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Abstract

This paper is concerned with asymptotic analysis of strongly decaying
solutions of the third-order singular differential equation x′′′+q(t)x−γ = 0,
by means of regularly varying functions, where γ is a positive constant
and q is a positive continuous function on [a,∞). It is shown that if q
is a regularly varying function, then it is possible to establish necessary
and sufficient conditions for the existence of slowly varying solutions and
regularly varying solutions of (A) which decrease to 0 as t → ∞ and
to acquire precise information about the asymptotic behavior at infinity
of these solutions. The main tool is the Schauder–Tychonoff fixed point
theorem combined with the basic theory of regular variation.

Key words: third order nonlinear differential equation, singular
nonlinearity, positive solution, decaying solution, asymptotic behav-
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1 Introduction

In this paper we are interested in the existence and accurate asymptotic be-
havior near infinity of positive solutions of the third order nonlinear differential
equation

x′′′ + q(t)x−γ = 0, (A)

where
(a) γ is a positive constant;
(b) q : [a,∞) → (0,∞) is a continuous function, a > 0.
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By a proper solution of equation (A) we mean three times continuously dif-
ferentiable function x : [t0,∞) → (0,∞), t0 ≥ a, which satisfies (A) on [t0,∞).
To examine these solutions it may be useful to make an “apriori” classification
of proper solutions of (A) according to their asymptotic behavior at infinity.
Let x be a positive solution of (A) defined on some [t0,∞). Then for

t ∈ [t0,∞) x′′′(t) < 0 holds, which means that x′′ decreases. This implies
that x′′(t) > 0 (else it would lead to the contradiction with the assumption
of positivity of the solution x), and so there exists a finite limit x′′(∞) :=
limt→∞ x′′(t) ≥ 0 (using L’Hospital rule with unbounded denominator we know
that also limt→∞

x(t)
t2 = 1

2 limt→∞ x′′(t) ≥ 0) and that x′ increases. It may
increase to zero, positive constant or to infinity (negative constant is excluded
again because of the assumption of positivity of the solution), i.e. limt→∞

x(t)
t =

limt→∞ x′(t) := x′(∞) ≥ 0. In case x′ increases to positive constant or to in-
finity, x′(t) > 0 holds in the neighborhood of infinity and that means that x
increases to infinity. The case x′ increases to zero implies that x′(t) < 0 for
t ∈ [t0,∞), so there are two possibilities: x decreases to zero or to positive
constant (let us put x(∞) := limt→∞ x(t)).
Summarizing the above observations, we see that if x is a positive increasing

solution of (A) then its asymptotic behavior falls into one of the three types

lim
t→∞

x(t)

t2
= const > 0, (I)

lim
t→∞

x(t)

t2
= 0, lim

t→∞
x(t)

t
= ∞, (II)

lim
t→∞

x(t)

t
= const > 0, (III)

and that if x is a positive decreasing solution of (A), then it satisfies either

lim
t→∞x(t) = const > 0, (IV)

or
lim
t→∞ x(t) = 0. (V)

Let us introduce a relation ∼ defined by

f(t) ∼ g(t) for t → ∞ ⇐⇒ lim
t→∞

f(t)

g(t)
= 1,

The expression f(t) ∼ g(t) is read “f is asymptotically equivalent to g as t → ∞”
or “f behaves as g for t → ∞”.
Using terms of this symbol we can distinguish solutions x(t) ∼ ct2, x(t) ∼

ct, x(t) ∼ c for some constant c > 0 (solutions of type (I), (III) and (IV)
respectively). These solutions are called also primitive solutions of Eq. (A),
while solutions of types (V) and (II) are nonprimitive ones.
In this paper, we focus our attention on solutions of type (V), which are

often referred to as strongly decaying solutions. We try to get as precise infor-
mation about their asymptotic behavior as possible. To that end some more
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assumptions on Eq. (A) are put and only a certain subset of strongly decaying
solutions is considered.
The first step in our investigation is to find a corresponding integral equation

for this solution type. Let x be a strongly decaying solution of (A). Integrating
(A) three times on [t,∞), where t ∈ [t0,∞), and using the fact that in this case
x′′(∞) = x′(∞) = x(∞) = 0, we have for x the integral equation

x(t) =

∫ ∞

t

∫ ∞

s

∫ ∞

r

q(u)x(u)−γdudrds, t ≥ t0. (1.1)

Conversly, a positive continuous function x satisfying (1.1) for t ≥ t0 gives a
strongly decaying solution of (A) on [t0,∞). The integral equation (1.1) can be
approximated at infinity by the asymptotic integral relation

x(t) ∼
∫ ∞

t

∫ ∞

s

∫ ∞

r

q(u)x(u)−γdudrds, t → ∞. (AR)

To solve this asymptotical integral relation is a very difficult problem for
the case where q is a general continuous function. However, the recent de-
velopment of asymptotic analysis of differential equations by means of regular
variation suggests investigating the problem in the framework of regularly vary-
ing functions (or Karamata functions). For the reader’s benefit we recall here
the definition and the most important properties of regularly varying functions.

Definition 1.1 [9] A measurable function f : (a,∞) → (0,∞) is called regu-
larly varying of index ρ (with ρ ∈ R) if it satisfies

lim
t→∞

f(λt)

f(t)
= λρ,

for all λ ∈ R
+ or equivalently if it can be expressed in the form

f(t) = c(t) exp

(∫ t

a

�(s)

s
ds

)
, t ≥ a,

for some a > 0 and some measurable functions c(t) and �(t) satisfying
limt→∞ c(t) = c0 > 0 and limt→∞ �(t) = ρ.
Totality of regularly varying functions of index ρ is denoted by RV(ρ). If in

particular ρ = 0, we use SV instead of RV(0) and refer to members of SV as
slowly varying functions. It is clear that RV(ρ)-functions can be expressed as

f(t) = tρL(t), L ∈ SV.

Some other basic properties used in the paper can be seen easily:

Proposition 1.1 [9] If L, L1 and L2 are slowly varying, then also Lα for every
real α is slowly varying and L1.L2 is slowly varying, too.
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Proposition 1.2 [9] If some positive measurable function f behaves as a reg-
ularly varying function of index ρ, i.e. if f(t) ∼ tρL(t), as t → ∞, then f is a
regularly varying function of index ρ, i.e. f(t) = tρL∗(t), where L∗ ∈ SV and in
general L∗ 	= L but L∗(t) ∼ L(t), as t → ∞.

Definition 1.2 Regularly varying function f will be called a trivial regularly
varying function (of index ρ) if it is possible to write it in the form f(t) = tρL(t),
where L(t) is slowly varying fulfilling

lim
t→∞L(t) = const > 0.

Otherwise f is called a nontrivial regularly varying function (of index ρ). In the
case ρ = 0, terminology trivial, resp. nontrivial slowly varying function is used.

According to this definition a primitive solution x of (A) such that x(t) ∼ ctj ,
for some c > 0 and j ∈ {0, 1, 2} is a trivial regularly varying solution of index
j. As we will see later, nonprimitive solutions of (A) of type (V) can be trivial
or nontrivial.
The most crucial tool used in our analysis is the following proposition known

as Karamata’s integration theorem:

Proposition 1.3 [1] Let L ∈ SV. Then for t → ∞
(i) if α > −1,

t∫
a

sαL(s)ds ∼ 1

α+ 1
tα+1L(t),

(ii) if α < −1,
∞∫
t

sαL(s)ds ∼ − 1

α+ 1
tα+1L(t),

(iii) if α = −1,

l(t) :=

t∫
a

L(s)

s
ds ∈ SV and lim

t→∞
L(t)

l(t)
= 0

and if L(t)
t is integrable on [a,∞), then

m(t) :=

∞∫
t

L(s)

s
ds ∈ SV and lim

t→∞
L(t)

m(t)
= 0.

For more about regular variation see Bingham et al [1] and for results up
to 2000 of its applications to second order ordinary differential equations see
Marić [9]. For the literature devoted to differential equations (of the second
order) with singular nonlinearities more or less related to present work, we refer
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to Tanigawa and Kusano [8], [10] and Kamo and Usami [5]. The Emden-Fowler-
type equation of the second and higher order with a positive exponent in context
of the regular variation was studied e.g. in [3], [4], [6] and [7]. We partially extend
these results to the singular equation (A). Similar type of results obtained by
another approach of examination of Emden-Fowler like equations under various
and quite general settings can be found in papers by Evtukhov et al, see e.g.
[2], where unbounded solutions are studied.

2 Asymptotic analysis of the integral asymptotic relation

In this section we find necessary and sufficient conditions for the existence of
regularly varying strongly decaying solutions of integral asymptotic relation

x(t) ∼
∫ ∞

t

∫ ∞

s

∫ ∞

r

q(u)x(u)−γdudrds, (AR)

where q is regularly varying. Precise information about asymptotic behavior
near infinity of these solutions is found.

Theorem 2.1 Let q be a regularly varying function of index σ. The integral
asymptotic relation (AR) has slowly varying solutions if and only if σ = −3 and

∞∫
a

t2q(t) dt < ∞, (2.1)

in which case any such solution x is nontrivial slowly varying and has the asymp-
totic behavior

x(t) ∼

⎡
⎣1 + γ

2

∞∫
t

s2q(s) ds

⎤
⎦

1
1+γ

, t → ∞. (2.2)

Theorem 2.2 Let q be a regularly varying function of index σ. The integral
asymptotic relation (AR) has regularly varying solutions of index ρ < 0 if and
only if σ < −3, in which case the index ρ is given by

ρ =
σ + 3

1 + γ
(2.3)

and any such solution x has the asymptotic behavior

x(t) ∼
[

t3q(t)

(−ρ)(1− ρ)(2− ρ)

] 1
1+γ

, t → ∞. (2.4)

Proof of Theorems 2.1, 2.2. Let us put q(t) = tσl(t), l ∈ SV.
(The “only if” part) Suppose that (AR) has a regularly varying solution

x ∈ RV(ρ) on [t0,∞). It is clear that ρ ≤ 0 and that x satisfies (V). Let
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x(t) = tρξ(t), ξ ∈ SV. Since the expression q(t)x(t)−γ = tσ−ργ l(t)ξ(t) in (AR)
has to be three times integrable on [t0,∞), it implies that σ − ργ ≤ −3 holds.
(a) First we consider the case σ − ργ = −3. Then the right-hand side of

(AR) becomes
∞∫
t

∞∫
s

∞∫
r

u−3l(u)ξ(u)−γdudrds. (2.5)

Proposition 1.1 implies lξ−γ ∈ SV so we can use Proposition 1.3 (ii) twice and
we have that (2.5) is asymptotically equivalent to

1

2

∞∫
t

s−1l(s)ξ(s)−γds. (2.6)

From Proposition 1.3 (iii) it follows that (2.6) is from SV, so we have

x(t) ∼ 1

2

∞∫
t

s−1l(s)ξ(s)−γds ∈ SV.

We see that x is asymptotically equivalent to slowly varying function, according
to Proposition 1.2 x is a slowly varying function, i.e. ρ = 0 which implies that
σ = −3 and x(t) = ξ(t) on [t0,∞). So we have

x(t) ∼ 1

2

∞∫
t

s−1l(s)x(s)−γds, t → ∞. (2.7)

Let us denote the right-hand side of (2.7) by y(t) (⇒ x(t) ∼ y(t)) and rewrite
it into the following differential asymptotic relation:

y′(t) = −1

2
t−1l(t)x(t)−γ ∼ −1

2
t−1l(t)y(t)−γ ,

that is

−y(t)γy′(t) ∼ 1

2
t−1l(t) =

1

2
t2q(t). (2.8)

The left-hand side of (2.8) is integrable on [t,∞) for every t ≥ t0 (since
y(∞) := limt→∞ y(t) = limt→∞ x(t) = 0), so is t2q(t) (and the condition (2.1)
is fulfilled) and we have for t → ∞:

−y(∞)1+γ

1 + γ
+

y(t)1+γ

1 + γ
∼ 1

2

∞∫
t

s2q(s) ds,

x(t) ∼ y(t) ∼

⎡
⎣1 + γ

2

∞∫
t

s2q(s) ds

⎤
⎦

1
1+γ

,
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what shows that (2.2) holds and that x is nontrivial slowly varying (since x ∈ SV
and limt→∞ x(t) = 0).
(b) Next we consider the case σ − ργ < −3. Then we can use Proposition

1.3 (ii) three times to get

x(t) ∼
∞∫
t

∞∫
s

∞∫
r

uσ−ργ l(u)ξ(u)−γdudrds

∼ tσ−ργ+3l(t)ξ(t)−γ

[−(σ − ργ + 1)][−(σ − ργ + 2)][−(σ − ργ + 3)]
, t → ∞. (2.9)

This together with Proposition 1.2 implies that x ∈ RV(σ − ργ + 3), i.e. ρ =
σ − ργ + 3 < 0, from what follows that (2.3) and σ < −3 hold. Returning to
the functions q and x and using the equality ρ = σ − ργ + 3 in denominator of
(2.9), we get for t → ∞

x(t) ∼ t3q(t)x(t)−γ

(2− ρ)(1− ρ)(−ρ)

and finally

x(t) ∼
[

t3q(t)

(−ρ)(1− ρ)(2− ρ)

] 1
1+γ

, t → ∞.

This completes the proof of the “only if” parts of Theorems 2.1 and 2.2.
(The “if” part) Let us define the function

X(t) =

⎧⎪⎨
⎪⎩

[
1+γ
2

∫∞
t

s2q(s)ds
] 1

1+γ if σ = −3 and (2.1) holds;

[
t3q(t)

(−ρ)(1−ρ)(2−ρ)

] 1
1+γ

if σ < −3, where ρ =
σ + 3

1 + γ

(2.10)

and show that it satisfies asymptotic relation

X(t) ∼
∞∫
t

∞∫
s

∞∫
r

q(u)X(u)−γdudrds, t → ∞. (2.11)

If σ = −3 and (2.1) holds, then the right-hand side of (2.11) becomes

∞∫
t

∞∫
s

∞∫
r

u−3l(u)

⎡
⎣1 + γ

2

∞∫
u

v2q(v)dv

⎤
⎦

−γ
1+γ

dudrds. (2.12)

Since l(t)

[
1 + γ

2

∫∞
t

s2q(s)ds

] −γ
1+γ

∈ SV, we can use Proposition 1.3 (ii) twice

to see that (2.12) is asymptotically equivalent to

1

2

∞∫
t

s−1l(s)

⎡
⎣1 + γ

2

∞∫
s

r−1l(r) dr

⎤
⎦

−γ
1+γ

ds = −
0∫

X(t)

dX(s) = X(t),
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as t → ∞. It is evident that the solution X is nontrivial slowly varying in this
case.
If σ < −3, then we have

∞∫
t

∞∫
s

∞∫
r

q(u)X(u)−γdudrds =

∞∫
t

∞∫
s

∞∫
r

uσl(u)

[
t3q(t)

(−ρ)(1− ρ)(2− ρ)

] −γ
1+γ

dudrds

=

∫∞
t

∫∞
s

∫∞
r

uσ−ργ l(u)
1

1+γ dudrds

[(−ρ)(1− ρ)(2− ρ)]
−γ
1+γ

=

∫∞
t

∫∞
s

∫∞
r

uρ−3l(u)
1

1+γ dudrds

[(−ρ)(1− ρ)(2− ρ)]
−γ
1+γ

, (2.13)

where ρ = (σ+3)/(1+ γ). Using (ii) of Proposition 1.3 three times we see that
(2.13) is asymptotically equivalent to

tρl(t)
1

1+γ

(−ρ)(1− ρ)(2− ρ) [(−ρ)(1− ρ)(2− ρ)]
−γ
1+γ

=

[
t3q(t)

(−ρ)(1− ρ)(2− ρ)

] 1
1+γ

= X(t),

as t → ∞.
This proves the “if” parts of Theorems 2.1 and 2.2. �

3 Existence of strongly decaying solutions of the equa-
tion (A)

Now we will relax the assumption on the coefficient q. For this purpose let us
introduce the following relation. Let f and g be two positive functions defined
on some [T,∞). We use the notation

f(t) � g(t), t → ∞
to denote that there exist positive constants m and M such that

mg(t) ≤ f(t) ≤ Mg(t), for t ∈ [T,∞).

Definition 3.1 Let f be a positive function defined on [0,∞). If there exists
g ∈ RV(ρ) such that

f(t) � g(t), t → ∞,

then we call f nearly regularly varying of index ρ. If ρ = 0, f is said to be
nearly slowly varying.

Theorem 3.1 Let γ < 1 and let q be nearly regularly varying of index σ, i.e.
q � qσ at infinity for some qσ ∈ RV(σ). Suppose that σ = −3 and (2.1) holds.
Then, Eq. (A) possesses a strongly decaying solution x which is nearly slowly
varying and satisfies

x(t) �

⎡
⎣1 + γ

2

∞∫
t

s2qσ(s) ds

⎤
⎦

1
1+γ

, t → ∞. (3.1)
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Theorem 3.2 Let γ < 1 and let q be nearly regularly varying of index σ, i.e.
q � qσ at infinity, for some qσ ∈ RV(σ). Suppose that σ < −3. Then, Eq.
(A) possesses a strongly decaying solution x which is nearly regularly varying of
index ρ < 0 and satisfies

x(t) �
[

t3qσ(t)

(−ρ)(1− ρ)(2− ρ)

] 1
1+γ

, t → ∞, (3.2)

where ρ is given by (2.3).

Proof of Theorems 3.1 and 3.2. Suppose that σ < −3 or that σ = −3 and
(2.1) holds. Since q is nearly regularly varying of index σ, there exist positive
constants k and K (k ≤ K) and qσ ∈ RV(σ) such that

kqσ(t) ≤ q(t) ≤ Kqσ(t), t ∈ [T,∞). (3.3)

From the first inequality in (3.3) it is clear that
∫∞
a

t2qσ(t)dt < ∞. Let us define

X(t) =

⎧⎪⎨
⎪⎩
[
1+γ
2

∫∞
t

s2qσ(s) ds
] 1

1+γ if σ = −3 and (2.1) holds;

[
t3qσ(t)

(−ρ)(1−ρ)(2−ρ)

] 1
1+γ

if σ < −3, where ρ = σ+3
1+γ .

We know from the preceding section that X(t) satisfies the asymptotic relation

X(t) ∼
∞∫
t

∞∫
s

∞∫
r

qσ(u)X(u)−γdudrds, t → ∞.

This implies that there exists T > a such that

X(t)

2
≤

∞∫
t

∞∫
s

∞∫
r

qσ(u)X(u)−γdudrds ≤ 2X(t), t ≥ T. (3.4)

Let us choose positive constants m and M (m < M) so that

mMγ ≤ k

2
, Mmγ ≥ 2K, (3.5)

hold. Notice that
k

2
< 2K, so mMγ < Mmγ have to be fulfilled, or equivalently

m1−γ < M1−γ .

This is possible only if γ < 1, what is a reason for this additional assumption
on Eq. (A).
Next let us define the set

X = {x ∈ C[T,∞) : mX(t) ≤ x(t) ≤ MX(t), t ≥ T} (3.6)
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and the operator

Fx(t) =

∞∫
t

∞∫
s

∞∫
r

q(u)x(u)−γdudrds, t ≥ T.

It is clear that X is a closed convex subset of the locally convex space
C[T,∞). Let us show that F fulfils conditions of the Schauder–Tychonoff fixed
point theorem
(i) F(X ) ⊂ X .
Using conditions (3.3)–(3.6) and bearing in mind that x−γ is a decreasing

function of x, we see that for an arbitrary x ∈ X and for all t ∈ [T,∞)

Fx(t) ≤ Km−γ

∞∫
t

∞∫
s

∞∫
r

qσ(u)X(u)−γdudrds ≤ Km−γ2X(t) ≤ MX(t)

and

Fx(t) ≥ kM−γ

∞∫
t

∞∫
s

∞∫
r

qσ(u)X(u)−γdudrds ≥ kM−γX(t)

2
≥ mX(t)

holds. So we have mX(t) ≤ Fx(t) ≤ MX(t) for t ≥ T , which means that
Fx ∈ X . Since x ∈ X is arbitrary it follows that F(X ) ⊂ X .
(ii) F(X ) is relatively compact.
From (i) we see that mX(t) ≤ Fx(t) ≤ MX(t), t ≥ T , for all x ∈ X . Since

neither upper bound nor lower bound for Fx(t) depends on x ∈ X , F(X ) is
uniformly bounded on [T,∞).
To show equicontinuity we will show the uniform boundedness of the oper-

ator (Fx)′:

(Fx)
′
(t) = −

∞∫
t

∞∫
s

q(r)x(r)−γdrds ≤ 0

and

(Fx)
′
(t) = −

∞∫
t

∞∫
s

q(r)x(r)−γdrds ≥ −m−γ

∞∫
t

∞∫
s

q(r)X(r)−γdrds

for all x ∈ X and all t ∈ [T,∞). Since
∫∞
t

∫∞
s

q(r)X(r)−γdrds is integrable
on [T,∞), it is bounded there, and so also (Fx)′ is uniformly bounded, conse-
quently F(X ) is equicontinuous and we can use Arzela–Ascoli Theorem to see
that F(X ) is relative compact.
(iii) F is continuous. Let {xn}∞n=1 ⊂ X be a sequence converging to x ∈ X in

a topology on C[T,∞), i.e. xn(t) → x(t) uniformly on every compact subinterval
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of [T,∞). To show that Fxn → Fx in topology on C[T,∞) we observe that for
t ≥ T

|Fxn(t)−Fx(t)| ≤
∞∫
t

∞∫
s

∞∫
r

q(u)
∣∣xn(u)

−γ − x(u)−γ
∣∣ dudrds

≤ K
1

2

∞∫
t

(s− t)2qσ(s)
∣∣xn(s)

−γ − x(s)−γ
∣∣ ds

≤ K
1

2

∞∫
t

s2qσ(s)
∣∣xn(s)

−γ − x(s)−γ
∣∣ ds

≤ K
1

2

∞∫
T

t2qσ(t)
∣∣xn(t)

−γ − x(t)−γ
∣∣ dt.

Put fn(t) := t2qσ(t) |xn(t)
−γ − x(t)−γ |. We see that

(1) fn(t) → 0 as n → ∞ for each fixed t ∈ [T,∞) and
(2) |fn(t)| ≤ 2m−γt2qσ(t)X(t)−γ =: G(t) (the dominant function).
Since

4m−γ

∞∫
t

∞∫
s

qσ(r)X(r)−γdrds

is integrable on [T,∞), such is also G (they are asymptotically equivalent).
Thanks to (1) and (2) we can use the Lebesque dominated convergence theorem
to see that also

K
1

2

∞∫
T

t2qσ(t)
∣∣xn(t)

−γ − x(t)−γ
∣∣ dt → 0,

for n → ∞. Since the convergence does not depend on t ∈ [T,∞), it is uniform
on [T,∞) and so also on every compact subinterval of [T,∞), i.e. Fxn → Fx
in topology on C[T,∞), from what follows that F is continuous.
Using results of (i), (ii) and (iii), by the Schauder–Tychonoff fixed point

theorem we know that there is x ∈ X such that x(t) = Fx(t), i.e.

x(t) =

∞∫
t

∞∫
s

∞∫
r

q(u)x(u)−γdudrds, t ≥ T,

which after differentiating three times gives that x is a solution of Eq. (A) and
simultaneously mX(t) ≤ x(t) ≤ MX(t), t ≥ T , so x is nearly slowly varying,
resp. nearly regularly varying of index ρ = (σ+3)/(1+ γ), when σ = −3, resp.
σ < −3.
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4 Regularly varying solutions

Returning to the property of regular variation of q, we show that there are
also strongly decaying solutions of Eq. (A) which are regularly varying. The
following lemma which is a generalization of the L’Hospital rule is useful for
this purpose.

Lemma 4.1 [11] Let f , g ∈ C1[T,∞) and suppose that

lim
t→∞ f(t) = lim

t→∞ g(t) = ∞ and g′(t) > 0, t ∈ [T,∞),

or
lim
t→∞ f(t) = lim

t→∞ g(t) = 0 and g′(t) < 0, t ∈ [T,∞).

Then

lim inf
t→∞

f ′(t)
g′(t)

≤ lim inf
t→∞

f(t)

g(t)
; lim sup

t→∞
f(t)

g(t)
≤ lim sup

t→∞
f ′(t)
g′(t)

.

Theorem 4.1 Let γ < 1 and let q be a regularly varying function of index
σ. Eq. (A) possesses strongly decaying slowly varying solutions if and only if
σ = −3 and (2.1) holds, in which case any such solution x has the asymptotic
behavior

x(t) ∼

⎡
⎣1 + γ

2

∞∫
t

s2q(s)ds

⎤
⎦

1
1+γ

, t → ∞. (4.1)

Theorem 4.2 Let γ < 1 and let q be a regularly varying function of index
σ. Eq. (A) possesses regularly varying solutions of index ρ < 0 if and only if

σ < −3, in which case index ρ is given by ρ =
σ + 3

1 + γ
and any such solution x

has the asymptotic behavior

x(t) ∼
[

t3q(t)

(−ρ)(1− ρ)(2− ρ)

] 1
1+γ

, t → ∞. (4.2)

Proof of Theorems 4.1 and 4.2. (The “only if“ part) All regularly varying
solutions of index ρ < 0 and strongly decaying slowly varing solutions of Eq. (A)
satisfy also the integral asymptotic relation (AR), and so the “only if” parts of
these theorems are implied by the “only if” parts of Theorems 2.1 and 2.2.
(The “if” part) Let σ and q fulfil required conditions. From Theorem 3.1

and 3.2 we know that there exists a nearly regularly varying solution of Eq. (A)
obtained as the solution of the integral equation

x(t) =

∞∫
t

∞∫
s

∞∫
r

q(u)x(u)−γdudrds.

Let us define again X as in (2.10) and let us show that x(t) ∼ X(t) (from what
(4.1) and (4.2) will follow).



Decaying regularly varying solutions of third-order differential. . . 103

Define the function J by

J(t) =

∞∫
t

∞∫
s

∞∫
r

q(u)X(u)−γdudrds.

From the proof of Theorems 2.1 and 2.2 we know that

J(t) ∼ X(t), t → ∞, (4.3)

and from Theorems 3.1 and 3.2 that

x(t) � X(t), t → ∞. (4.4)

Put

l := lim inf
t→∞

x(t)

J(t)
, L := lim sup

t→∞
x(t)

J(t)
(4.5)

Combining (4.3) and (4.4), we see that x(t) � J(t), t → ∞, so constants l
and L defined by (4.5) satisfy

0 < l ≤ L < ∞. (4.6)

Since limt→∞ J (i)(t) = limt→∞ x(i)(t) = 0, i = 0, 1, 2, we can apply Lemma
4.1 three times to l to get

l = lim inf
t→∞

x(t)

J(t)
≥ lim inf

t→∞
x′(t)
J ′(t)

= lim inf
t→∞

∫∞
t

∫∞
s

q(r)x(r)−γdrds∫∞
t

∫∞
s

q(r)X(r)−γdrds

≥ lim inf
t→∞

∫∞
t

q(s)x(s)−γds∫∞
t

q(s)X(s)−γds
≥ lim inf

t→∞
q(t)x(t)−γ

q(t)X(t)−γ

= lim inf
t→∞

[
x(t)

X(t)

]−γ

=

[
lim inf
t→∞

x(t)

J(t)

]−γ

= l−γ ,

where we used (4.3) in the final step. Thus l ≥ l−γ holds. Together with (4.6)
and the fact that −γ < 0, we have l ≥ 1.
Analogously we get that L ≤ L−γ and that L ≤ 1 holds.
Simultaneously L ≥ l what implies that L = l = 1 has to hold, i.e. there

exists limt→∞
x(t)
J(t) = 1. This implies x(t) ∼ J(t) ∼ X(t) as t → ∞. �

Example 4.1 Let 0 < γ < 1 and consider the equation

x′′′ + q1(t)x
−γ = 0, q1(t) ∼

2

t3
(log t)−γ−2, t → ∞. (A1)

The function q1 ∈ RV(−3) and satisfies the condition (2.1) (due to a need of
the positivity of the function q on [a,∞), we consider a > 1)

∞∫
a

t2q1(t)dt ∼
[
2(log t)−γ−1

−γ − 1

]∞
a

=
2(log a)−γ−1

γ + 1
.
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Consequently by Theorem 4.1 Eq. (A1) possesses strongly decaying solutions
which are nontrivial slowly varying and all such solutions have the unique
asymptotic behavior

x(t) ∼

⎡
⎣1 + γ

2

∞∫
t

s2q1(s) ds

⎤
⎦

1
1+γ

∼ 1

log t
, t → ∞.

If in particular

q1(t) =
2

t3(log t)γ+2

(
1 +

3

log t
+

3

(log t)2

)
,

then Eq. (A1) has an exact nontrivial slowly varying solution x(t) = 1/ log t for
any values of γ > 0.

Example 4.2 Let 0 < γ < 1 and consider the equation

x′′′ + q2(t)x
−γ = 0, q2(t) =

15

8
t
−7−γ

2 exp((1 + γ)(log t)
1
3 cos(log t)

1
3 ). (A2)

Notice that q2 ∈ RV(σ), with σ = −7−γ
2 < −3. By Theorem 4.2 Eq. (A2) pos-

sesses strongly decaying solutions which are regularly varying of index
ρ = − 1

2 and behave like

x(t) ∼ t−
1
2 exp((log t)

1
3 cos(log t)

1
3 ), t → ∞.

Remark 4.1 As we can see recent results for some ordinary differential equa-
tions obtained in context of Karamata’s functions can be extended also to
strongly decaying solutions of the singular differential equation (A). The in-
creasing solutions (of type (II)) of Eq. (A) will be the subject of our forthcoming
paper. In view of Example 4.1 and the fact that complete analysis of (AR) in
terms of strongly decreasing regularly varying solutions can be made for any
values γ > 0, it can be expected that even for γ > 1 Eq. (A) with regularly
varying q may possess strongly decaying solutions which are regularly varying
with accurate asymptotic behavior at infinity.
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[9] Marić, V.: Regular Variation and Differential Equations. Lecture notes in Mathematics
1726, Springer-Verlag, Berlin–Heidelberg, 2000.

[10] Tanigawa, T.: Positive solutions to second order singular differential equations involving
the one-dimensional M-Laplace operator. Georgian Math. J. 6 (1999), 347–362.

[11] Taylor, A. E.: L’Hospital’s rule. Amer. Math. Monthly 59 (1952), 20–24.


		webmaster@dml.cz
	2015-09-05T19:01:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




