g ∈ L2(RN ) and m ∈ Lr

U (R
N ), r >

N

2
, r > 2,

then, given ε < 1/4 close enough to 1/4, the nonlinear term F in (1.11) can be

viewed as a Lipschitz map from H1+4ε(RN ) into H−2(RN ), Proposition 1.1 applies

and the solution therein satisfies the blow up H1+4ε(RN )-alternative; namely,

(3.3) either τu0 = ∞ or lim sup
t→τ−

u0

‖u(t;u0)‖H1+4ε(RN ) = ∞.

P r o o f. We remark that the solution in Proposition 1.1 is constructed as in [15],

Appendix B, and the Lipschitz property in the statement follows from [15], Re-

mark B.4. Since via (1.13) the solution enters H2(RN ) →֒ H1+4ε(RN ) the blow up

H1+4ε(RN )-alternative thus holds as in [23], Theorem 3.3.4. �
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Below we will derive a uniform in time H2(RN )-estimate away from t = 0. Note

that once this estimate is known then parts (i)–(ii) in Theorem 1.2 hold true due to

(3.3) and (1.17). The proof of parts (iii)–(v) follows then the same lines as in [15].

Lemma 3.3. If f is as in (3.1)–(3.2) then the solutions of (1.1)–(1.2) are a priori

bounded in H2(RN ) uniformly in time away from t = 0 and for initial conditions in

bounded subsets of H1(RN ); namely, given ‖u0‖H1(RN ) 6 R and τ > 0 there exists

a positive constant M(R, τ) such that

(3.4) ‖u(t)‖H2(RN ) 6M(R, τ), t > τ.

P r o o f. From (1.1) and (3.1) we obtain

(3.5)
d

dt
‖∇(∆u+ f(·, u))‖2L2(RN ) = 2〈∇(∆u+ f(·, u)),∇(∆ut + f ′

u(·, u)ut)〉L2(RN )

= 2〈−∆(∆u+ f(·, u)),∆ut + f ′
u(·, u)ut〉L2(RN )

= 2〈ut,∆ut + f ′
u(·, u)ut〉L2(RN )

6 −2‖∇ut‖
2
L2(RN ) + 2

∫

RN

m(x)u2t .

Applying [15], Lemma A.5, we have

∫

RN

m(x)u2t 6
1

2
‖∇ut‖

2
L2(RN ) + c1/2‖ut‖

2
L2(RN )

and, using (1.1),

(3.6) c1/2‖ut‖
2
L2(RN ) = c1/2〈ut,−∆(∆u+ f(·, u))〉L2(RN )

= c1/2〈∇ut,∇(∆u+ f(·, u))〉L2(RN )

6
1

2
‖∇ut‖

2
L2(RN ) +

1

2
c21/2‖∇(∆u+ f(·, u))‖2L2(RN ).

From (3.5)–(3.6) we then get

(3.7)
d

dt
‖∇(∆u+ f(·, u))‖2L2(RN ) 6 c21/2‖∇(∆u+ f(·, u))‖2L2(RN ),

where, due to [15] (3.9) and (3.11),

(3.8)

∫ t

s

‖∇(∆u+ f(·, u))‖2L2(RN ) = E(u(s))− E(u(t)) 6 E(u0) +
c2
c1
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with constants c1, c2 as in (1.17). Since (3.7) yields that for s < t+ τ

‖∇(∆u+ f(·, u))(t+ τ)‖2L2(RN )

6 ‖∇(∆u+ f(·, u))(s)‖2L2(RN ) + c21/2

∫ t+τ

s

‖∇(∆u+ f(·, u))‖2L2(RN ),

integrating with respect to s ∈ (t, t+ τ) and using (3.8) we obtain

(3.9) ‖∇(∆u + f(·, u))(t+ τ)‖2L2(RN ) 6
1 + c21/2τ

τ

(

E(u0) +
c2
c1

)

, t > 0, τ > 0.

On the other hand, using injectivity of P0 in (1.12) (see [15], Lemma 3.1) and rewrit-

ing (1.1) as

P−1
0 ut = ∆u + f(·, u) = ∆u+ g(x) +m(x)u − u|u|̺c−1

we obtain with the aid of Young’s inequality that

(3.10) ‖∆u‖2L2(RN ) = 〈∆u,∆u〉L2(RN )

= 〈∆u, P−1
0 ut − g −mu+ u|u|̺c−1〉L2(RN )

= 〈∆u,∆u+ f(·, u)〉L2(RN ) − 〈∆u, g〉L2(RN )

− 〈∆u,mu〉L2(RN ) + 〈∆u, u|u|̺c−1〉L2(RN )

6
1

4
‖∇u‖2L2(RN ) + ‖∇(∆u+ f(·, u))‖2L2(RN ) +

1

4
‖∆u‖2L2(RN )

+ ‖g‖2L2(RN ) +
1

4
‖∆u‖2L2(RN ) + ‖mu‖2L2(RN ).

Concerning the last term in (3.10) we have from [15], Lemma A.1, that

‖mu‖L2(RN ) 6 c‖u‖H2α(RN ) for some α ∈ (0, 1)

and hence, by interpolation (see [33], §2.4.2 (11), §1.9.3 (3)) and Young’s inequality,

(3.11) ‖mu‖2L2(RN ) 6 c‖u‖2αH2(RN )‖u‖
2(1−α)

L2(RN )
6

1

4
‖∆u‖2L2(RN ) + c1/4,α‖u‖

2
L2(RN ).

Combining (1.17), (3.10) and (3.11) we get

1

4
‖∆u‖2L2(RN ) 6

(1

4
+ c1/4,α

)

(c1E(u0) + c2)

+ ‖∇(∆u+ f(x, u))‖2L2(RN ) + ‖g‖2L2(RN ).
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Application of (3.9) now leads to the estimate

1

4
‖∆u(t+ τ)‖2L2(RN ) 6

(1

4
+ c1/4,α

)

(c1E(u0) + c2)

+
1 + c21/2τ

τ

(

E(u0) +
c2
c1

)

+ ‖g‖2L2(RN ),

which together with (1.17) gives the result. �

Let us now discuss briefly that the solution in Proposition 1.1 will often possesses

some more regularity properties than mentioned therein. For example, if for F in

(1.11) we have that

(3.12) F is Lipschitz continuous on bounded sets from H2(RN ) into L2(RN )

then, following [23], [13], the solution u of (1.1)–(1.2) through u0 ∈ H2(RN ) will

exist in the class C([0, τu0), H
2(RN )) and, in addition,

(3.13) u ∈ C((0, τu0 ), H
4(RN )) ∩ C1((0, τu0), H

s(RN )), s < 4.

Since the solution through u0 ∈ H1(RN ) in Proposition 1.1 entersH2(RN ), assuming

(3.12) we obtain that (3.13) holds for such solution as well.

Concerning f as in (3.1) we finally remark that (3.12) will hold if e.g. N = 3,

g ∈ H2(R3) and m ∈ BUC(R3) has bounded partial derivatives of order less or

equal two. In this sample case the solutions through u0 ∈ H1(RN ) will then possess

the regularity properties stated in (3.13).

4. Closing remarks

In the case of the critical exponent ̺ = ̺c it remains generally unknown whether

the blow up H1(RN )-alternative holds; that is whether an H1(RN )-estimate of the

solutions implies their global existence. This was shown to hold true for nonlinearities

satisfying the limit condition (2.1) but not for logistic type nonlinearities as in (3.1).

Due to the properties of the energy functional (1.3) observe that for arbitrarily

fast growing logistic type nonlinearities f(x, u) = g(x) +m(x)u − u|u|̺−1 one can

formally obtain a uniform in time H1(RN ) ∩ L̺+1(RN )-estimate of the solutions.

Also, analogously to Lemma 3.3, one can then derive the H2(RN )-bound. Nonethe-

less, the local well posedness in H1(RN ) as in Proposition 1.1 applies only for ̺ not

exceeding ̺c and faster growing nonlinearities necessitate a separate treatment (see

e.g. [16] and [34]).
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