Archivum Mathematicum

A. Ntyam; G. F. Wankap Nono; Bitjong Ndombol

On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles

Archivum Mathematicum, Vol. 50 (2014), No. 3, 161-169
Persistent URL: http://dml.cz/dmlcz/143924

Terms of use:

© Masaryk University, 2014
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON LIFTS OF SOME PROJECTABLE VECTOR FIELDS ASSOCIATED TO A PRODUCT PRESERVING GAUGE BUNDLE FUNCTOR ON VECTOR BUNDLES

A. Ntyam, G. F. Wankap Nono, and Bitjong Ndombol

Abstract

For a product preserving gauge bundle functor on vector bundles, we present some lifts of smooth functions that are constant or linear on fibers, and some lifts of projectable vector fields that are vector bundle morphisms.

1. Introduction

Weil functors (product preserving bundle functors on manifolds) were used in [2] to define some lifts of geometric objects namely, smooth functions, tensor fields and linear connections on manifolds.

Product preserving gauge bundle functor on vector bundles have been classified in [7: The set of equivalence classes of such functors are in bijection with the set of equivalence classes of pairs (A, V), where A is a Weil algebra and V a A-module such that $\operatorname{dim}_{\mathbb{R}}(V)<\infty$.

In this paper, we adopt the approach of [2] to present some lifts of smooth functions that are constant or linear on fibers, and some lifts projectable vector fields that are vector bundle morphisms.

2. Algebraic description of Weil functors

Weil functors generalize through their covariant description ([3] and [6]) the classical bundle functors of velocities T_{k}^{r}. Their particular importance in differential geometry comes from the fact that there is a bijective correspondence between them and the set of product preserving bundle functors on the category of smooth manifolds.

2.1. Weil algebra.

A Weil algebra is a finite-dimensional quotient of the algebra of germs $\mathcal{E}_{p}=$ $C_{0}^{\infty}\left(\mathbb{R}^{p}, \mathbb{R}\right) \quad(p \in \mathbb{N})$.

[^0]We denote by \mathcal{M}_{p} the ideal of germs vanishing at $0 ; \mathcal{M}_{p}$ is the maximal ideal of the local algebra \mathcal{E}_{p}.

Equivalently, a Weil algebra is a real commutative unital algebra such that $A=\mathbb{R} \cdot 1_{A} \bigoplus N$, where N is a finite dimensional ideal of nilpotent elements.

Example 2.1. (1) $\mathbb{R}=\mathbb{R} \cdot 1 \bigoplus\{0\}=\mathcal{E}_{p} / \mathcal{M}_{p}$ is a Weil algebra.
(2) $J_{0}^{r}\left(\mathbb{R}^{p}, \mathbb{R}\right)=\mathbb{R} \cdot 1 \bigoplus J_{0}^{r}\left(\mathbb{R}^{p}, \mathbb{R}\right)_{0}=\mathcal{E}_{p} / \mathcal{M}_{p}^{r+1}$ is a Weil algebra.

2.2. Weil functors.

Let us recall the following lemma ([6, Lemma 35.8]): Let M be a smooth manifold and let $\varphi: C^{\infty}(M, \mathbb{R}) \rightarrow A$ be an algebra homomorphism into a Weil algebra A. Then there is a point $x \in M$ and some $k \geq 0$ such that $\operatorname{ker} \varphi$ contains the ideal of all functions which vanish at x up the order k i.e. $\operatorname{ker} \varphi \supset\left(I_{x}\right)^{k+1}$ with $I_{x}=\left\{f \in C^{\infty}(M, \mathbb{R}) / f(x)=0\right\}$. More precisely, $\{x\}=\bigcap_{f \in \operatorname{ker} \varphi} f^{-1}(\{0\})$.

One defines a functor $F_{A}: \mathcal{M} f \rightarrow \mathcal{E} n s$ by:

$$
F_{A} M:=\operatorname{Hom}\left(C^{\infty}(M, \mathbb{R}), A\right) \text { and } F_{A} f(\varphi):=\varphi \circ f^{*}
$$

for a manifold M and $f \in C^{\infty}(M, N)$, where $f^{*}: C^{\infty}(N, \mathbb{R}) \rightarrow C^{\infty}(M, \mathbb{R})$ is the pull-back algebra homomorphism.

Equivalently, if for a manifold M and a point $x \in M, \operatorname{Hom}\left(C_{x}^{\infty}(M, \mathbb{R}), A\right)$ is the set of algebra homomorphisms from $C_{x}^{\infty}(M, \mathbb{R})$ into A, one may define a functor $G_{A}: \mathcal{M} f \rightarrow \mathcal{E} n s$ by:

$$
G_{A} M:=\bigcup_{x \in M} \operatorname{Hom}\left(C_{x}^{\infty}(M, \mathbb{R}), A\right) \text { and }\left(G_{A} f\right)_{x}\left(\varphi_{x}\right):=\varphi_{x} \circ f_{x}^{*}
$$

for a manifold M and $f \in C^{\infty}(M, N)$, where $f_{x}^{*}: C_{f(x)}^{\infty}(N, \mathbb{R}) \rightarrow C_{x}^{\infty}(M, \mathbb{R})$ is the pull-back algebra homomorphism induced by f^{*}.
F_{A} and G_{A} are equivalent functors: Indeed let $\varphi \in \operatorname{Hom}\left(C^{\infty}(M, \mathbb{R}), A\right)$ and $\{x\}=\bigcap_{f \in \operatorname{ker} \varphi} f^{-1}(\{0\})$.
By the previous lemma, there is a unique $\varphi_{x} \in \operatorname{Hom}\left(C_{x}^{\infty}(M, \mathbb{R}), A\right)$ such that the diagram

commutes; the maps $\chi_{M}: F_{A} M \rightarrow G_{A} M, \varphi \mapsto \varphi_{x}$ are bijective and define a natural equivalence $\chi: F_{A} \rightarrow G_{A}$.

Now, let $T^{A}=G_{A}$ and $\pi_{A, M}: T^{A} M \rightarrow M, \varphi \ni\left(T^{A} M\right)_{x} \mapsto x .\left(T^{A} M, M, \pi_{A, M}\right)$ is a well-defined fibered manifold. Indeed let $c=\left(U, u^{i}\right), 1 \leq i \leq m$ be a chart of M; then the map

$$
\begin{aligned}
\phi_{c}:\left(\pi_{A, M}\right)^{-1}(U) & \longrightarrow U \times N^{m} \\
\varphi_{x} & \longmapsto\left(x, \varphi_{x}\left(\operatorname{germ}_{x}\left(u^{i}-u^{i}(x)\right)\right) ;\right.
\end{aligned}
$$

is a local trivialization of $T^{A} M$. Given another manifold M^{\prime} and a smooth map $f: M \rightarrow M^{\prime}$, let

$$
\begin{aligned}
T^{A} f: T^{A} M & \longrightarrow T^{A} M^{\prime} \\
\varphi_{x} & \longmapsto \varphi_{x} \circ f_{x}^{*}
\end{aligned}
$$

Then $T^{A} f$ is a fibered map and $T^{A}: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ is a product preserving bundle functor called the Weil functor associated to A.

Let $c=\left(U, u^{i},\right), 1 \leq i \leq m$ be a chart of M; a fibered chart $\left(\pi_{A, M}^{-1}(U), u^{i, \alpha}\right)$, $1 \leq i \leq m, 1 \leq \alpha \leq K(=\operatorname{dim} A)$ of $T^{A} M$ is defined by $u^{i, \alpha}=\operatorname{pr}_{\alpha} \circ B \circ T^{A}\left(u^{i}\right)$, where $B: A \rightarrow \mathbb{R}^{K}$ is a linear isomorphism and $\operatorname{pr}_{\alpha}: \mathbb{R}^{K} \rightarrow \mathbb{R}$ the α-th projection.

3. Product preserving gauge bundle functor on vector bundles

3.1. Product preserving gauge bundle functor on $\mathcal{V B}$.

Let $F: \mathcal{V B} \rightarrow \mathcal{F M}$ be a covariant functor from the category $\mathcal{V B}$ of all vector bundles and their vector bundle homomorphisms into the category $\mathcal{F M}$ of fibered manifolds and their fibered maps. Let $B_{\mathcal{V B}}: \mathcal{V B} \rightarrow \mathcal{M} f$ and $B_{\mathcal{F M}}: \mathcal{F M} \rightarrow \mathcal{M} f$ be the respective base functors.

Definition 3.1. F is a gauge bundle functor on $\mathcal{V B}$ when the following conditions are satisfied:

- (Prolongation) $B_{\mathcal{F M}} \circ F=B_{\mathcal{V B}}$ i.e. F transforms a vector bundle $E \xrightarrow{q} M$ in a fibered manifold $F E \xrightarrow{p_{E}} M$ and a vector bundle morphism $E \xrightarrow{f} G$ over $M \xrightarrow{\bar{f}} N$ in a fibered map $F E \xrightarrow{F f} F G$ over \bar{f}.
- (Localization) For any vector bundle $E \xrightarrow{q} M$ and any inclusion of an open vector subbundle $i: \pi^{-1}(U) \hookrightarrow E$, the fibered map $F \pi^{-1}(U) \rightarrow p_{E}^{-1}(U)$ over id ${ }_{U}$ induced by $F i$ is an isomorphism; then the map $F i$ can be identified with the inclusion $p_{E}^{-1}(U) \hookrightarrow F E$.

Given two gauge bundle functors F_{1}, F_{2} on $\mathcal{V B}$, by a natural transformation $\tau: F_{1} \rightarrow F_{2}$ we shall mean a system of base preserving fibered maps $\tau_{E}: F_{1} E \rightarrow$ $F_{2} E$ for every vector bundle E satisfying $F_{2} f \circ \tau_{E}=\tau_{G} \circ F_{1} f$ for every vector bundle morphism $f: E \rightarrow G$.

A gauge bundle functor F on $\mathcal{V B}$ is product preserving if for any product projections $E_{1} \stackrel{\mathrm{pr}_{1}}{\rightleftarrows} E_{1} \times E_{2} \xrightarrow{\mathrm{pr}_{2}} E_{2}$ in the category $\mathcal{V B}, F E_{1} \stackrel{F \mathrm{pr}_{1}}{\longleftrightarrow} F\left(E_{1} \times\right.$ $\left.E_{2}\right) \xrightarrow{F \mathrm{pr}_{2}} F E_{2}$ are product projections in the category $\mathcal{F} \mathcal{M}$. In other words, the map $\left(F \operatorname{pr}_{1}, F \operatorname{pr}_{2}: F\left(E_{1} \times E_{2}\right) \rightarrow F\left(E_{1}\right) \times F\left(E_{2}\right)\right.$ is a fibered isomorphism over $\operatorname{id}_{M_{1} \times M_{2}}$.

Example 3.1. (a) Each Weil functor T^{A} induces a product preserving gauge bundle functor $T^{A}: \mathcal{V B} \rightarrow \mathcal{F} \mathcal{M}$ in a natural way.
(b) Let $A=\mathbb{R} \cdot 1_{A} \bigoplus N$ be a Weil algebra and V a A-module such that $\operatorname{dim}_{\mathbb{R}}(V)<$ ∞. For a vector bundle (E, M, q) and $x \in M$, let

$$
\begin{aligned}
& T_{x}^{A, V} E= \\
& \quad\left\{\left(\varphi_{x}, \psi_{x}\right) / \varphi_{x} \in \operatorname{Hom}\left(C_{x}^{\infty}(M, \mathbb{R}), A\right) \text { and } \psi_{x} \in \operatorname{Hom}_{\varphi_{x}}\left(C_{x}^{\infty, f \cdot l}(E), V\right)\right\}
\end{aligned}
$$

where $\operatorname{Hom}\left(C_{x}^{\infty}(M, \mathbb{R}), A\right)$ is the set of algebra homomorphisms φ_{x} from the algebra $C_{x}^{\infty}(M, \mathbb{R})=\left\{\operatorname{germ}_{x}(g) / g \in C^{\infty}(M, \mathbb{R})\right\}$ into A and $\operatorname{Hom}_{\varphi_{x}}\left(C_{x}^{\infty, \mathrm{f}}(E), V\right)$ is the set of module homomorphisms ψ_{x} over φ_{x} from the $C_{x}^{\infty}(M, \mathbb{R})$-module $C_{x}^{\infty, \mathrm{fl}}(E, \mathbb{R})=\left\{\operatorname{germ}_{x}(h) / h: E \rightarrow \mathbb{R}\right.$ is fibre linear $\}$ into \mathbb{R}.
Let $T^{A, V} E=\bigcup_{x \in M} T_{x}^{A, V} E$ and $p_{E}^{A, V}: T^{A, V} E \rightarrow M,(\varphi, \psi) \ni T_{x}^{A, V} E \mapsto x$.
$\left(T^{A, V} E, M, p_{E}^{A, V}\right)$ is a well-defined fibered manifold. Indeed, let $c=\left(q^{-1}(U), x^{i}=\right.$ $\left.u^{i} \circ q, y^{j}\right), 1 \leq i \leq m, 1 \leq j \leq n$ be a fibered chart of E; then the map

$$
\begin{aligned}
\phi_{c}:\left(p_{E}^{A, V}\right)^{-1}(U) & \longrightarrow U \times N^{m} \times V^{n} \\
\left(\varphi_{x}, \psi_{x}\right) & \longmapsto\left(x, \varphi_{x}\left(\operatorname{germ}_{x}\left(u^{i}-u^{i}(x)\right)\right), \psi_{x}\left(\operatorname{germ}_{x}\left(y^{j}\right)\right)\right)
\end{aligned}
$$

is a local trivialization of $T^{A, V} E$. Given another vector bundle $\left(G, N, q^{\prime}\right)$ and a vector bundle homomorphism $f: E \rightarrow G$ over $\bar{f}: M \rightarrow N$, let

$$
\begin{aligned}
T^{A, V} f: T^{A, V} E & \longrightarrow T^{A, V} G \\
\left(\varphi_{x}, \psi_{x}\right) & \longmapsto\left(\varphi_{x} \circ \bar{f}_{x}^{*}, \psi_{x} \circ f_{x}^{*}\right)
\end{aligned}
$$

where $\bar{f}_{x}^{*}: C_{\bar{f}(x)}^{\infty}(N) \rightarrow C_{x}^{\infty}(M)$ and $f_{x}^{*}: C_{\bar{f}(x)}^{\infty, \mathrm{fl}}(G) \rightarrow C_{x}^{\infty, \mathrm{fl}}(E)$ are given by the pull-back with respect to \bar{f} and f. Then $T^{A, V} f$ is a fibered map over \bar{f}. $T^{A, V}: \mathcal{V B} \rightarrow \mathcal{F M}$ is a product preserving gauge bundle functor (see [7]).

Remark 3.1. Let $F: \mathcal{V B} \rightarrow \mathcal{F} \mathcal{M}$ be a product preserving gauge bundle functor.
(a) F associates the pair $\left(A^{F}, V^{F}\right)$ where $A^{F}=F\left(\mathrm{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}\right)$ is a Weil algebra and $V^{F}=F(\mathbb{R} \rightarrow p t)$ is a A^{F}-module such that $\operatorname{dim}_{\mathbb{R}}\left(V^{F}\right)<\infty$. Moreover there is a natural isomorphism $\Theta: F \rightarrow T^{A^{F}, V^{F}}$ and equivalence classes of functors F are in bijection with equivalence classes of pairs $\left(A^{F}, V^{F}\right)$. In particular, the product preserving gauge bundle functor associated to the Weil functor T^{A} is equivalent to $T^{A, A}$.
(b) Let $K=\operatorname{dim} A^{F}$ and $L=\operatorname{dim} V^{F}$; if $c=\left(\pi^{-1}(U), x^{i}, y^{j}\right), 1 \leq i \leq m$, $1 \leq j \leq n$ is a fibered chart of E, a fibered chart $\left(p_{E}^{-1}(U), x^{i, \alpha}, y^{j, \beta}\right), 1 \leq \alpha \leq K$, $1 \leq \beta \leq L$ of $F E$ is defined by

$$
\left\{\begin{array}{l}
x^{i, \alpha}=\lambda_{B}^{\alpha} \circ F\left(x^{i}\right) \tag{3.1}\\
y^{j, \beta}=\mu_{C}^{\beta} \circ F\left(y^{j}\right)
\end{array}\right.
$$

where $\lambda_{B}^{\alpha}=\operatorname{pr}_{\alpha} \circ B, \mu_{C}^{\beta}=\operatorname{pr}_{\beta} \circ C$ and $B: A^{F} \rightarrow \mathbb{R}^{K}, C: V^{F} \rightarrow \mathbb{R}^{L}$ are linear isomorphisms. In the particular case $F=T, A^{F}=V^{F}=\mathbb{D}=\mathbb{R}[X] /\left(X^{2}\right)$ is the algebra of dual numbers and the previous coordinate system is denoted
$\left(x^{i}, \dot{x}^{i}, y^{j}, \dot{y}^{j}\right)$ where

$$
x^{i}=\lambda_{B}^{1} \circ F\left(x^{i}\right), \dot{x}^{i}=\lambda_{B}^{2} \circ F\left(x^{i}\right), y^{j}=\mu_{B}^{1} \circ F\left(y^{j}\right), \dot{y}^{j}=\mu_{B}^{2} \circ F\left(y^{j}\right)
$$

and $B: \mathbb{D} \rightarrow \mathbb{R}^{2}$ the canonical isomorphism.
3.2. The natural isomorphism $\kappa: F \circ T \rightarrow T \circ F$.

For a product preserving gauge bundle functor $F: \mathcal{V B} \rightarrow \mathcal{F M}$, let $\kappa: F \circ T \rightarrow$ $T \circ F$ be the canonical natural isomorphism associated to the exchange isomorphism $\left(\mathbb{D} \otimes_{\mathbb{R}} A^{F}, \mathbb{D} \otimes_{\mathbb{R}} V^{F}\right) \cong\left(A^{F} \otimes_{\mathbb{R}} \mathbb{D}, V^{F} \otimes_{\mathbb{R}} \mathbb{D}\right)$ (7$]$ Corollary 3$\left.]\right)$. Using the definition of composed functors $F \circ T$ and $T \circ F$, one can check that locally

$$
\kappa_{E}:\left(x^{i, \alpha}, \dot{x}^{i, \alpha}, y^{j, \beta}, y^{j, \beta}\right) \mapsto\left(x^{i, \alpha}, x^{i, \alpha}, y^{j, \beta}, y^{j, \beta}\right)
$$

with $x^{i, \alpha}=\dot{x^{i, \alpha}}$ and $y^{\dot{j}, \beta}=\dot{y}^{\dot{j, \beta}}$. The following assertion is clear.
Proposition 3.1. (a) The diagram

commutes for any vector bundle $E \xrightarrow{q} M$.
(b) If $\left(F, \pi^{\prime}\right)$ is an excellent pair (i.e. $\pi^{\prime}: F \rightarrow \mathrm{id} \mathcal{V \mathcal { B }}$ is a natural epimorphism), the diagram

commutes for any vector bundle $E \xrightarrow{q} M$.
Let $X \in \mathfrak{X}_{\text {proj }}(E)$ be a projectable vector field on E i.e. a fibered map over a vector field \bar{X} on M. We assume that X is a vector bundle morphism. The commutative diagram

defines a vector field on $F E$ called the complete lift of X and denoted X^{c}. The natural operator $\mathcal{F}: T \rightsquigarrow T F$ is called the flow operator of F.

When we restrict ourself to vector bundles of the form $\left(M, M, \mathrm{id}_{M}\right), \kappa$ and \mathcal{F} are exactly the canonical flow natural equivalence and the flow operator associated to the Weil functor $T^{A^{F}},[6]$.

4. Prolongation of functions

We generalize for a product preserving gauge bundle $F: \mathcal{V B} \rightarrow \mathcal{F M}$ some prolongations of [2].

Let $f: E \rightarrow \mathbb{R}$ be a smooth function defined on a vector bundle $q: E \rightarrow M$.

Definition 4.1.

(a) The λ-lift of f constant on fibers is $f^{(\lambda)}:=\lambda \circ F f$, for $\lambda \in C^{\infty}\left(A^{F}, \mathbb{R}\right)$.
(b) The μ-lift of f linear on fibers (i.e. $f \in C_{\ell}^{\infty}(E, \mathbb{R})$) is $f^{(\mu)}:=\mu \circ F f$, for $\mu \in C^{\infty}\left(V^{F}, \mathbb{R}\right)$.

In the particular case $(E, M, q)=\left(M, M, \operatorname{id}_{M}\right)$, lifts of functions constant on fibers correspond to lifts of functions associated to the Weil functor $T^{A^{F}}$ [2]. Lifts of functions linear on fibers correspond to lifts of smooth sections of the dual bundle $q^{*}: E^{*} \rightarrow M$.

It is easy to check that $(f \circ h)^{(\lambda)}=f^{(\lambda)} \circ F h$, for $h: G \rightarrow E$ a vector bundle morphism and $\left(f_{1}+f_{2}\right)^{(\lambda)}=f_{1}^{(\lambda)}+f_{2}^{(\lambda)}$ when λ is a linear map. Replacing λ with μ, the previous identities hold.

According to (3.1),

$$
x^{i, \alpha}=\left(x^{i}\right)^{\left(\lambda_{B}^{\alpha}\right)} \quad \text { and } \quad y^{j, \beta}=\left(y^{j}\right)^{\left(\mu_{C}^{\beta}\right)},
$$

hence the following result holds:
Proposition 4.1. If two vector fields \widehat{X}, \widehat{Y} on $F E$ satisfy

$$
\widehat{X}\left(f^{(\lambda)}\right)=\widehat{Y}\left(f^{(\lambda)}\right) \quad \text { and } \quad \widehat{X}\left(g^{(\mu)}\right)=\widehat{Y}\left(g^{(\mu)}\right),
$$

for any f constant on fibers, g linear on fibers, $\lambda \in C^{\infty}\left(A^{F}, \mathbb{R}\right)$ and $\mu \in C^{\infty}\left(V^{F}, \mathbb{R}\right)$, then $\widehat{X}=\widehat{Y}$.

5. Prolongation of projectable vector fields

5.1. Natural transformations $Q(a): T \circ F \rightarrow T \circ F$.

For a vector bundle $q: E \rightarrow M$, let us denote $\mu_{E}: \mathbb{R} \times T E \rightarrow T E,\left(\alpha, k_{u}\right) \ni$ $\mathbb{R} \times T_{u} E \mapsto \alpha \cdot k_{u} \in T_{u} E$, the fibered multiplication. This is a vector bundle morphism over the projection $\mathbb{R} \times E \rightarrow E$, hence for any $a \in A^{F}$, we have a natural transformation $F T \rightarrow F T$ given by the partial maps $F \mu_{E}(a, \cdot): F T E \rightarrow F T E$. If $\kappa: T \rightarrow T F$ is the canonical natural isomorphism (subsection 3.2), one can deduce a natural transformation $Q(a): T F \rightarrow T F$ by

$$
\begin{equation*}
Q(a)=\kappa \circ F \mu(a, \cdot) \circ \kappa^{-1} . \tag{5.1}
\end{equation*}
$$

The restriction of $Q(a)$ to vector bundles of the form $\left(M, M, \operatorname{id}_{M}\right)$ is just the natural affinor associated to a [5].

Let us compute the algebra homomorphism $\mu_{a}: A^{F T} \rightarrow A^{F T}$ and the module homomorphisms $v_{a}: V^{F T} \rightarrow V^{F T}$ over μ_{a} associated to the natural transformation $F \mu(a, \cdot):$ Let $p_{1}: \mathbb{D} \rightarrow \mathbb{R} 1, p_{2}: \mathbb{D} \rightarrow \mathbb{R} \delta$ the canonical projections associated to the algebra of dual numbers and $i_{u}: \mathbb{R} \rightarrow \mathbb{D}, t \mapsto t u, u \in \mathbb{D}$; since $\mu_{\mathbb{R} \rightarrow \mathbb{R}}(s, u)=$
$p_{1}(u)+p_{2}(s u)=T\left(a d_{\mathbb{R}}\right)\left(p_{1}(u), p_{2} \circ m \circ\left(\operatorname{id}_{\mathbb{R}} \times \operatorname{id}_{\mathbb{D}}\right)(s, u)\right), m(s, u)=s u$ then for $b \in A^{F}$

$$
\begin{aligned}
\mu_{a}\left(F i_{u}(b)\right) & =F\left(\operatorname{Tad}_{\mathbb{R}}\right)\left(F i_{p_{1}(u)}(b), F\left(p_{2} \circ m\right)\left(a, F i_{u}(b)\right)\right) \\
& =F\left(\operatorname{Tad}_{\mathbb{R}}\right)\left(F i_{p_{1}(u)}(b), F\left(p_{2} \circ m\right)\left(F \operatorname{id}_{\mathbb{R}}(a), F i_{u}(b)\right)\right) \\
& =F\left(\operatorname{Tad}_{\mathbb{R}}\right)\left(F i_{p_{1}(u)}(b), F\left(p_{2} \circ m \circ \mathrm{id}_{\mathbb{R}} \times i_{u}\right)(a, b)\right) \\
& =F\left(\operatorname{Tad}_{\mathbb{R}}\right)\left(F i_{p_{1}(u)}(b), F\left(i_{p_{2}(u)} \circ m_{0}\right)(a, b)\right), m_{0}(s, t)=s t \\
& =F i_{p_{1}(u)}(b)+F i_{p_{2}(u)}(a b) \\
& =\mu_{F T}\left(p_{1}(u) \otimes b+p_{2}(u) \otimes a b\right),
\end{aligned}
$$

where $\mu_{F T}: \mathbb{D} \otimes_{\mathbb{R}} A^{F} \rightarrow A^{F T}$ is the canonical algebra isomorphism. Hence

$$
\begin{aligned}
\mu_{F T}^{-1} \circ \mu_{a} \circ \mu_{F T}: \mathbb{D} \otimes_{\mathbb{R}} A^{F} & \rightarrow \mathbb{D} \otimes_{\mathbb{R}} A^{F} \\
u \otimes b & \mapsto p_{1}(u) \otimes b+p_{2}(u) \otimes a b .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
v_{a}\left(F i_{u}(v)\right) & =F\left(\operatorname{Tad}_{\mathbb{R}}\right)\left(F i_{p_{1}(u)}(v), F\left(p_{2} \circ m\right)\left(a, F i_{u}(v)\right)\right) \\
& =F\left(\operatorname{Tad}_{\mathbb{R}}\right)\left(F i_{p_{1}(u)}(v), F\left(p_{2} \circ m\right)\left(F \operatorname{id}_{\mathbb{R}}(a), F i_{u}(v)\right)\right) \\
& =F\left(\operatorname{Tad}_{\mathbb{R}}\right)\left(F i_{p_{1}(u)}(v), F\left(p_{2} \circ m \circ \mathrm{id}_{\mathbb{R}} \times i_{u}\right)(a, v)\right) \\
& =F\left(\operatorname{Tad}_{\mathbb{R}}\right)\left(F i_{p_{1}(u)}(v), F\left(i_{\left.\left.p_{2}(u) \circ m_{0}\right)(a, v)\right), m_{0}(s, t)=s t}\right.\right. \\
& =F i_{p_{1}(u)}(v)+F i_{p_{2}(u)}(a \cdot v) \\
& =v_{F T}\left(p_{1}(u) \otimes v+p_{2}(u) \otimes a \cdot v\right),
\end{aligned}
$$

where $v_{F T}: \mathbb{D} \otimes_{\mathbb{R}} V^{F} \rightarrow V^{F T}$ is the natural module isomorphism over $\mu_{F T}$. Hence

$$
\begin{aligned}
v_{F T}^{-1} \circ v_{a} \circ v_{F T}: \mathbb{D} \otimes_{\mathbb{R}} V^{F} & \rightarrow \mathbb{D} \otimes_{\mathbb{R}} V^{F} \\
u \otimes v & \mapsto p_{1}(u) \otimes v+p_{2}(u) \otimes a \cdot v
\end{aligned}
$$

5.2. Prolongation of projectable vector fields.

In this subsection, all projectable vector fields are vector bundle morphisms.
Definition 5.1. For a projectable vector field $X \in \mathfrak{X}_{\text {proj }}(E)$, its a-lift is given by $X^{(a)}=Q(a)_{E} \circ\left(\mathcal{F}_{E}\right) X$, where $\mathcal{F}: T \rightsquigarrow T F$ is the flow operator of F.

Let $\lambda: A^{F} \rightarrow \mathbb{R}, \mu: V^{F} \rightarrow \mathbb{R}$ linear maps and $\lambda_{a}: A^{F} \rightarrow \mathbb{R}, \mu_{a}: V^{F} \rightarrow \mathbb{R}$ given by $\lambda_{a}(x)=\lambda(a x), \mu_{a}(v)=\mu(a \cdot v)$, for $a \in A^{F}$.

Theorem 5.1. We have

$$
X^{(a)}\left(f^{(\lambda)}\right)=(X(f))^{\left(\lambda_{a}\right)} \quad \text { and } \quad X^{(a)}\left(g^{(\mu)}\right)=(X(g))^{\left(\mu_{a}\right)}
$$

for any f constant on fibers and g linear on fibers.
Proof. Let $\tau \in C_{\ell}^{\infty}(T \mathbb{R}, \mathbb{R})$ such that $\tau_{x}: T_{x} \mathbb{R} \rightarrow \mathbb{R}, x \in \mathbb{R}$ the canonical isomorphism. Identifying the module of 1 -forms on a manifold M with $C_{\ell}^{\infty}(T M, \mathbb{R})$, the differential of $f \in C^{\infty}(M, \mathbb{R})$ is given by $d f=\tau \circ T f$ and for a vector field \bar{X} on $M, \bar{X}(f)=\langle\bar{X}, d f\rangle=\tau \circ T f \circ \bar{X}$.

We have

$$
\begin{aligned}
X^{(a)}\left(f^{(\lambda)}\right) & =\tau \circ T f^{(\lambda)} \circ \kappa_{E} \circ F \mu_{E}(a, \cdot) \circ F X \\
& =\tau \circ T \lambda \circ T(F f) \circ \kappa_{E} \circ F \mu_{E}(a, \cdot) \circ F X \\
& =\tau \circ T \lambda \circ \kappa_{\mathbb{R} \rightarrow \mathbb{R}} \circ F\left(\mu_{\mathbb{R} \rightarrow \mathbb{R}}(a, \cdot)\right) \circ F(T f \circ X) \\
& =\lambda_{a} \circ F(\tau) \circ F(T f \circ X) \\
& =(X(f))^{\left(\lambda_{a}\right)} .
\end{aligned}
$$

The second equality is proved in the same way.
Corollary 5.1. For any vector fields $X, Y \in \mathfrak{X}_{\text {proj }}(E)$, we have

$$
\left[X^{(a)}, Y^{(b)}\right]=[X, Y]^{(a b)}
$$

Proof. Direct consequence of the previous result and Proposition 4.1.
This generalizes (for product preserving gauge bundle functors on vector bundles) some results of 2 .

References

[1] Cordero, L.A., Dobson, C.T.J., De León, M., Differential geometry of frame bundles, Kluwer Academic Publishers, 1989.
[2] Gancarzewicz, J., Mikulski, W.M., Pogoda, Z., Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1-14.
[3] Kolář, I., Covariant approach to natural transformations of Weil bundles, CMUC 27 (1986), 723-729.
[4] Kolář, I., On the natural operators on vector fields, Ann. Global Anal. Geom. 6 (1988), 119-117.
[5] Kolář, I., Modugno, M., Torsions of connections on some natural bundles, Differential Geom. Appl. 2 (1992), 1-16.
[6] Kolář, I., Slovák, J., Michor, P.W., Natural operations in differential geometry, Springer-Verlag Berlin-Heidelberg, 1993.
[7] Mikulski, W.M., Product preserving gauge bundle functors on vector bundles, Colloq. Math. 90 (2001), no. 2, 277-285.
[8] Ntyam, A., Mba, A., On natural vector bundle morphisms $T^{A} \circ \otimes_{s}^{q} \rightarrow \otimes_{s}^{q} \circ T^{A}$ over $\mathrm{id}_{T^{A}}$, Ann. Polon. Math. 96 (2009), no. 3, 295-301.
[9] Ntyam, A., Wouafo, K.J., New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles, Ann. Polon. Math. 82 (2003), no. 3, 133-140.

[^1]Department of Mathematics,
Faculty of Science, University of Yaoundé 1,
P.O BOX 812 Yaoundé, Cameroon

E-mail: georgywan@yahoo.fr
Department of Mathematics,
Faculty of Science, University of Yaoundé 1, P.O BOX 812 Yaoundé, Cameroon

E-mail: bitjong@uy1.uninet.cm

[^0]: 2010 Mathematics Subject Classification: primary 58A32.
 Key words and phrases: projectable vector field, Weil bundle, product preserving gauge bundle functor, lift.

 Received March 24, 2014. Editor I. Kolář.
 DOI: 10.5817/AM2014-3-161

[^1]: Department of Mathematics and Computer Science, Faculty of Science, University of Ngaoundéré, P.O BOX 454 Ngaoundéré, Cameroon

 E-mail: antyam@uy1.uninet.cm

