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Abstract

We say that the function f : [a, b] → R is under the chord if

(b− t) f(a) + (t− a) f(b)

b− a
≥ f(t)

for any t ∈ [a, b].
In this paper we proved amongst other that

∫ b

a

u(t)df(t) ≥ f(b)− f(a)

b− a

∫ b

a

u(t)dt

provided that u : [a, b] → R is monotonic nondecreasing and f : [a, b] → R
is continuous and under the chord.
Some particular cases for the weighted integrals in connection with the

Fejér inequalities are provided. Applications for continuous functions of
selfadjoint operators on Hilbert spaces are also given.

Key words: Fejér inequality, functions of bounded variation, mono-
tonic functions, total variation, selfadjoint operators
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1 Introduction

The following inequality holds for any convex function f defined on R

(b− a)f

(
a+ b

2

)
<

∫ b

a

f(x)dx < (b− a)
f(a) + f(b)

2
, (1.1)
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a, b ∈ R, a < b. It was firstly discovered by Ch. Hermite in 1881 in the journal
Mathesis (see [21]). But this result was nowhere mentioned in the mathematical
literature and was not widely known as Hermite’s result [24].
E. F. Beckenbach, a leading expert on the history and the theory of convex

functions, wrote that this inequality was proven by J. Hadamard in 1893 [2]. In
1974, D. S. Mitrinović found Hermite’s note in Mathesis [21]. Since (1.1) was
known as Hadamard’s inequality, the inequality is now commonly referred as
the Hermite–Hadamard inequality [24].
For related results, see for instance the research papers [1], [3]–[14], [16],

[18], [19], [23], [22], [25], [26], [27], the monograph online [13] and the references
therein.
In 1906, Fejér, while studying trigonometric polynomials, obtained inequal-

ities which generalize that of Hermite & Hadamard:

Theorem 1 Consider the integral
∫ b

a
h(x)w(x) dx, where h is a convex function

in the interval (a, b) and w is a positive function in the same interval such that

w(a+ t) = w(b− t), 0 ≤ t ≤ 1

2
(b− a),

i.e., y = w(x) is a symmetric curve with respect to the straight line which
contains the point

(
1
2 (a+ b) , 0

)
and is normal to the x-axis. Under those con-

ditions the following inequalities are valid:

h

(
a+ b

2

)∫ b

a

w(x) dx ≤
∫ b

a

h(x)w(x) dx ≤ h(a) + h(b)

2

∫ b

a

w(x) dx. (1.2)

If h is concave on (a, b), then the inequalities reverse in (1.2).

Clearly, for w(x) ≡ 1 on [a, b] we get (1.1).
Motivated by these classical results and their impact in the literature, it

is natural to ask when inequalities for the Riemann-Stieltjes integral of the
following types

f

(
a+ b

2

)
[u(b)− u(a)] ≤

∫ b

a

f(t) du(t) (1.3)

and ∫ b

a

f(t) du(t) ≤ [u(b)− u(a)]
f(a) + f(b)

2
(1.4)

hold.
In order to address this question, we have introduced in this paper the con-

cept of under the chord function on a closed interval [a, b], which generalizes
the concept of convex function on [a, b] and established some fundamental in-
equalities for the Riemann–Stieltjes integral for various classes of integrands
and integrators. Some particular cases for the weighted integrals in connection
with the Fejér inequalities are provided. Applications for continuous functions
of selfadjoint operators on Hilbert spaces are also given.
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2 Some classes of real functions

We can introduce the following concept generalizing the notion of convex func-
tion.

Definition 1 We say that the function f : [ a,b]→ R is under the chord if

(b− t)f(a) + (t− a)f(b)

b− a
≥ f(t) (2.1)

for any t ∈ [a, b]. For simplicity, we denote this by f ∈ UCh[a, b].

It is easy to see that if f, g ∈ UCh[a, b] and α, β ≥ 0 then also αf + βg ∈
UCh[a, b] which shows that UCh[a, b] is a convex cone in the linear space of all
real-valued functions defined on [a, b]. Also, if fn → f uniformly on [a, b] and
fn ∈ UCh[a, b] then also f ∈ UCh[a, b] showing that UCh[a, b] is also closed in the
uniform convergence topology.

Definition 2 We say that the Lebesgue integrable function f : [a, b] → R is
sub-trapezoidal if

f(a) + f(b)

2
(b− a) ≥

∫ b

a

f(t) dt. (2.2)

We denote this by f ∈ TSub[a, b].

As above, we observe that TSub[a, b] is a closed convex cone in the uniform
convergence topology of the space of all Lebesgue integrable functions defined
on [a, b] denoted, as usual, by L[a, b].
As in the case of convex-concave functions, we can say that f is above the

chord if −f ∈ UCh[a, b], and f is super-trapezoidal if −f ∈ TSub[a, b]. Moreover,
we say that f is trapezoidal if f and −f ∈ TSub[a, b], i.e.

f(a) + f(b)

2
(b− a) =

∫ b

a

f(t) dt. (2.3)

We denote this by f ∈ T [a, b]. We observe that T [a, b] is a closed linear subspace
of L[a, b] with the uniform convergence topology.
If we denote by Cv[a, b] the closed convex cone of all convex functions defined

on [a, b], then we can state the following result:

Proposition 1 We have the strict inclusions

Cv[a, b] � UCh[a, b] ∩ L[a, b] � TSub[a, b]. (2.4)

Proof If f is convex on [a, b] then for any λ ∈ [0, 1] and x, y ∈ [a, b] we have

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y). (2.5)
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If we chose λ = b−t
b−a , x = a and y = b then by (2.5) we have

(b− t)f(a) + (t− a)f(b)

b− a
≥ f

(
b− t

b− a
· a+ t− a

b− a
· b
)

= f(t)

for any t ∈ [a, b], which shows that f ∈ UCh[a, b]. The fact that f is integrable
on [a, b] is well known.
Now, if we take

f0 : [0, 2π] → R, f0(t) = cos t,

then we observe that f0 ∈ UCh[0, 2π]∩L[a, b] but f0 is not convex on the whole
interval [0, 2π].
Now, if f ∈ UCh[a, b] ∩ L[a, b], then by integrating (2.1) we have∫ b

a

(b− t)f(a) + (t− a)f(b)

b− a
dt ≥

∫ b

a

f(t) dt

and since ∫ b

a

(b− t)f(a) + (t− a)f(b)

b− a
dt =

f(a) + f(b)

2
(b− a)

we get that f ∈ TSub[a, b].
Consider the function

f1 : [0, 2π] → R, f1(t) = sin t

then we observe that f1 ∈ T [0, 2π] and a fortiori f1 ∈ TSub[0, 2π], but it is easy
to see that f1 is not under the chord on the interval [0, 2π]. �

Proposition 2 For a function f : [a, b] → R, the following statements are
equivalent:

(i) f ∈ UCh[a, b];

(ii) We have the inequality

f(b)− f(t)

b− t
≥ f(t)− f(a)

t− a
(2.6)

for any t ∈ (a, b).

Proof We observe that, for t ∈ (a, b) we have

(b− t)f(a) + (t− a)f(b)

b− a
− f(t)

=
(b− t) [f(a)− f(t)] + (t− a) [f(b)− f(t)]

b− a

=
(b− t)(t− a)

b− a

[
f(b)− f(t)

b− t
− f(t)− f(a)

t− a

]
,

which proves the desired result. �
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Corollary 1 Let w : [a, b] → R be a Lebesgue integrable function. Define
f : [a, b] → R by f(t) =

∫ t

a
w(s) ds. Then f ∈ UCh[a, b] if and only if

1

b− t

∫ b

t

w(s) ds ≥ 1

t− a

∫ t

a

w(s) ds (2.7)

for any t ∈ (a, b).

Definition 3 We say that the function f : [a, b] → R is symmetric (or anti-
symmetric) on the interval [a, b] if

f(t) = f(a+ b− t) (or− f(a+ b− t))

for any t ∈ [a, b]. We denote this by f ∈ Sy[a, b] (or f ∈ As[a, b]).

The following result holds:

Proposition 3 We have the strict inclusion:

As[a, b] ∩ L[a, b] � T [a, b]. (2.8)

Proof If f ∈ As[a, b] ∩L[a, b] then obviously f(a) = −f(b) and
∫ b

a
f(t) dt = 0

and the equality (2.3) is trivially satisfied.
Now, if we consider the function f0 : [−2π, 2π] → R defined by

f0(t) =

{
0 if t ∈ [−2π, 0]

sin t if t ∈ (0, 2π],

then we observe that f0 ∈ T [−2π, 2π] but f0 is not anti-symmetric on [−2π, 2π].
�

Proposition 4 Let w : [a, b] → R be a Lebesgue integrable function. Define
f : [a, b] → R by

f(t) =

∫ t

a

w(s) ds− 1

2

∫ b

a

w(s) ds =
1

2

(∫ t

a

w(s) ds−
∫ b

t

w(s) ds

)
. (2.9)

If w ∈ Sy[a, b] then f ∈ As[a, b].

Proof Let t ∈ [a, b]. We have by the definition of f that

f(a+ b− t) =

∫ a+b−t

a

w(s) ds− 1

2

∫ b

a

w(s) ds. (2.10)

If we make the change of variable u = a+ b− s, then we have

∫ a+b−t

a

w(s) ds = −
∫ t

b

w(a+ b− u) du =

∫ b

t

w(a+ b− u) du. (2.11)
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Since w ∈ Sy[a, b] then

∫ b

t

w(a+ b− u) du =

∫ b

t

w(u) du (2.12)

for any t ∈ [a, b].
On making use of (2.10)–(2.12) we have

f(a+b− t) =

∫ b

t

w(u) du− 1

2

∫ b

a

w(s) ds =
1

2

(∫ b

t

w(s) ds−
∫ t

a

w(s) ds

)
= −f(t)

for any t ∈ [a, b].
The proof is complete. �

The following result also holds:

Proposition 5 Let w : [a, b] → R be a Lebesgue integrable function. Define
f : [a, b] → R by

f(t) =

∫ t

a

w(s) ds. (2.13)

The following statements are equivalent:

(i) f(or −f) ∈ TSub[a, b];

(ii) We have the inequality:

∫ b

a

tw(t) dt ≥ (or ≤)
a+ b

2

∫ b

a

w(t) dt. (2.14)

Proof Utilising the integration by parts for the Riemann integral we have:

f(b) + f(a)

2
(b− a)−

∫ b

a

f(t) dt

=
1

2
(b− a)

∫ b

a

w(t)dt−
∫ b

a

(∫ t

a

w(s) ds

)
dt

=
1

2
(b− a)

∫ b

a

w(t) dt−

⎡
⎣(∫ t

a

w(s) ds

)
t

∣∣∣∣∣
b

a

−
∫ b

a

tw(t) dt

⎤
⎦

=
1

2
(b− a)

∫ b

a

w(t) dt−
[(∫ b

a

w(s) ds

)
b−

∫ b

a

tw(t) dt

]

=

∫ b

a

tw(t) dt− a+ b

2

∫ b

a

w(t) dt,

which proves the desired statement. �
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Remark 1 We observe that by Proposition 5 we have f ∈ T [a, b], where f is
defined by (2.13), if and only if

∫ b

a

tw(t) dt =
a+ b

2

∫ b

a

w(t) dt. (2.15)

We denote in the following the closed convex cone of monotonic nondecreas-
ing functions defined on [a, b] by M↗[a, b] and by C[a, b] the Banach space of
continuous functions on the interval [a, b].
We have the following result:

Corollary 2 If w (or −w) ∈ M↗[a, b], then the function f (−f) defined by
(2.13) belongs to TSub[a, b].

Proof We use the Čebyšev inequality that state that

1

b− a

∫ b

a

F (t)G(t) dt ≥ (≤)
1

b− a

∫ b

a

F (t) dt
1

b− a

∫ b

a

G(t) dt

provided F and G have the same (opposite) monotonicity on [a, b].
Writing this inequality for F (t) = t and G(t) = w(t) we obtain the desired

result. �

Definition 4 We say that the Lebesgue integrable function f : [a, b] → R is of
sub(supper)-midpoint type if

∫ b

a

f(t) dt ≥ (≤) f

(
a+ b

2

)
(b− a). (2.16)

We denote this by f ∈ MSub(Sup)[a, b].

Moreover, we say that f is of midpoint type if f ∈ MSub[a, b] ∩MSup[a, b],
i.e. ∫ b

a

f(t) dt = f

(
a+ b

2

)
(b− a). (2.17)

We denote this by f ∈ M[a, b]. We observe that if f ∈ As[a, b] then obviously
f ∈ M[a, b] and there are functions which are of midpoint type but not anti-
symmetric. Indeed, if we consider the function f0 : [−2π, 2π] → R defined by

f0(t) =

{
0 if t ∈ [−2π, 0]

sin t if t ∈ (0, 2π],

then we observe that f0 ∈ M[−2π, 2π] but f0 is not anti-symmetric on [−2π, 2π].
It is obvious thatMSub[a, b] is a closed convex cone and it contains strictly

the convex cone of convex functions defined on [a, b], i.e.

Cv[a, b] �MSub[a, b].
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Proposition 6 Let w : [a, b] → R be a Lebesgue integrable function. Define
f : [a, b] → R by

f(t) =

∫ t

a

w(s) ds.

The following statements are equivalent:

(i) f(or −f) ∈ MSub[a, b];

(ii) We have the inequality:

∫ b

a

tw(t) dt ≤ (or ≥) a

∫ a+b
2

a

w(s) ds+ b

∫ b

a+b
2

w(s) ds. (2.18)

Proof Utilising the integration by parts for the Riemann integral we have:

∫ b

a

f(t) dt− f

(
a+ b

2

)
(b− a) =

∫ b

a

(∫ t

a

w(s) ds

)
dt− (b− a)

∫ a+b
2

a

w(t) dt

=

[(∫ t

a

w (s) ds

)
t

∣∣∣∣
b

a

−
∫ b

a

tw(t) dt

]
− (b− a)

∫ a+b
2

a

w(t) dt

=

(∫ b

a

w(s) ds

)
b−

∫ b

a

tw(t) dt− (b− a)

∫ a+b
2

a

w(t) dt

= b

∫ a+b
2

a

w(s) ds+ b

∫ b

a+b
2

w(s) ds−
∫ b

a

tw(t) dt− (b− a)

∫ a+b
2

a

w(t) dt

= a

∫ a+b
2

a

w(s) ds+ b

∫ b

a+b
2

w(s) ds−
∫ b

a

tw(t) dt,

which proves the desired result. �

3 Trapezoidal inequalities for the Riemann–Stieltjes
integral

We have the following result for the Riemann–Stieltjes integral.

Theorem 2 Let f ∈ C[a, b] ∩ UCh[a, b] and u ∈ M↗[a, b]. Then we have the
inequality

f(b)

[
u(b)− 1

b− a

∫ b

a

u(t) dt

]
+ f(a)

[
1

b− a

∫ b

a

u(t) dt− u(a)

]
≥
∫ b

a

f(t) du (t)

(3.1)
or, equivalently, the inequality∫ b

a

u(t) df (t) ≥ f(b)− f(a)

b− a

∫ b

a

u(t) dt. (3.2)
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Proof Since f ∈ C[a, b] and u ∈ M↗[a, b], then the Riemann–Stieltjes inte-
gral

∫ b

a
f(t) du (t) exists and integrating (2.1) over the monotonic nondecreasing

integrator u we have∫ b

a

(b− t)f(a) + (t− a)f(b)

b− a
du (t) ≥

∫ b

a

f(t) du(t). (3.3)

Integrating by parts in the Riemann–Stieltjes integral we have∫ b

a

(b− t)f(a) + (t− a)f(b)

b− a
du (t) =

(b− t) f(a) + (t− a) f(b)

b− a
u(t)

∣∣∣∣
b

a

− f(b)− f(a)

b− a

∫ b

a

u(t) dt = f(b)u(b)− f(a)u(a)− f(b)− f(a)

b− a

∫ b

a

u(t) dt

= f(b)

[
u(b)− 1

b− a

∫ b

a

u(t) dt

]
+ f(a)

[
1

b− a

∫ b

a

u(t) dt− u(a)

]
. (3.4)

Utilising the inequality (3.3) and the last equality in (3.4) we deduce (3.1).
Integrating by parts in the Riemann–Stieltjes integral we also have∫ b

a

f(t) du (t) = f(b)u(b)− f(a)u(a)−
∫ b

a

u(t) df(t). (3.5)

Making use of the inequality (3.3), the second equality in (3.4) and the equality
(3.5) we deduce the desired result (3.2). �

In the particular case when f is continuous convex on the interval [a, b] we
have:

Corollary 3 Let f ∈ C[a, b] ∩ Cv[a, b] and u ∈ M↗[a, b]. Then we have the
inequality (3.1) and the inequality (3.2).

Remark 2 The inequality (3.1) for differentiable convex functions was proved
in a different way by P. R. Mercer in 2008, see [20]. Without differentiability
assumption for the convex function f the inequality (3.1) was also proved in
[14]. We have shown in here that the inequality (3.1) can be naturally extended
to the class of under the chord continuous functions, which is a lot larger than
the class of convex functions on a given interval [a, b].
We also observe that the inequality (3.2) for the case of continuous convex

functions was first obtained in 2004 by the author [8] (see also [10]).

The case when the function u is of trapezoidal type provides the following
result:

Corollary 4 Let f ∈ C[a, b] ∩ UCh[a, b] and u ∈ M↗[a, b] ∩ T [a, b]. Then we
have the inequality

f(b) + f(a)

2
[u(b)− u(a)] ≥

∫ b

a

f(t) du(t) (3.6)
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or, equivalently, the inequality∫ b

a

u(t) df(t) ≥ u(b) + u(a)

2
[f(b)− f(a)] . (3.7)

The proof is obvious by Theorem 2 on using the equality

u(a) + u(b)

2
(b− a) =

∫ b

a

u(t) dt.

Remark 3 We observe that the inequalities (3.6) and (3.7) hold for continuous
convex functions f provided u ∈ M↗[a, b] ∩ T [a, b], which produce a general-
ization of the Hermite–Hadamard inequality for convex function, namely

f(b) + f(a)

2
(b− a) ≥

∫ b

a

f(t) dt

that is obtained from (3.6) when we take u(t) = t.

The weighted case is as follows:

Corollary 5 Let f ∈ C[a, b] ∩ UCh[a, b], w ∈ Sy[a, b] ∩ L[a, b] and w ≥ 0 on
[a, b]. Then we have the extension of Fejér inequality

f(b) + f(a)

2

∫ b

a

w(t) dt ≥
∫ b

a

f(t)w(t) dt. (3.8)

Proof Consider the function u : [a, b] → R defined by

u(t) :=

∫ t

a

w(s) ds− 1

2

∫ b

a

w(s) ds.

We observe that u ∈ M↗[a, b] and since w ∈ Sy[a, b], then by Proposition 4 we
deduce that u ∈ As[a, b].
Applying the inequality (3.6) of Corollary 4 we deduce the desired result

(3.8). �

Remark 4 We observe that for the particular case of f convex function we
recapture from (3.8) the classical Féjer inequality [15] (see also [13]).

We observe that, by (3.1) for u = v, we can state the following equivalent
inequality that is of interest for trapezoid type results:

Proposition 7 Let f ∈ C[a, b]∩UCh[a, b] and v ∈ M↗[a, b]. Then we have the
inequality

f(b) + f(a)

2
[v(b)− v(a)]−

∫ b

a

f(t) dv(t)

≥ f(b)− f(a)

b− a

[∫ b

a

v(t) dt− v(a) + v(b)

2
(b− a)

]
. (3.9)
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Remark 5 We observe that in the case when v ∈ M↗[a, b] ∩ T [a, b] or if
f(b) = f(a), then (3.9) reduces to (3.6). However, the inequality (3.9) can be
also used to provide other sufficient conditions for the inequality (3.6) to hold,
as follows.

Corollary 6 Let f ∈ C[a, b] ∩ UCh[a, b] and v ∈ M↗[a, b]. If either
(i) f(b) > f(a) and −v ∈ TSub[a, b]

or
(ii) f(b) < f(a) and v ∈ TSub[a, b],
then

f(b) + f(a)

2
[v(b)− v(a)] ≥

∫ b

a

f(t) dv(t). (3.10)

The inequality (3.10) obviously holds if f is convex and v is as in Corollary 6.

Remark 6 Let f ∈ C[a, b] ∩ UCh[a, b] and w : [a, b] → R be a Lebesgue inte-
grable function on [a, b]. If either

(i) f(b) > f(a) and ∫ b

a

tw(t) dt ≤ a+ b

2

∫ b

a

w(t) dt; (3.11)

or

(ii) f(b) < f(a) and ∫ b

a

tw(t) dt ≥ a+ b

2

∫ b

a

w(t) dt; (3.12)

then
f(b) + f(a)

2

∫ b

a

w(t) dt ≥
∫ b

a

w(t)f(t) dt. (3.13)

We observe that (3.11) holds if the function w ∈ M↘[a, b], the closed convex
cone of monotonic nonincreasing functions on [a, b]. Also, the condition (3.12)
is valid if w ∈ M↗[a, b].

The following dual result also holds:

Theorem 3 Let v ∈ C[a, b] ∩ UCh[a, b] and g ∈ M↘[a, b]. Then we have the
inequality

g(b) + g(a)

2
[v(b)− v(a)]−

∫ b

a

g(t)dv(t)

≥ v(b)− v(a)

b− a

[
g(a) + g(b)

2
(b− a)−

∫ b

a

g(t) dt

]
(3.14)
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The proof is obvious from (3.2) on choosing u = −g and f = v, namely

∫ b

a

g(t)dv(t) ≤ v(b)− v(a)

b− a

∫ b

a

g(t) dt.

The inequality (3.14) can be however used to obtain other sufficient condi-
tions for the inequality (3.10) to hold.

Corollary 7 Let v ∈ C[a, b] ∩ UCh[a, b] and g ∈ M↘[a, b]. If either
(i) g ∈ T [a, b] or v(b) = v(a),
or
(ii) v(b) > v(a) and g ∈ TSub[a, b],
or
(iii) v(b) < v(a) and −g ∈ TSub[a, b]
then

g(b) + g(a)

2
[v(b)− v(a)] ≥

∫ b

a

g(t) dv(t). (3.15)

The following connection with the Féjer inequality can be established.

Remark 7 Let w : [a, b] → R be a Lebesgue integrable function on [a, b] and
such that

1

b− t

∫ b

t

w(s) ds ≥ 1

t− a

∫ t

a

w(s) ds (3.16)

for any t ∈ (a, b). If
∫ b

a
w(s)ds > 0 and g ∈ M↘[a, b] ∩ TSub[a, b], then

g(b) + g(a)

2

∫ b

a

w(t) dt ≥
∫ b

a

w(t)g(t) dt. (3.17)

4 Midpoint inequalities for the Riemann–Stieltjes
integral

The following result holds:

Theorem 4 Let f ∈ C[a, b] ∩ UCh

[
a, a+b

2

]
∩ UCh

[
a+b
2 , a

]
and u ∈ M↗[a, b].

Then we have the inequality

∫ b

a

f(t) du(t)− [u(b)− u(a)]f

(
a+ b

2

)

≤
[
f

(
a+ b

2

)
− f(a)

][
u(a)− 2

b− a

∫ a+b
2

a

u(t) dt

]

+

[
f(b)− f

(
a+ b

2

)][
u(b)− 2

b− a

∫ b

a+b
2

u(t) dt

]
. (4.1)
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Proof Utilising the integration by parts on the Riemann–Stieltjes integral we
have∫ a+b

2

a

[u(t)− u(a)] df(t) +

∫ b

a+b
2

[u(t)− u(b)] df(t) = [u(t)− u(a)] f(t)
∣∣∣ a+b

2

a

−
∫ a+b

2

a

f(t) du(t) + [u(t)− u(b)] f(t)
∣∣∣b
a+b
2

−
∫ b

a+b
2

f(t) du(t)

=

[
u

(
a+ b

2

)
− u(a)

]
f

(
a+ b

2

)
−
∫ a+b

2

a

f(t) du(t)

+

[
u(b)− u

(
a+ b

2

)]
f

(
a+ b

2

)
−
∫ b

a+b
2

f(t) du(t)

= [u(b)− u(a)] f

(
a+ b

2

)
−
∫ b

a

f(t) du(t). (4.2)

Consider the function g : [a, b] → R defined by

g(t) :=

{
u(t)− u(a), t ∈

[
a, a+b

2

]
u(t)− u(b), t ∈

(
a, a+b

2

]
.

Then (4.2) can be written as

[u(b)− u(a)] f

(
a+ b

2

)
−
∫ b

a

f(t) du(t) =

∫ b

a

g(t) df(t). (4.3)

Since
f ∈ C[a, b] ∩ UCh

[
a, a+b

2

]
∩ UCh

[
a+b
2 , a

]
and u ∈ M↗ [a, a+b

2

]
∩M↗ [a+b

2 , b
]
, then we have from (3.2) that

∫ a+b
2

a

[u(t)− u(a)] df(t) ≥
f
(
a+b
2

)
− f(a)

a+b
2 − a

∫ a+b
2

a

[u(t)− u(a)] dt

=

[
f

(
a+ b

2

)
− f(a)

][
2

b− a

∫ a+b
2

a

u(t) dt− u(a)

]
(4.4)

and ∫ b

a+b
2

[u(t)− u(b)] df(t) ≥
f(b)− f

(
a+b
2

)
b− a+b

2

∫ b

a+b
2

[u(t)− u(b)] dt

=

[
f(b)− f

(
a+ b

2

)][
2

b− a

∫ b

a+b
2

u(t) dt− u(b)

]
. (4.5)

Adding (4.4) and (4.5) and utilizing (4.3) we deduce the desired inequality (4.1).
�



58 Silvestru S. Dragomir

Corollary 8 Let f ∈ C[a, b] ∩ UCh

[
a, a+b

2

]
∩ UCh

[
a+b
2 , a

]
and w : [a, b] → R be

a nonnegative Lebesgue integrable function on [a, b]. Then we have the inequality∫ b

a

f(t)w(t) dt− f

(
a+ b

2

)∫ b

a

w(t) dt

≤
[
f

(
a+ b

2

)
− f(a)

][
2

b− a

∫ a+b
2

a

w(t)

(
t− a+ b

2

)
dt

]

+

[
f(b)− f

(
a+ b

2

)][
2

b− a

∫ b

a+b
2

(
t− a+ b

2

)
w(t) dt

]
. (4.6)

Proof It follows by (4.1) for u(t) :=
∫ t

a
w(s) ds and observing that

u(a)− 2

b− a

∫ a+b
2

a

u(t) dt = − 2

b− a

∫ a+b
2

a

(∫ t

a

w(s) ds

)
dt

= − 2

b− a

((∫ t

a

w (s) ds

)
t

∣∣∣∣
a+b
2

a

−
∫ a+b

2

a

w(t)t dt

)

= − 2

b− a

((∫ a+b
2

a

w (s) ds

)
a+ b

2
−
∫ a+b

2

a

w(t)t dt

)

=
2

b− a

∫ a+b
2

a

w(t)

(
t− a+ b

2

)
dt

and

u(b)− 2

b− a

∫ b

a+b
2

u(t) dt =

∫ b

a

w(s) ds− 2

b− a

∫ b

a+b
2

(∫ t

a

w(s) ds

)
dt

=

∫ b

a

w(s) ds− 2

b− a

((∫ t

a

w(s) ds

)
t

∣∣∣∣
b

a+b
2

−
∫ b

a+b
2

tw(t)dt

)

=

∫ b

a

w(s) ds− 2

b− a

((∫ b

a

w(s) ds

)
b−

(∫ a+b
2

a

w(s) ds

)
a+ b

2
−
∫ b

a+b
2

tw(t) dt

)

:= I.

However (∫ b

a

w(s) ds

)
b−

(∫ a+b
2

a

w(s) ds

)
a+ b

2
−
∫ b

a+b
2

tw(t) dt

=

(∫ a+b
2

a

w(s) ds

)
b+

(∫ b

a+b
2

w(s) ds

)
b−

(∫ a+b
2

a

w(s) ds

)
a+ b

2
−
∫ b

a+b
2

tw(t) dt

=
b− a

2

(∫ a+b
2

a

w(s) ds

)
+

∫ b

a+b
2

(b− t)w(t) dt
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and then

I =

∫ b

a

w(s) ds− 2

b− a

(
b− a

2

(∫ a+b
2

a

w(s) ds

)
+

∫ b

a+b
2

(b− t)w(t) dt

)

=

∫ b

a

w(s) ds−
∫ a+b

2

a

w(s) ds− 2

b− a

∫ b

a+b
2

(b− t)w(t) dt

=

∫ b

a+b
2

w(s) ds− 2

b− a

∫ b

a+b
2

(b− t)w(t) dt

=
2

b− a

∫ b

a+b
2

(
b− a

2
− b+ t

)
w(t) dt =

2

b− a

∫ b

a+b
2

(
t− a+ b

2

)
w(t) dt,

which proves the desired inequality (4.6). �

Proposition 8 Let u ∈ C[a, b] ∩ UCh[a, b] and f ∈ M↗[a, b]. Then we have
the inequality

∫ b

a

f(t) du(t)− f

(
a+ b

2

)
[u(b)− u(a)]

≥ u(b)− u(a)

b− a

[∫ b

a

f(t) dt− f

(
a+ b

2

)
(b− a)

]
. (4.7)

The proof is obvious from (3.2) and the details are omitted.

Corollary 9 Let u ∈ C[a, b] ∩ UCh[a, b] and f ∈ M↗[a, b]. If either
(i) f ∈ M[a, b] or u(b) = u(a),
or
(ii) u(b) > u(a) and f ∈ MSub[a, b],
or
(iii) u(b) < u(a) and f ∈ MSup[a, b]
then ∫ b

a

f(t) du(t) ≥ f

(
a+ b

2

)
[u(b)− u(a)] . (4.8)

Remark 8 Let w : [a, b] → R be a Lebesgue integrable function on [a, b] and
such that

1

b− t

∫ b

t

w(s) ds ≥ 1

t− a

∫ t

a

w(s) ds

for any t ∈ (a, b) and f ∈ M↗[a, b]. If either

(i) f ∈ M[a, b] or
∫ b

a
w(s) ds = 0,

or
(ii)

∫ b

a
w(s) ds > 0 and f ∈ MSub[a, b],

or
(iii)

∫ b

a
w(s) ds < 0 and f ∈ MSup[a, b]
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then ∫ b

a

f(t)w(t)dt ≥ f

(
a+ b

2

)∫ b

a

w(t) dt. (4.9)

5 Applications for functions of selfadjoint operators

We denote by B(H) the Banach algebra of all bounded linear operators on a
complex Hilbert space (H; 〈·, ·〉). Let A ∈ B(H) be selfadjoint and let ϕλ be
defined for all λ ∈ R as follows

ϕλ (s) :=

{
1, for −∞ < s ≤ λ,

0, for λ < s < +∞.

Then for every λ ∈ R the operator

Eλ := ϕλ(A) (5.1)

is a projection which reduces A.
The properties of these projections are collected in the following fundamental

result concerning the spectral representation of bounded selfadjoint operators
in Hilbert spaces, see for instance [17, p. 256]:

Theorem 5 (Spectral Representation Theorem) Let A be a bounded self-
adjoint operator on the Hilbert space H and let m = min

{
λ
∣∣ λ ∈ Sp(A)

}
=:

minSp(A) and M = max
{
λ
∣∣ λ ∈ Sp(A)

}
=: maxSp(A). Then there exists

a family of projections {Eλ}λ∈R
, called the spectral family of A, with the fol-

lowing properties

a) Eλ ≤ Eλ′ for λ ≤ λ′;

b) Em−0 = 0, EM = I and Eλ+0 = Eλ for all λ ∈ R;

c) We have the representation

A =

∫ M

m−0

λdEλ.

More generally, for every continuous complex-valued function ϕ defined on
R and for every ε > 0 there exists a δ > 0 such that

∥∥∥∥ϕ(A)−
n∑

k=1

ϕ (λ′
k)
[
Eλk

− Eλk−1

]∥∥∥∥ ≤ ε

whenever ⎧⎪⎨
⎪⎩

λ0 < m = λ1 < ... < λn−1 < λn = M,

λk − λk−1 ≤ δ for 1 ≤ k ≤ n,

λ′
k ∈ [λk−1, λk] for 1 ≤ k ≤ n
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this means that

ϕ(A) =

∫ M

m−0

ϕ(λ) dEλ, (5.2)

where the integral is of Riemann–Stieltjes type.

Corollary 10 With the assumptions of Theorem 5 for A, Eλ and ϕ we have
the representations

ϕ(A)x =

∫ M

m−0

ϕ(λ) dEλx for all x ∈ H

and

〈ϕ(A)x, y〉 =
∫ M

m−0

ϕ (λ) d 〈Eλx, y〉 for all x, y ∈ H.

In particular,

〈ϕ(A)x, x〉 =
∫ M

m−0

ϕ(λ) d 〈Eλx, x〉 for all x ∈ H.

Moreover, we have the equality

‖ϕ(A)x‖2 =

∫ M

m−0

|ϕ (λ)|2 d ‖Eλx‖2 for all x ∈ H.

The following result holds:

Theorem 6 Let A be a bounded selfadjoint operator on the Hilbert space H
and let m = min {λ |λ ∈ Sp(A)} =: minSp(A) and M = max {λ |λ ∈ Sp(A)}
=: maxSp (A). If f ∈ C [m,M ] ∩ UCh [m,M ], then

f(m) + f(M)

2
I − f(a) ≥ f(M)− f(m)

M −m

(
M +m

2
I −A

)
(5.3)

in the operator order of B(H).

Proof Let {Eλ}λ∈R
be the spectral family of the bounded selfadjoint opera-

tor A.
Making use of the inequality (3.9) for v(λ) := 〈Eλx, x〉, with x ∈ H we have

f(m) + f(M)

2
‖x‖2 −

∫ M

m−0

f(λ) d 〈Eλx, x〉

≥ f(M)− f(m)

M −m

[∫ M

m−0

〈Eλx, x〉 dλ− ‖x‖2
2

(M −m)

]
, (5.4)

for any x ∈ H.
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Integrating by parts we have

∫ M

m−0

〈Eλx, x〉 dλ = 〈Eλx, x〉λ
∣∣∣M
m−0

−
∫ M

m−0

λd 〈Eλx, x〉

= M‖x‖2 −
∫ M

m−0

λ d 〈Eλx, x〉

and by (5.4) we get

f(m) + f(M)

2
‖x‖2 −

∫ M

m−0

f(λ) d 〈Eλx, x〉

≥ f (M)− f(m)

M −m

[
M‖x‖2 −

∫ M

m−0

λ d 〈Eλx, x〉 −
‖x‖2
2

(M −m)

]

=
f(M)− f(m)

M −m

[
M +m

2
‖x‖2 −

∫ M

m−0

λ d 〈Eλx, x〉
]

(5.5)

for any x ∈ H.
Utilising the spectral representation of functions of selfadjoint operators (5.2)

we have from (5.5)

f(m) + f(M)

2
‖x‖2 − 〈f(A)x, x〉 ≥ f(M)− f(m)

M −m

[
M +m

2
‖x‖2 − 〈Ax, x〉

]

for any x ∈ H, which is equivalent with (5.3). �

We also have:

Theorem 7 Let A be a bounded selfadjoint operator on the Hilbert space H
and let m = min {λ |λ ∈ Sp(A)} =: minSp(A) and M = max {λ |λ ∈ Sp(A)}
=: maxSp(A). If

f ∈ C [m,M ] ∩ UCh

[
m, m+M

2

]
∩ UCh

[
m+M

2 ,M
]

and let {Eλ}λ∈R
be the spectral family of the bounded selfadjoint operator A.

Then we have the inequality

〈f(A)x, x〉 − f

(
m+M

2

)
‖x‖2

≤
[
f(M)− f

(
m+M

2

)][
2

M −m

∫ M

m+M
2

〈(I − Eλ)x, x〉 dλ
]

+

[
f(m)− f

(
m+M

2

)][
2

M −m

∫ m+M
2

m−0

〈Eλx, x〉 dλ
]
, (5.6)

for any x ∈ H.
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The proof follows by (4.7) by a similar argument to the one from the proof
of Theorem 6 and the details are omitted.

Remark 9 If we take in (5.6) f : R → R, f(t) :=
∣∣t− m+M

2

∣∣p, p ≥ 1, then we
have from (5.6) the following inequality〈∣∣∣∣A− m+M

2
I

∣∣∣∣
p

x, x

〉

≤
(
M −m

2

)p−1
[∫ M

m+M
2

〈(I − Eλ)x, x〉 dλ+

∫ m+M
2

m−0

〈Eλx, x〉 dλ
]

(5.7)

for any x ∈ H.
The interested reader may state other similar inequalities by choosing various

examples of convex functions of interest. The details are omitted.
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