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Abstract. Some q-analysis variants of Hardy type inequalities of the form

∫ b

0

(

x
α−1

∫ x

0

t
−α

f(t) dqt

)p

dqx 6 C

∫ b

0

f
p(t) dqt

with sharp constant C are proved and discussed. A similar result with the Riemann-Liouville
operator involved is also proved. Finally, it is pointed out that by using these techniques
we can also obtain some new discrete Hardy and Copson type inequalities in the classical
case.

Keywords: inequality; Hardy type inequality; Hardy operator; Riemann-Liouville opera-
tor; q-analysis; sharp constant; discrete Hardy type inequality
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1. Introduction and preliminaries

In recent years quantum calculus (q-calculus) has been actively developed. Many

continuous scientific problems have their discrete versions by using the so-called

q-calculus. This q-calculus has numerous applications in combinatorics, special func-

tions, fractals, dynamical systems, number theory, computational methods, quantum

mechanics, information technology, etc. (see [2], [8], [9], [10], [18]).

At present q-analogues of many inequalities from the classical analysis have

been established but not q-inequalities of Hardy type (see, e.g., [15], [24] and [19],

[26], [27]).

The second author was supported by the Scientific Committee of Ministry of Educa-
tion and Science of the Republic of Kazakhstan, grant No. 1529/GF, on priority area
“Intellectual potential of the country”.
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The Hardy inequality and its various generalizations play an important role in

classical analysis. Therefore during the last fifty years a huge amount of papers

has been devoted to Hardy and Hardy type inequalities in various spaces. The main

results and their applications in classical analysis are given in the books [22] and [20].

The main aim of this paper is to establish the q-analogue of the classical Hardy

type inequalities

(1)

∫ ∞

0

(

xα−1

∫ x

0

t−αf(t) dt

)p

dx <
( p

p− αp− 1

)p
∫ ∞

0

fp(t) dt, f > 0,

where α < 1 − 1/p with either p > 1 (unless f ≡ 0) or p < 0 and f > 0 and (with

the Riemann-Liouville operator involved)

∫ ∞

0

(

1

xαΓ(α)

∫ x

0

(x− t)α−1f(t) dt

)p

dx <

[

Γ(1− 1/p)

Γ(α+ 1− 1/p)

]p ∫ ∞

0

fp(t) dt,(2)

f > 0,

where p > 1, α > 0, unless f ≡ 0 and with the best constant. For α = 0 inequality

(1) becomes the classical Hardy inequality

(3)

∫ ∞

0

(

1

x

∫ x

0

f(t) dt

)p

dx <
( p

p− 1

)p
∫ ∞

0

fp(t) dt, f > 0, f 6≡ 0,

and its corresponding discrete version reads

(4)
∞
∑

n=1

(

1

n

n
∑

k=1

ak

)p

<
( p

p− 1

)p ∞
∑

n=1

apn, p > 1, an > 0, an 6≡ 0.

All these estimates have numerous applications in analysis. We will prove the q-

estimate

(5)

∫ b

0

(

xα−1

∫ x

0

t−αf(t) dqt

)p

dqx 6 C

∫ b

0

fp(t) dqt

of Hardy type (1) for b = ∞ and b = 1 with the sharp constants, and also the

q-analogue of the estimate (2) with the sharp constant.

The paper is organized in the following way: after definitions and notation below,

in Section 2 we prove the q-analogue of the inequality (1), that is, inequality (5) for

b = ∞ and b = 1 with the sharp constants.

In Section 3 we define a fractional q-analogue of the Riemann-Liouville operator Iαq
and prove a q-analogue of inequality (2) with the sharp constant.
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Finally, in Section 4 we are pointing out that using the techniques of q-calculus

we can also obtain some new discrete Hardy, Copson and matrix type inequalities in

the classical case.

We now present some notation and definitions from the q-calculus, which are

necessary for understanding this paper. They are taken mainly from the book [18].

Let 0 < q < 1 be fixed. The definite q-integral or the q-Jackson integral (see [17]

and [18]) of a function f : [0, b) → R, 0 < b 6 ∞, is defined by the formula

(6)

∫ x

0

f(t) dqt = (1 − q)x

∞
∑

k=0

qkf(qkx) for x ∈ (0, b),

and the improper q-integral of a function f : [0,∞) → R by the relation

(7)

∫ ∞

0

f(t) dqt = (1 − q)
∞
∑

k=−∞

qkf(qk),

provided that the series on the right hand sides of (6) and (7) converge absolutely.

For 0 < a < b 6 ∞ we define the q-integral

∫ b

a

f(t) dqt =

∫ b

0

f(t) dqt−

∫ a

0

f(t) dqt.

In particular, for x ∈ (0,∞), this yields that

(8)

∫ ∞

x

f(t) dqt =

∫ ∞

0

f(t) dqt−

∫ x

0

f(t) dqt.

In the theory of q-analysis the q-analogue [α]q of a number α ∈ R is defined by

(9) [α]q =
1− qα

1− q
.

2. The Hardy inequality in q-analysis

We consider the q-integral analogue of the Hardy inequality of the form (1). Our

first main result in this section reads:

661



Theorem 2.1. Let α < (p− 1)/p. If either 1 6 p < ∞ and f > 0 or p < 0 and

f > 0, then the inequality

(10)

∫ ∞

0

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx 6 C

∫ ∞

0

fp(t) dqt

holds with the constant

(11) C =
1

[(p− 1)/p− α]pq
.

In the case when 0 < p < 1 the inequality (10) for f > 0 holds in the reverse direction

with the constant (11). Moreover, in all the three cases the constant (11) is the best

possible.

P r o o f. Let 1 < p < ∞. Consider the estimate (10) based on the definitions (6)

and (7). We have

L(f) :=

∫ ∞

0

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx

=

∫ ∞

0

xp(α−1)

(

(1− q)

∞
∑

i=0

x1−αq(1−α)if(xqi)

)p

dqx

= (1− q)p+1
∞
∑

j=−∞

qjp(α−1)

( ∞
∑

i=0

q(i+j)(1−α)f(qi+j)

)p

qj

= (1− q)p+1
∞
∑

j=−∞

qj[p(α−1)+1]

( ∞
∑

i=j

qi(1−α)f(qi)

)p

≡ (1− q)p+1Ip.

Let g = {gk}
∞
k=−∞ ∈ lp′(Z), g > 0, ‖g‖lp′ = 1, where 1/p+ 1/p′ = 1. Moreover, let

θ(z) be Heaviside’s unit step function, that is, θ(z) = 1 for z > 0 and θ(z) = 0 for

z < 0. Then, based on the duality principle in lp(Z), p > 1, and the Hölder-Rogers

inequality (cf. [23] for the explanation why not only Hölder name should be here),

we find that

I = sup
‖g‖l

p′
=1

∑

i

∑

j

gjq
j(α−1/p′)θ(i − j)qi(1/p

′−α)qi/pf(qi)

6 sup
‖g‖l

p′
=1

(

∑

i

∑

j

gp
′

j qj(α−1/p′)θ(i − j)qi(1/p
′−α)

)1/p′

×

(

∑

i

∑

j

fp(qi)qiq(1/p
′−α)iθ(i− j)qj(α−1/p′)

)1/p
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6 sup
‖g‖l

p′
=1

(

∑

j

gp
′

j qj(α−1/p′)
∞
∑

i=j

qi(1/p
′−α)

)1/p′

×

(

∑

i

fp(qi)qiqi(1/p
′−α)

i
∑

j=−∞

qj(α−1/p′)

)1/p

= sup
‖g‖l

p′
=1

I1(g)I2(f).

Since

Ip
′

1 (g) =
∑

j

gp
′

j qj(α−1/p′)qj(1/p
′−α)

∞
∑

i=0

qi(1/p
′−α) =

1

1− q1/p′−α

∑

j

gp
′

j

=
1

1− q1/p′−α
‖g‖p

′

lp′
=

1

(1 − q)[(p− 1)/p− α]q
‖g‖p

′

lp′

and

Ip2 (f) =
∑

i

fp(qi)qiqi(1/p
′−α)qi(α−1/p′)

∞
∑

j=0

qj(1/p
′−α)

=
1

1− q1/p′−α

∑

i

qifp(qi) =
1

(1− q)2[(p− 1)/p− α]q

∫ ∞

0

fp(t) dqt,

it follows that

Ip 6
1

(1 − q)p+1[(p− 1)/p− α]pq

∫ ∞

0

fp(t) dqt.

Putting the above calculations together we deduce that

∫ ∞

0

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx = (1− q)p+1Ip 6
1

[(p− 1)/p− α]pq

∫ ∞

0

fp(t) dqt,

which means that inequality (10) holds with constant (11).

Now, we will show that the constant (11) is the best possible. For β > −1/p let

fβ(t) = tβχ(0,1](t), t > 0. Then

∫ ∞

0

fp
β(t) dqt = (1− q)

∞
∑

i=−∞

qifp
β(q

i) = (1− q)

∞
∑

i=0

qiqpβi

=
1− q

1− q1+pβ
=

1

[1 + pβ]q
,
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and

L(fβ) =

∫ ∞

0

xp(α−1)

(
∫ x

0

t−αfβ(t) dqt

)p

dqx

= (1 − q)

∞
∑

j=−∞

qj[p(α−1)+1]

(

(1 − q)

∞
∑

i=0

q(i+j)(1−α)fβ(q
i+j)

)p

> (1 − q)p+1
∞
∑

j=0

qj[p(α−1)+1]

( ∞
∑

i=j

qi(1−α)qiβ
)p

= (1 − q)p+1
∞
∑

j=0

qj(1+pβ)

( ∞
∑

i=0

qi(1−α+β)

)p

=
( 1− q

1− q1−α+β

)p 1

[1 + pβ]q
.

Since

sup
β>−1/p

1

1− q1−α+β
=

1

1− q1−1/p−α
=

1

1− q(p−1)/p−α
,

it follows that for the best constant C in (10) the following estimate is valid:

C > sup
β>−1/p

L(fβ)
∫∞

0 fp
β(t) dqt

> sup
β>−1/p

( 1− q

1− q1−α+β

)p

=
1

[(p− 1)/p− α]pq
,

which shows that the constant (11) is the sharp constant in (10).

If p = 1, then

L(f) = (1 − q)2
∞
∑

j=−∞

qjα
∞
∑

i=j

qi(1−α)f(qi) = (1− q)2
∞
∑

i=−∞

qi(1−α)f(qi)
i

∑

j=−∞

qjα

= (1 − q)2
∞
∑

i=−∞

qif(qi)

∞
∑

j=0

q−jα =
1

[−α]q

∫ ∞

0

f(t) dqt.

Let p < 0 and f > 0. If we denote µ = (1/p′ − α)/p′, then

L(f) =

∫ ∞

0

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx

= (1− q)p+1
∞
∑

j=−∞

qj[p(α−1)+1]

( ∞
∑

i=j

qi(1−α)f(qi)

)p

= (1− q)p+1
∞
∑

j=−∞

qj[p(α−1)+1]

( ∞
∑

i=j

qiµqi(1−α−µ)f(qi)

)p

.
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Taking into account the assumption p < 0 and the fact that then the Hölder-Rogers

inequality holds in the reverse direction, in this case we obtain

L(f) 6 (1− q)p+1
∞
∑

j=−∞

qj[p(α−1)+1]

( ∞
∑

i=j

qip
′µ

)p−1 ∞
∑

i=j

qip(1−α−µ)fp(qi)

= (1− q)p+1

( ∞
∑

i=0

qip
′µ

)p−1 ∞
∑

j=−∞

qj[p(α−1)+1+pµ]
∞
∑

i=j

qip(1−α−µ)fp(qi)

=
(1 − q)p+1

(1− q(p−1)/p−α)p−1

∞
∑

i=−∞

fp(qi)qi(1+1/p′−α)
i

∑

j=−∞

qj(α−1/p′)

=
(1 − q)p+1

(1− q(p−1)/p−α)p−1

∞
∑

j=0

qj(1/p
′−α)

∞
∑

i=−∞

qifp(qi)

=
( 1− q

1− q(p−1)/p−α

)p
∫ ∞

0

fp(t) dqt =
[p− 1

p
− α

]−p

q

∫ ∞

0

fp(t) dqt.

This implies that inequality (10) holds with the constant C in (11). Now, we will

give a lower estimate for the best constant C in inequality (10). For α − 1 < β1 <

−1/p < β2 let fβ1,β2
(t) = tβ1χ(0,1](t) + tβ2χ(1,∞)(t), t > 0. Then

∫ ∞

0

fp
β1,β2

(t) dqt = (1 − q)

( −1
∑

i=−∞

qi(1+pβ2) +

∞
∑

i=0

qi(1+pβ1)

)

= (1 − q)
( q|1+pβ2|

1− q|1+pβ2|
+

1

1− q1+pβ1

)

:= F−(β1, β2)

and

L(fβ1,β2
) =

∫ ∞

0

xp(α−1)

(
∫ x

0

t−αfβ1,β2
(t) dqt

)p

dqx

= (1− q)p+1
∞
∑

i=−∞

qi(1+p(α−1))

( ∞
∑

j=i

qj(1−α)fβ1,β2
(qj)

)p

= (1− q)p+1

[ −1
∑

i=−∞

qi(1+p(α−1))

( −1
∑

j=i

qj(1−α+β2) +

∞
∑

j=0

qj(1−α+β1)

)p

+

∞
∑

i=0

qi(1+p(α−1))

( ∞
∑

j=i

qj(1−α+β1)

)p]

> (1− q)p+1
∞
∑

i=0

qi(1+p(α−1))

( ∞
∑

j=i

qj(1−α+β1)

)p
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= (1− q)p+1
∞
∑

i=0

qi(1+pβ1)

( ∞
∑

j=0

qj(1−α+β1)

)p

=
1− q

1− q1+pβ1

( 1− q

1− q1−α+β1

)p

:= F+(β1, β2).

If C is the best constant in (11), then

C > sup
α−1<β1<−1/p

lim
β2→∞

F+(β1, β2)

F−(β1, β2)
= sup

α−1<β1<−1/p

( 1− q

1− q1−α+β1

)p

=
( 1− q

1− q1−α−1/p

)p

=
1

[(p− 1)/p− α]pq
.

The last estimate together with the earlier one shows that constant (11) is sharp in

all cases.

Finally, we consider the case when 0 < p < 1. Let us denote γ = (p− 1)/p − α.

For any function f > 0 for which the right hand side of (10) is finite, we find that

[γ]−1
q

∫ ∞

0

fp(t) dqt =
(1− q)2

1− qγ

∞
∑

j=−∞

qjfp(qj)

= (1− q)2
∞
∑

j=−∞

qjfp(qj)

∞
∑

i=0

qiγ

= (1− q)2
∞
∑

j=−∞

qjfp(qj)

0
∑

i=−∞

q−iγ

= (1− q)2
∞
∑

j=−∞

qj(1+γ)fp(qj)

j
∑

i=−∞

q−iγ

= (1− q)2
∞
∑

i=−∞

q−iγ
∞
∑

j=i

qj(1−p)γqjp(1−α)fp(qj) = J.

Using the Hölder-Rogers inequality with powers 1/p and 1/(1− p) we obtain

J 6 (1− q)2
∞
∑

i=−∞

q−iγ

( ∞
∑

k=i

qkγ
)1−p( ∞

∑

j=i

qj(1−α)f(qj)

)p

= [γ]p−1
q (1− q)p+1

∞
∑

i=−∞

q−ipγ

( ∞
∑

j=i

qj(1−α)f(qj)

)p

= [γ]p−1
q (1− q)

∞
∑

i=−∞

qiqip(α−1)

(

(1− q)qi
∞
∑

j=0

qjq−(i+j)αf(qi+j)

)p

= [γ]p−1
q

∫ ∞

0

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx,
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which means that the following inequality holds:

(12)

∫ ∞

0

fp(t) dqt 6 [γ]pq

∫ ∞

0

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx

for all functions f > 0 for which the left hand side of (12) is finite.

Next, we show that the constant [γ]pq = [(p− 1)/p − α]pq in (12) is sharp. For

α− 1 < β < −1/p let fβ(t) = tβχ[1,∞)(t), t > 0. Then

∫ ∞

0

fp
β(t) dqt = (1− q)

∞
∑

i=−∞

qifp
β(q

i) = (1 − q)

[ 0
∑

i=−∞

qifp
β(q

i) +

∞
∑

i=1

qifp
β(q

i)

]

= (1− q)

0
∑

i=−∞

qi(1+pβ) = (1− q)

∞
∑

i=0

qi|1+pβ| =
1− q

1− q|1+pβ|

and

L(fβ) =

∫ ∞

0

xp(α−1)

(
∫ x

0

t−αfβ(t) dqt

)p

dqx

= (1− q)

∞
∑

j=−∞

qj[p(α−1)+1]

(

(1 − q)qj
∞
∑

i=0

qiq−(i+j)αfβ(q
i+j)

)p

= (1− q)p+1

[ 0
∑

j=−∞

qj[p(α−1)+1]

( ∞
∑

i=j

qi(1−α)fβ(q
i)

)p

+

∞
∑

j=1

qj[p(α−1)+1]

( ∞
∑

i=j

qi(1−α)fβ(q
i)

)p]

= (1− q)p+1
0

∑

j=−∞

qj[p(α−1)+1]

( 0
∑

i=j

qi(1−α+β)

)p

= (1− q)p+1
0

∑

j=−∞

qj[p(α−1)+1]qjp(1−α+β)

( −j
∑

i=0

qi(1−α+β)

)p

6
(1− q)p+1

(1− q1−α+β)p

0
∑

j=−∞

qj[1+pβ] =
1− q

1− q|1+pβ|

( 1− q

1− q1−α+β

)p

.

If inequality (12) holds with the best constant C > 0, then

C > sup
β∈(α−1,−1/p)

∫∞

0 fp
β(t) dqt

L(fβ)
> sup

β∈(α−1,−1/p)

(1− q1−α+β

1− q

)p

=
(1− q(p−1)/p−α

1− q

)p

=
[p− 1

p
− α

]p

q
= [γ]pq ,

and this shows that the constant [γ]pq in (12) is sharp. The proof of Theorem 2.1 is

complete. �
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Remark 2.2. The constant in the q-analogue of inequality (1) is smaller than

the one in (1). In fact, if α < 1− 1/p with p > 1 or p < 0, then

(13)
1

[(p− 1)/p− α]q
<

p

p− αp− 1
for α > −1/p.

Inequality (13) is reversed for α < −1/p. For α = −1/p both sides in (13) are equal

to 1.

Estimate (13) means that (1− q)/(1− q(p−1)/p−α) < p/(p− αp− 1) for any 0 <

q < 1, which is true since the function h(q) := p(1− q(p−1)/p−α)/(p− αp− 1)+q−1

has the derivative h′(q) = −q−1/p−α + 1 < 0 for α > −1/p, and so h(q) > h(1) = 0.

Next, we consider the Hardy inequality on a finite interval. Without loss of gen-

erality we consider only the interval [0, 1], since in the q-integral we are allowed to

change variables in the form z = xl, 0 < l < ∞ (see [18]). Therefore, a q-integral on

the interval [0, l] naturally can be reduced to a q-integral on the interval [0, 1].

Hence, we consider inequality (5) with b = 1 and formulate our next main theorem

in this section.

Theorem 2.3. Let α < 1 − 1/p. If either 1 6 p < ∞ and f > 0 or p < 0 and

f > 0, then the strict inequality

(14)

∫ 1

0

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx <
1

[(p− 1)/p− α]pq

∫ 1

0

fp(t) dqt

holds (unless f ≡ 0) and the constant [(p− 1)/p− α]−p
q is sharp.

P r o o f. Theorem 2.3 can be proved in a way similar to Theorem 2.1. Hence,

we will only point out some differences of the corresponding relations. In the case

when p > 1 we have

∫ 1

0

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx = (1− q)p+1
∞
∑

j=0

qj[p(α−1)+1]

( ∞
∑

i=j

qi(1−α)f(qi)

)p

= (1− q)p+1Ip,

and

I < sup
‖g‖p′=1,g>0

( ∞
∑

j=0

gp
′

i qi(α−1/p′)
∞
∑

i=j

qi(1/p
′−α)

)1/p′

×

( ∞
∑

i=0

fp(qi)qiqi(1/p
′−α)

i
∑

j=−∞

qi(α−1/p′)

)1/p

= sup
‖g‖p′=1,g>0

I1(g)I2(f),
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respectively. If p = 1, then

∫ 1

0

xα−1

∫ x

0

t−αf(t) dqt dqx = (1− q)2
∞
∑

j=0

qjα
∞
∑

i=j

qi(1−α)f(qi)

= (1− q)2
∞
∑

i=0

qi(1−α)f(qi)

i
∑

j=0

qjα

= (1− q)2
∞
∑

i=0

qif(qi)
i

∑

j=0

q−jα <
1

[−α]q

∫ 1

0

f(t) dqt.

The last strict inequalities give the validity of strict inequality (14). The best

constant in (14) can be found by using the test functions fβ(t) = tβ if 0 < t < 1,

where β > −1/p. In the case when p < 0 the proof of estimate (14) can be done by

use of the same method as in Theorem 2.1 for F . In fact, we have

L(f) <
(1− q)p+1

(1− q(p−1)/p−α)p−1

∞
∑

i=0

fp(qi)qi(1+1/p′−α)
i

∑

j=−∞

qj(α−1/p′)

=
1

[(p− 1)/p− α]pq

∫ 1

0

fp(t) dqt.

This implies the strict inequality in (14). In order to obtain a lower estimate we

consider the test functions fβ(t) = tβχ(0,1](t) for α− 1 < β < −1/p. Then

∫ 1

0

fp
β(t) dqt =

1− q

1− q1+pβ
:= F−(β)

and

L(fβ) =

∫ 1

0

xp(α−1)

(
∫ x

0

t−αfβ(t) dqt

)p

dqx

= (1− q)p+1
∞
∑

i=0

qi(1+p(α−1))

( ∞
∑

j=i

qj(1−α+β)

)p

> (1− q)p+1 1

1− q1+pβ

( 1

1− q1−α+β

)p

=
1− q

1− q1+pβ

( 1− q

1− q1−α+β

)p

:= F+(β).

Hence, if C > 0 is the best constant in inequality (14), then we obtain the estimate

C > lim
β→−1/p

F+(β)

F−(β)
=

1

[(p− 1)/p− α]pq
,

and the proof of Theorem 2.3 is complete. �
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Next, we present some corresponding sharp reverse inequalities with additional

terms for the case 0 < p < 1.

Theorem 2.4. Let 0 < p < 1 and α < (p− 1)/p. Then the following strict

inequalities hold:

∫ 1

0

fp(t)(1 − t(p−1)/p−α) dqt < C

∫ 1

0

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx,(15)

∫ 1

0

fp(t) dqt < C

∫ 1

0

(

1 +
χ(q,1](x)

[(p− 1)/p− α]q

)

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx(16)

for all functions f > 0 with the finite left hand side of (16) unless f ≡ 0, and with

the best constant

(17) C =
[p− 1

p
− α

]p

q
.

P r o o f. Let f > 0 and
∫ 1

0
fp(t) dqt < ∞. Denoting γ = (p− 1)/p − α and

cq = (1 − q)(1− qγ) we obtain

∫ 1

0

fp(t) dqt = (1− q)

∞
∑

j=0

qjfp(qj) = cq

∞
∑

j=0

qjfp(qj)

0
∑

i=−∞

q−iγ

= cq

∞
∑

j=0

qj(1+γ)fp(qj)

j
∑

i=−∞

q−iγ

= cq

∞
∑

j=0

qj(1+γ)fp(qj)

j
∑

i=0

q−iγ + cq

−1
∑

i=−∞

q−iγ
∞
∑

j=0

qj(1+γ)fp(qj)

= cq

∞
∑

j=0

qj(1+γ)fp(qj)

j
∑

i=0

q−iγ + (1− q)qγ
∞
∑

j=0

qj(1+γ)fp(qj)

< cq

∞
∑

i=0

q−iγ
∞
∑

j=i

qj(1+γ)fp(qj) + (1− q)
∞
∑

j=0

qj(1+γ)fp(qj) := I1 + I2.

By using the Hölder-Rogers inequality with powers 1/(1− p) and 1/p we can estimate

I1 as

I1 = cq

∞
∑

i=0

q−iγ
∞
∑

j=i

qj(1−p)γqjp(1−α)fp(qj)

< cq

∞
∑

i=0

q−iγ

( ∞
∑

k=i

qkγ
)1−p( ∞

∑

j=i

qj(1−α)f(qj)

)p
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= cq

( 1

1− qγ

)1−p ∞
∑

i=0

qi(1+p(α−1))

( ∞
∑

j=i

qj(1−α)f(qj)

)p

=
([p− 1

p
− α

]

q

)p
∫ 1

0

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx.

Since I2 = (1−q)
∞
∑

j=0

qj(1+γ)fp(qj) =
∫ 1

0
t(p−1)/p−αfp(t) dqt it follows from the above

calculations that estimate (15) holds with the constant C 6 [(p− 1)/p− α]pq .

Now, we will show also the validity of inequality (16). For this purpose we estimate

I2, using the Hölder-Rogers inequality with powers 1/(1− p) and 1/p, and obtain

I2 = (1− q)
∞
∑

j=0

qj(1−p)γqjp(1−α)fp(qj) < (1− q)

( ∞
∑

k=0

qkγ
)1−p( ∞

∑

j=0

qj(1−α)f(qj)

)p

= (1− q)(1 − qγ)p−1

( ∞
∑

j=0

qj(1−α)f(qj)

)p

=
[p− 1

p
− α

]p−1

q

(
∫ 1

0

t−αf(t) dqt

)p

.

Hence, again from the above calculations we obtain

∫ 1

0

fp(t) dqt <
[p− 1

p
− α

]p

q

[
∫ 1

0

xp(α−1)

(
∫ x

0

t−αf(t) dqt

)p

dqx

+
1

[(p− 1)/p− α]q

(
∫ 1

0

x−αf(x) dqx

)p]

.

This means that (16) holds with the constant (17). Next, we show that the constant

[γ]pq = [(p− 1)/p−α]pq in both the inequalities (15) and (16) is the best possible. To

see this we consider the function fβ(t) = tβ for 0 < t 6 1, where β > −1/p. Then

∫ 1

0

t(p−1)/p−αfp
β(t) dqt =

1− q

1− q1+pβ+γ
,

∫ 1

0

fp
β(t) dqt =

1− q

1− q1+pβ
,

∫ 1

0

xp(α−1)

(
∫ x

0

t−αfβ(t) dqt

)p

dqx =
( 1− q

1− q1−α+β

)p 1− q

1− q1+pβ
,

and

1

[(p− 1)/p− α]q

(
∫ 1

0

t−αfβ(t) dqt

)p

=
1

[(p− 1)/p− α]q

( 1− q

1− q1−α+β

)p

.

If C > 0 is the sharp constant in inequality (15), then

C >

(

1− q1−α+β

1− q

)p
1− q − (1− q1+pβ)(1 − q)/(1− q1+pβ+γ)

1− q
,
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and by letting β → −1/p we find that C > [(p− 1)/p− α]pq . Moreover, if C > 0 is

the sharp constant in inequality (16), then

C >

(

1− q1−α+β

1− q

)p
1− q

1− q + (1− q1+pβ)/[(p− 1)/p− α]q
.

Again, by letting β → −1/p, we obtain C > [(p− 1)/p−α]pq . The proof is complete.

�

Remark 2.5. From Theorem 2.1 with α = 0 we obtain the q-analogue of the

classical Hardy inequality

∫ ∞

0

(

1

x

∫ x

0

f(t) dqt

)p

dqx 6
1

[(p− 1)/p]pq

∫ ∞

0

fp(t) dqt, f > 0,

if p > 1 or p < 0 and f > 0. Moreover, the constant 1/[(p− 1)/p]pq is the best

possible and 1/[(p− 1)/p]pq < (p/(p− 1))p.

Remark 2.6. If f > 0 is a continuous function on [0, 1], then by passing to the

limit as q → 1− in (15) and (16) we get

(18)

∫ 1

0

fp(t)(1 − t(p−1)/p−α) dt 6
(p− 1

p
− α

)p
∫ 1

0

xp(α−1)

(
∫ x

0

t−αf(t) dt

)p

dx,

and
∫ 1

0

fp(t) dt 6
(p− 1

p
− α

)p
∫ 1

0

xp(α−1)

(
∫ x

0

t−αf(t) dt

)p

dµ(x)

where dµ(x) = (1 + p/(p− pα− 1)δ(1 − x)) dx and δ(·) is the Dirac delta function.

The inequality (18) is one of the cases recently proved in [25], Theorem 2.4 (b).

3. A new sharp inequality for the

Riemann-Liouville operator in q-analysis

We need definitions and formulas from the q-calculus to be able to define a q-

analogue of fractional integration Riemann-Liouville operator of order α > 0. These

facts are taken mainly from the book [18] (see also [1] and [26]).

If x > t > 0, then the q-analogue of the polynomial (x − t)k of order k ∈ N and

the generalized polynomial (x− t)α of order α ∈ R are defined by the relations

(19) (x− t)kq = xk
( t

x
; q
)

k
and (x− t)αq = xα

( t

x
; q
)

α
,
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respectively, where the q-analogue of the Pochhammer symbol (q-shifted factorial) is

defined by

(a; q)0 = 1, (a; q)k =
k−1
∏

i=0

(1− aqi) for k ∈ N ∪ {∞} and (a; q)α =
(a; q)∞

(aqα; q)∞
.

In q-analysis the gamma function Γq has the form

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x for x ∈ R \ {0,−1,−2, . . .},

and the beta function Bq(·, ·) is defined in the following way:

Bq(a, b) =

∫ 1

0

ta−1(qt; q)b−1 dqt = (1− q)
∞
∑

i=0

qia(qi+1; q)b−1.

Moreover, the following relations are valid:

Γq(x+ 1) = [x]qΓq(x) and Bq(a, b) =
Γq(a)Γq(b)

Γq(a+ b)
.

Finally, the q-analogue of the fractional integration Riemann-Liouville operator of

order α > 0 has the form

(20) Iαq f(x) =
1

Γq(α)

∫ x

0

(x− qt)α−1
q f(t) dqt.

Our main result in this section is the following q-analogue of inequality (2).

Theorem 3.1. If p > 1 and α > 0, then the inequality

(21)

∫ ∞

0

[

1

xαΓq(α)

∫ x

0

(x − qt)α−1
q f(t) dqt

]p

dqx 6 C

∫ ∞

0

fp(t) dqt, f > 0,

holds with the best constant

(22) C =

[

Γq(1 − 1/p)

Γq(α+ 1− 1/p)

]p

.

P r o o f. Let f > 0. Based on (6), (19) and (20) we have

(23) Iαq f(x) =
1

Γq(α)

∫ x

0

(x−qt)α−1
q f(t) dqt =

xα

Γq(α)
(1−q)

∞
∑

i=0

(qi+1; q)α−1f(xq
i)qi.
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Then, in view of (7) and (23), we find that

∫ ∞

0

(

Iαq f(x)

xα

)p

dqx = (1− q)

(

1− q

Γq(α)

)p ∞
∑

j=−∞

( ∞
∑

i=0

(qi+1; q)α−1f(q
i+j)qi

)p

qj

= (1− q)

(

1− q

Γq(α)

)p ∞
∑

j=−∞

qj(1−p)

( ∞
∑

i=j

(qi−j+1; q)α−1f(q
i)qi

)p

= (1− q)

(

1− q

Γq(α)

)p

(Jα)
p.

By applying the duality principle in lp(Z) and by using the Hölder-Rogers inequality

we obtain

Jα = sup
‖g‖l

p′
=1, g>0

∞
∑

j=−∞

gjq
−j/p′

∞
∑

i=j

(qi−j+1; q)α−1f(q
i)qi

= sup
‖g‖l

p′
=1, g>0

∑

j

∑

i

gjq
(i−j)/p′

θ(i − j)(qi−j+1; q)α−1f(q
i)qi/p

6 sup
‖g‖l

p′
=1, g>0

(

∑

j

∑

i

gp
′

j q(i−j)/p′

θ(i − j)(qi−j+1; q)α−1

)1/p′

×

(

∑

i

∑

j

fp(qi)qiq(i−j)/p′

θ(i − j)(qi−j+1; q)α−1

)1/p

= sup
‖g‖l

p′
=1, g>0

Jα,p′(g)Jα,p(f),

where

Jα,p′(g)p
′

=
∑

j

∑

i

gp
′

j q(i−j)/p′

θ(i− j)(qi−j+1; q)α−1

and

Jα,p(f)
p =

∑

i

∑

j

fp(qi)qiq(i−j)/p′

θ(i − j)(qi−j+1; q)α−1.

By formulas for beta and gamma functions, we get

sup
‖g‖l

p′
=1, g>0

Jα,p′(g)p
′

= sup
‖g‖l

p′
=1, g>0

∑

j

∑

i

gp
′

j q(i−j)/p′

θ(i − j)(qi−j+1; q)α−1

= sup
‖g‖l

p′
=1, g>0

∑

j

gp
′

j

∞
∑

i=j

q(i−j)/p′

(qi−j+1; q)α−1

= sup
‖g‖l

p′
=1, g>0

∑

j

gp
′

j

∞
∑

i=0

qi/p
′

(qi+1; q)α−1

=
Bq(1/p

′;α)

1− q
=

Γq(1− 1/p)Γq(α)

Γq(α + 1− 1/p)

1

1− q
,
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and

Jα,p(f)
p =

∑

i

∑

j

fp(qi)qiq(i−j)/p′

θ(i− j)(qi−j+1; q)α−1

=
∑

i

fp(qi)qi
i

∑

j=−∞

q(i−j)/p′

(qi−j+1; q)α−1

=
∑

i

fp(qi)qi
∞
∑

j=0

qj/p
′

(qj+1; q)α−1

=
1

(1− q)2
Γq(1− 1/p)Γq(α)

Γq(α+ 1− 1/p)

∫ ∞

0

fp(t) dqt.

By combining the above calculations we find that for f > 0 we have

∫ ∞

0

(

Iαq f(x)

xα

)p

dqx =

∫ ∞

0

(

1

xαΓq(α)

∫ x

0

(x− qt)α−1
q f(t) dqt

)p

dqx

= (1 − q)

(

1− q

Γq(α)

)p

(Jα)
p

6 (1 − q)

(

1− q

Γq(α)

)p

sup
‖g‖l

p′
=1, g>0

Jα,p′(g)pJα,p(f)
p

6 (1 − q)

(

1− q

Γq(α)

)p[
Γq(1− 1/p)Γq(α)

Γq(α+ 1− 1/p)

1

1− q

]p−1

×
1

(1− q)2
Γq(1− 1/p)Γq(α)

Γq(α+ 1− 1/p)

∫ ∞

0

fp(t) dqt

=

[

Γq(1− 1/p)

Γq(α+ 1− 1/p)

]p ∫ ∞

0

fp(t) dqt,

which means that inequality (21) holds with the estimate C 6 [Γq(1 − 1/p)/

Γq(α+ 1− 1/p)]p for the best constant C.

Now, we give also a lower estimate for the best constant C in (21). Let fβ(t) =

tβχ(0,1](t) with β > −1/p. Then
∫∞

0
fp
β(t) dqt = (1 − q)/(1− q1+pβ) (cf. proof of

Theorem 2.1 in the case 1 < p < ∞) and

∫ ∞

0

(Iαq fβ(x)

xα

)p

dqx =
(1 − q)p+1

Γp
q(α)

∞
∑

j=−∞

qj(1−p)

( ∞
∑

i=j

(qi−j+1; q)α−1fβ(q
i)qi

)p

>
(1 − q)p+1

Γp
q(α)

∞
∑

j=0

qj(1−p)

( ∞
∑

i=j

(qi−j+1; q)α−1fβ(q
i)qi

)p
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=
(1 − q)p+1

Γp
q(α)

∞
∑

j=0

qj(1−p)

( ∞
∑

i=j

(qi−j+1; q)α−1q
i(1+β)

)p

=
(1 − q)p+1

Γp
q(α)

∞
∑

j=0

qj(1+pβ)

( ∞
∑

i=0

(qi+1; q)α−1q
i(1+β)

)p

=
1− q

Γp
q(α)(1 − q1+pβ)

Bp
q (β + 1, α).

If inequality (21) holds with the best constant C > 0, then

C > sup
β>−1/p

(Bq(β + 1, α)

Γq(α)

)p

=

(

Bq(1− 1/p, α)

Γq(α)

)p

=

(

Γq(1 − 1/p)

Γq(α+ 1− 1/p)

)p

,

which shows that constant (22) is sharp. The proof is complete. �

From Theorem 3.1 we obtain immediately the validity of the following statement:

Corollary 3.2. Let p > 1 and α > 0. Then the following inequality is valid:

∫ 1

0

(

Iαq f(x)

xα

)p

dqx <

(

Γq(1− 1/p)

Γq(α+ 1− 1/p)

)p ∫ 1

0

fp(t) dqt.

Moreover, the constant (Γq(1− 1/p)/Γq(α+ 1− 1/p))p is the best possible.

The strict inequality we are getting as before in the estimate of Jα,p(f). In fact,

for the finite interval of integration the sum inside of the expression Jα is going from

0 to ∞,

Jα,p(f) =

∞
∑

i=0

fp(qi)qi
i

∑

j=0

q(i−j)/p′

(qi−j+1; q)α−1

<

∞
∑

i=0

fp(qi)qi
∞
∑

j=0

qj/p
′

(qj+1; q)α−1

=
1

(1− q)2
Γq(1− 1/p)Γq(α)

Γq(α+ 1− 1/p)

∫ 1

0

fp(t) dqt.
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4. Remarks on classical discrete Hardy inequalities

The Hardy discrete inequality (4) follows from the Hardy integral inequality (3)

by putting in (3) a simple nonincreasing function (cf. [16], page 248, and [20],

pages 155–156, [21], page 726).

Up to now there is no sharp discrete analogue of the Hardy integral inequality (1)

except for α = 0 and this fact was the motivation for many authors to establish the

discrete inequalities

(24)

∞
∑

n=1

(

1

n1−α

n
∑

k=1

[k1−α − (k − 1)1−α]ak

)p

6

( (1− α)p

p− αp− 1

)p ∞
∑

n=1

apn, an > 0,

and

(25)

∞
∑

n=1

(

1
∑n

k=1 k
−α

n
∑

k=1

k−αak

)p

6

( (1− α)p

p− αp− 1

)p ∞
∑

n=1

apn, an > 0.

For fixed p > 1, thanks to a result of Cass and Kratz [7], Theorem 2, we know that in-

equalities (24) and (25) can only hold for α < 1−1/p and if they hold for some α < 1−

1/p, then the constant [(1−α)p/(p−αp−1)]p = [p/(p−1/(1− α))]p is the best poss-

ible since for α < 1 we have lim
n→∞

n
∑

k=1

[k1−α − (k − 1)1−α]/n[n1−α − (n− 1)1−α] =

1/(1− α) and lim
n→∞

n
∑

k=1

k−α/n1−α = 1/(1− α) (see also [14], pages 374–375).

Both the inequalities were stated by Bennett in [3], pages 40–41, whenever p > 1,

α < 1− 1/p and α 6 0. No proofs were given in [3]. The proof of (24) for p > 1, α <

1− 1/p and α < 0 (for α = 0 this is just the classical discrete Hardy inequality (4))

was given by Bennett [4], pages 401–402, 407, and the proof for p > 1, α < 1 − 1/p

by Bennett [5], Theorem 1, pages 31–32, [6], Theorem 1, page 803, and Theorem 18,

page 829, and Gao [11], Corollary 3.1.

Inequality (25) was proved independently by Gao [11], Corollary 3.2, and Bennett

[6], Theorem 7, for p > 1, α < 1 − 1/p and if either α 6 −1 or 0 6 α < 1.

Moreover, Gao [12], Theorem 1.1, has shown that the inequality holds for p > 2

and −1/p 6 α 6 0 or 1 < p 6 4/3 and −1 6 α 6 −1/p. In [13], Theorem 6.1, he

extended the proof to p > 2 and −1 6 α 6 0. This means that they are still some

regions with no proof of (25).

Now, let us comment which discrete Hardy inequalities we are getting from the

Hardy q-inequalities. Directly from the proof of Theorems 2.1 and 2.3 we obtain the

following discrete inequalities of independent interest: for 0 < q < 1 and α < 1− 1/p
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we have

∞
∑

j=−∞

(

qj(α+1/p−1)
∞
∑

i=j

qi(1−1/p−α)ai

)p

6
1

(1 − q1−1/p−α)p

∞
∑

i=−∞

api , ai > 0,

∞
∑

j=0

(

qj(α+1/p−1)
∞
∑

i=j

qi(1−1/p−α)ai

)p

6
1

(1 − q1−1/p−α)p

∞
∑

i=0

api , ai > 0,

if either p > 1 or p < 0 and ai > 0 (i ∈ Z or i ∈ N ∪ {0}, respectively) with the best

constant (1− q1−1/p−α)−p.

The above two inequalities we can rewrite by putting λ = 1− 1/p− α > 0 to the

following new sharp discrete inequalities: if 0 < q < 1 and either p > 1 or p < 0 and

an > 0 (n ∈ Z or n ∈ N ∪ {0}, respectively), then with the best constant

∞
∑

n=−∞

(

1

qλn

∞
∑

k=n

qλkak

)p

6
1

(1− qλ)p

∞
∑

n=−∞

apn, an > 0,(26)

∞
∑

n=0

(

1

qλn

∞
∑

k=n

qλkak

)p

6
1

(1− qλ)p

∞
∑

n=0

apn, an > 0.(27)

For 0 < p < 1 inequality (26) holds in the reverse direction. If p > 1, then in view

of (26) and (27) by passing to the dual inequalities with substitution of p by p′ we

obtain

∞
∑

n=−∞

(

qλn
n
∑

k=−∞

q−λkak

)p

6
1

(1− qλ)p

∞
∑

n=−∞

apn, an > 0,(28)

∞
∑

n=0

(

qλn
n
∑

k=0

q−λkak

)p

6
1

(1− qλ)p

∞
∑

n=0

apn, an > 0.(29)

In recent years the following weighted Hardy and weighted Copson inequalities have

been frequently investigated (see, e.g. [6], [11], [13] and the references given there):

∞
∑

n=0

(∑n
k=0 λkak

∑n
k=0 λk

)p

6 A
∞
∑

n=0

apn,
∞
∑

n=0

(∑∞
k=n λkak

∑∞
k=n λk

)p

6 B
∞
∑

n=0

apn,(30)

∞
∑

n=−∞

(

∑n
k=−∞ λkak

∑n
k=−∞ λk

)p

6 C

∞
∑

n=−∞

apn,

∞
∑

n=−∞

(∑∞
k=n λkak

∑∞
k=n λk

)p

6 D

∞
∑

n=−∞

apn,(31)

where λn > 0, an > 0, n ∈ N ∪ {0} or n ∈ Z, respectively. However, in general, the

best constants in the above inequalities have not been found yet.

If λk = k−α for k ∈ N and λ0 = a0 = 0, then the first inequality in (30) becomes

(25) and it holds with the best constant A = ((1 − α)p/(p− αp− 1))p for parameters

which have been mentioned at the beginning of this part.
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Since
∞
∑

k=n

qλk = qλn/(1− qλ), estimates (27) and (26) imply that the second in-

equalities in (30) and (31) (the Copson inequalities) with λk = qλk (0 < q < 1, λ > 0,

k ∈ N ∪ {0} or k ∈ Z, respectively) for p > 1 or p < 0 hold with the best constants

B = 1 and D = 1, respectively.

Also, since
n
∑

k=−∞

q−λk = q−λn/(1− qλ), estimate (28) implies the first inequality

in (31) (the Hardy inequality) with λk = q−λk (0 < q < 1, λ > 0, k ∈ Z) for p > 1

with the best constant C = 1. In the case 0 < p < 1 the second inequality in (31)

holds in the reverse direction.

Inequality (29) and the obvious estimate
n
∑

k=0

q−λk > q−λn imply that the first

inequality in (30) holds with λk = q−λk (0 < q < 1, λ > 0, k = 0, 1, 2, . . .) for p > 1

with the estimate A 6 (1− qλ)−p for the best constant.

From the proof of Theorem 2.4 we obtain that if λ > 0, 0 < q < 1, an > 0

(n = 0, 1, 2, . . .) and 0 < p < 1, then the following discrete inequalities hold with the

best constants:

∞
∑

n=0

(

q−λn
∞
∑

k=n

qλkak

)p

>
1

(1− qλ)p

∞
∑

n=0

(1− qλn)apn,

and
∞
∑

n=0

(

q−λn
∞
∑

k=n

qλkak

)p

+
1

1− qλ

( ∞
∑

n=0

qλnan

)p

>
1

(1− qλ)p

∞
∑

n=0

apn.

The proof of the q-inequality for the Riemann-Liouville operator gives estimates

for matrix operators. In fact, from the proof of Theorem 3.1 we obtain the following

inequalities: if 0 < q < 1, α > 0 and p > 1, then

∞
∑

n=−∞

(

q−n/p′

∞
∑

k=n

(qk−n+1; q)α−1q
k/p′

ak

)p

6 E

∞
∑

n=−∞

apn, an > 0,(32)

∞
∑

n=0

(

q−n/p′

∞
∑

k=n

(qk−n+1; q)α−1q
k/p′

ak

)p

6 E

∞
∑

n=0

apn, an > 0,(33)

with the best constant E =
( ∞
∑

n=0
qn/p

′

(qn+1; q)α−1

)p

.

Since
∞
∑

k=n

qk/p
′

(qk−n+1; q)α−1 = qn/p
′

∞
∑

k=0

qk/p
′

(qk+1; q)α−1, then denoting

Qn =
∞
∑

k=n

qk/p
′

(qk−n+1; q)α−1
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we can rewrite inequalities (32) and (33) in the following forms:

∞
∑

n=−∞

(

1

Qn

∞
∑

k=n

qk/p
′

(qk−n+1; q)α−1ak

)p

6

∞
∑

n=−∞

apn, an > 0(34)

∞
∑

n=0

(

1

Qn

∞
∑

k=n

qk/p
′

(qk−n+1; q)α−1ak

)p

6

∞
∑

n=0

apn, an > 0.(35)

Moreover, by passing to the dual inequality in (32) and substituting p by p′ we obtain

∞
∑

n=−∞

(

qn/p
n
∑

k=−∞

(qn−k+1; q)α−1q
−k/pak

)p

(36)

6

( ∞
∑

n=0

qn/p(qn+1; q)α−1

)p ∞
∑

n=0

apn, an > 0.

Since
n
∑

k=−∞

(qn−k+1; q)α−1q
−k/p = qn/p

∞
∑

j=0

(qk+1; q)α−1 =: Qn, the inequality (36)

can be written in the form

(37)

∞
∑

n=−∞

(

1

Qn

n
∑

k=−∞

(qn−k+1; q)α−1q
−k/pak

)p

6

∞
∑

n=0

apn, an > 0.

Inequalities (34), (35) and (37) are examples of sharp matrix inequalities of the

forms

∞
∑

n=−∞

(∑∞
k=n λn,kak

∑∞
k=n λn,k

)p

6

∞
∑

n=−∞

apn,

∞
∑

n=0

(∑∞
k=n λn,kak

∑∞
k=n λn,k

)p

6

∞
∑

n=0

apn,

and

∞
∑

n=−∞

(

∑n
k=−∞ λn,kak

∑n
k=−∞ λn,k

)p

6

∞
∑

n=−∞

apn, an > 0,

where p > 1 and λn,k > 0 are of special form. They are generalizations of three of

the inequalities in (30) and (31).
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mann-Liouville and Caputo type. arXiv: 0909.0387v1[math.CA], 2 Sept. 2009.

681



[27] W.T. Sulaiman: New types of q-integral inequalities. Advances in Pure Math. 1 (2011),
77–80.

Authors’ addresses: L e c h Ma l i g r a n d a, Department of Engineering Sciences and
Mathematics, Lule̊a University of Technology, SE-971 87 Lule̊a, Sweden, e-mail: lech.
maligranda@ltu.se; R y s k u l O i n a r o v, L.N.Gumilyev Eurasian National University,
Munaytpasov st. 5, 010 008 Astana, Kazakhstan, e-mail: o ryskul@mail.ru; L a r s - E r i k
P e r s s o n, Department of Engineering Sciences and Mathematics, Lule̊a University of Tech-
nology, SE-971 87 Lule̊a, Sweden, and Narvik University College, P.O.Box 385, N-8505
Narvik, Norway, e-mail: larserik@ltu.se.

682


		webmaster@dml.cz
	2020-07-03T21:11:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




