Czechoslovak Mathematical Journal

Kirsti Wash

Edgeless graphs are the only universal fixers

Czechoslovak Mathematical Journal, Vol. 64 (2014), No. 3, 833-843

Persistent URL: http://dml.cz/dmlcz/144062

Terms of use:

© Institute of Mathematics AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

EDGELESS GRAPHS ARE THE ONLY UNIVERSAL FIXERS

Kirsti Wash, Clemson

(Received August 11, 2013)

Abstract

Given two disjoint copies of a graph G, denoted G^{1} and G^{2}, and a permutation π of $V(G)$, the graph πG is constructed by joining $u \in V\left(G^{1}\right)$ to $\pi(u) \in V\left(G^{2}\right)$ for all $u \in V\left(G^{1}\right) . G$ is said to be a universal fixer if the domination number of πG is equal to the domination number of G for all π of $V(G)$. In 1999 it was conjectured that the only universal fixers are the edgeless graphs. Since then, a few partial results have been shown. In this paper, we prove the conjecture completely.

Keywords: universal fixer; domination
MSC 2010: 05C69

1. Definitions and notation

We consider only finite, simple, undirected graphs. The vertex set of a graph G is denoted by $V(G)$ and its edge set by $E(G)$. The order of G, denoted by $|G|$, is the cardinality of $V(G)$. We will denote the graph consisting of n isolated vertices as $\overline{K_{n}}$. The open neighborhood of $v \in V(G)$ is $N(v)=\{u ; u v \in E(G)\}$, and the open neighborhood of a subset D of vertices is $N(D)=\bigcup_{v \in D} N(v)$. The closed neighborhood of v is $N[v]=N(v) \cup\{v\}$, and the closed neighborhood of a subset D of vertices is $N[D]=N(D) \cup D$. A set $S \subseteq V(G)$ is a 2-packing of G if $N[x] \cap N[y]=\emptyset$ for every pair of distinct vertices x and y in S.

Given two sets A and B of $V(G)$, we say A dominates B if $B \subseteq N[A]$, and a set $D \subseteq V(G)$ dominates G if $V(G)=N[D]$. The domination number, denoted $\gamma(G)$, is the minimum cardinality of a dominating set of G. A γ-set of G is a dominating set of G of cardinality $\gamma(G)$.

Given a graph G and any permutation π of $V(G)$, the prism of G with respect to π is the graph πG obtained by taking two disjoint copies of G, denoted G^{1} and G^{2}, and
joining every $u \in V\left(G^{1}\right)$ with $\pi(u) \in V\left(G^{2}\right)$. That is, the edges between G^{1} and G^{2} form a perfect matching in πG. For any subset $A \subseteq V(G)$, we let $\pi(A)=\bigcup_{v \in A} \pi(v)$.

If π is the identity $\mathbf{1}_{G}$, then $\pi G \cong G \square K_{2}$, the Cartesian product of G and K_{2}. The graph $G \square K_{2}$ is often referred to as the prism of G, and the domination number of this graph has been studied by Hartnell and Rall in [6].

One can easily verify that $\gamma(G) \leqslant \gamma(\pi G) \leqslant 2 \gamma(G)$ for all π of $V(G)$. If $\gamma(\pi G)=$ $\gamma(G)$ for some permutation π of $V(G)$, then we say G is a π-fixer. If G is a $\mathbf{1}_{G}$-fixer, then G is said to be a prism fixer. Moreover, if $\gamma(\pi G)=\gamma(G)$ for all π, then we say G is a universal fixer.

In 1999, Gu [4] conjectured that a graph G of order n is a universal fixer if and only if $G=\overline{K_{n}}$. Clearly if $G=\overline{K_{n}}$, then for any π of $V(G)$ we have $\gamma(\pi G)=n=\gamma(G)$. It is the other direction, the question of whether the edgeless graphs are the only universal fixers, that is far more interesting and is the focus of this paper. Over the past decade, it has been shown that a few classes of graphs do not contain any universal fixers. In particular, given a nontrivial connected graph G, Gibson [3] showed that there exists some π such that $\gamma(G) \neq \gamma(\pi G)$ if G is bipartite. Cockayne, Gibson, and Mynhardt [2] later proved this to be true when G is claw-free. Mynhardt and $\mathrm{Xu}[7]$ also showed if G satisfies $\gamma(G) \leqslant 3$, then G is not a universal fixer. Other partial results can be found in [1], [5]. The purpose of this paper is to prove Gu's conjecture, which we state as the following theorem.

Theorem 1.1. A graph G of order n is a universal fixer if and only if $G=\overline{K_{n}}$.
Although the following observation is stated throughout the literature, we give a short proof here for the sake of completeness.

Observation 1.2. Let G be a disconnected graph that contains at least one edge. If G is a universal fixer, then every component of G is a universal fixer.

Proof. Let G be a disconnected graph containing at least one edge, and let C_{1}, \ldots, C_{k} represent the components of G where $k \geqslant 2$. Suppose, for some $j \in$ $\{1, \ldots, k\}$, that C_{j} is not a universal fixer. There exists a permutation $\pi_{j}: V\left(C_{j}\right) \rightarrow$ $V\left(C_{j}\right)$ such that $\gamma\left(\pi_{j} C_{j}\right)>\gamma\left(C_{j}\right)$. Now define $\pi: V(G) \rightarrow V(G)$ by

$$
\pi(x)= \begin{cases}x & \text { if } x \in V(G) \backslash V\left(C_{j}\right) \\ \pi_{j}(x) & \text { if } x \in V\left(C_{j}\right)\end{cases}
$$

Note that πG is a disconnected graph which can be written as the disjoint union

$$
\left(\bigcup_{i \neq j} C_{i} \square K_{2}\right) \cup \pi_{j} C_{j} .
$$

Thus,

$$
\begin{aligned}
\gamma(\pi G) & =\gamma\left(\bigcup_{i \neq j} C_{i} \square K_{2}\right)+\gamma\left(\pi_{j} C_{j}\right) \\
& >\sum_{i \neq j} \gamma\left(C_{i} \square K_{2}\right)+\gamma\left(C_{j}\right) \\
& \geqslant \gamma(G) .
\end{aligned}
$$

Therefore, if there exists a permutation π of a component C_{j} of G such that C_{j} is not a π-fixer, then G is not a universal fixer. The result follows.

Observation 1.2 allows us to consider only nontrivial connected graphs. Therefore, we focus on proving the following theorem.

Theorem 1.3. If a connected graph G is a universal fixer, then $G=K_{1}$.
The remainder of the paper is organized as follows. Section 2 is dedicated to previous results that will be useful in the proof of Theorem 1.3. The proof of Theorem 1.3 is given in Section 3.

2. Known Results

In order to study π-fixers, we will make use of the following results.
Lemma 2.1 ([7]). Let G be a connected graph of order $n \geqslant 2$ and π a permutation of $V(G)$. Then $\gamma(\pi G)=\gamma(G)$ if and only if G has a γ-set D such that
(a) D admits a partition $D=D_{1} \cup D_{2}$ where D_{1} dominates $V(G) \backslash D_{2}$;
(b) $\pi(D)$ is a γ-set of G and $\pi\left(D_{2}\right)$ dominates $V(G) \backslash \pi\left(D_{1}\right)$.

Note that if a graph G is a universal fixer, then G is also a prism fixer. So applying Lemma 2.1 to the permutation $\mathbf{1}_{G}$, we get the following type of γ-set.

Definition 2.2. A γ-set D of G is said to be symmetric if D admits a partition $D=D_{1} \cup D_{2}$ where

1. D_{1} dominates $V(G) \backslash D_{2}$, and
2. D_{2} dominates $V(G) \backslash D_{1}$.

We write $D=\left[D_{1}, D_{2}\right]$ to emphasize properties 1 and 2 of this partition of D.
The following two results were shown by Hartnell and Rall [6], where some statements are in a slightly different form.

Lemma 2.3 ([6]). If $D=\left[D_{1}, D_{2}\right]$ is a symmetric γ-set of G, then:
(a) D is independent.
(b) G has minimum degree at least 2 .
(c) D_{1} and D_{2} are maximal 2-packings of G.
(d) For $i \in\{1,2\}, \sum_{x \in D_{i}} \operatorname{deg} x=|V(G)|-\gamma(G)$.

Theorem 2.4 ([6]). The conditions below are equivalent for any nontrivial, connected graph G.
(a) G is a prism fixer.
(b) G has a symmetric γ-set.
(c) G has an independent γ-set D that admits a partition $D=\left[D_{1}, D_{2}\right]$ such that each vertex in $V(G) \backslash D$ is adjacent to exactly one vertex in D_{i} for $i \in\{1,2\}$, and each vertex in D is adjacent to at least two vertices in $V(G) \backslash D$.

We shall add to this terminology that if a symmetric γ-set $D=\left[D_{1}, D_{2}\right]$ exists such that $\left|D_{1}\right|=\left|D_{2}\right|$, then D is an even symmetric γ-set.

3. Proof of Theorem 1.3

The proof of Theorem 1.3 is broken into three cases depending on the type of symmetric γ-sets a graph possesses. The following property will be useful in each of these cases.

Property 3.1. Let $A=\left[A_{1}, A_{2}\right]$ and $B=\left[B_{1}, B_{2}\right]$ be symmetric γ-sets of G such that $\left|A_{1}\right| \leqslant\left|A_{2}\right|$ and $\left|B_{1}\right| \leqslant\left|B_{2}\right|$.
(a) If $\left|A_{1}\right|<\left|B_{1}\right|$, then $A_{2} \cap B_{1} \neq \emptyset$.
(b) If $\left|B_{1}\right|=\left|A_{1}\right|<\left|A_{2}\right|$, then $A_{2} \cap B_{2} \neq \emptyset$.

Proof. (a) By assumption, $\left|B_{1} \backslash A_{1}\right|>0$ and A_{1} dominates $V(G) \backslash A_{2}$. If $A_{2} \cap B_{1}=\emptyset$, then by the pigeonhole principle there exists $v \in A_{1}$ such that v dominates at least two vertices in B_{1}. This contradicts the fact that B_{1} is a 2 packing. Therefore, $A_{2} \cap B_{1} \neq \emptyset$.
(b) Since $\left|B_{2}\right|=\left|A_{2}\right|>\left|A_{1}\right|$, replacing B_{1} with B_{2} in the above argument gives the desired result.

We call the reader's attention to the fact that any universal fixer is inherently a prism fixer. Therefore, in each of the following proofs, we show that for every nontrivial connected prism fixer G there exists a permutation α such that $\gamma(\alpha G)>\gamma(G)$. Furthermore, the results of Mynhardt and Xu [7] allow us to consider only connected graphs with domination number at least 4.

To prove the next three theorems, we introduce the following notation. Let G be a graph and let π be a permutation of $V(G)$. For each vertex $v \in V(G)$, we let v^{1} represent the copy of v in G^{1} and v^{2} represent the copy of v in G^{2}; conversely, for $i=1,2$, if $v^{i} \in V\left(G^{i}\right)$, let v be the corresponding vertex of G. If $A \subseteq V(G)$, we define $A^{i}=\left\{v^{i}: v \in A\right\}$ for $i=1,2$. Conversely, if $A^{i} \in V\left(G^{i}\right)$, then $A=\left\{v \in V(G): v^{i} \in\right.$ $\left.A^{i}\right\}, i=1,2$. If B is a set of vertices in the graph πG, we write $B=X^{1} \cup Y^{2}$, for some symbols X and Y, where $X^{1}=B \cap V\left(G^{1}\right)$ and $Y^{2}=B \cap V\left(G^{2}\right)$. Thus we navigate between G and πG : the absence of superscripts indicates vertices or sets of vertices in G, and the superscript $i \in\{1,2\}$ indicates the corresponding vertices or sets of vertices in the subgraph G^{i} of πG.

Theorem 3.2. Let G be a nontrivial connected prism fixer with $\gamma(G) \geqslant 4$. If G has a symmetric γ-set that intersects every even symmetric γ-set of G nontrivially, then G is not a universal fixer.

Proof. Let $D=\left[D_{1}, D_{2}\right]$ be a symmetric γ-set of G that intersects every even symmetric γ-set of G nontrivially. By Lemma 2.3(c), D_{1} and D_{2} are 2-packings. Assume without loss of generality that $\left|D_{1}\right| \geqslant\left|D_{2}\right|$ and let $D_{1}=\left\{x_{1}, \ldots, x_{k}\right\}$. Since D_{1} is nonempty and a 2-packing, there exists a vertex $u \in N\left(x_{1}\right)$ such that $u \notin \bigcup_{i=2}^{k} N\left(x_{i}\right)$. Define the permutation α of $V(G)$ by $\alpha\left(x_{i}\right)=x_{i+1}, i=1, \ldots, k-1$, $\alpha\left(x_{k}\right)=u, \alpha(u)=x_{1}$, and $\alpha(v)=v$ for $v \in V(G) \backslash\left(D_{1} \cup\{u\}\right)$. Figure 1 illustrates αG with this particular permutation.

Figure 1. αG where D is a symmetric γ-set that nontrivially intersects every even symmetric γ-set of G.

Suppose $\gamma(\alpha G)=\gamma(G)$ and let $Q^{1} \cup R^{2}$ be a γ-set of αG. Let S^{1} consist of the vertices of G^{1} that are not dominated by Q^{1}. Then S^{1} is dominated by R^{2}, that is, for each $s^{1} \in S^{1}, \alpha(s) \in R$ and thus $\alpha(S) \subseteq R$. Suppose $r^{2} \in R^{2}$ is adjacent to $a^{1} \in V\left(G^{1}\right)-S^{1}$. Then $\alpha^{-1}(r)=a$ and Q^{1} dominates a^{1}; hence each vertex of G^{1} is dominated by a vertex in Q^{1} or a vertex in $R^{2} \backslash\left\{r^{2}\right\}$, implying $\left(Q \cup \alpha^{-1}(R)\right) \backslash\{a\}$ is a dominating set of G of cardinality less than $\gamma(\alpha G)=\gamma(G)$, which is impossible. Hence the neighbor in G^{1} of each vertex in R^{2}, as determined by α, belongs to S^{1}, that is $\alpha^{-1}(R) \subseteq S$. It follows that $\alpha(S)=R$. Similarly, if T^{2} consists of the vertices of G^{2} that are not dominated by R^{2}, then $\alpha(Q)=T$. Furthermore, S and T are 2-packings, otherwise G would also have a dominating set of cardinality less than $\gamma(G)$. We consider four cases.

Case 1. Assume that $S \cap\left(D_{1} \cup\{u\}\right)=\emptyset$ and $Q \cap\left(D_{1} \cup\{u\}\right)=\emptyset$. By definition of $\alpha, \alpha(v)=v$ for each $v \in S \cup Q$. Since $\alpha(S)=R, R=S$. Similarly, $Q=T$. Since Q^{1} dominates $V\left(G^{1}\right) \backslash S^{1}$ and R^{2} dominates $V\left(G^{2}\right) \backslash T^{2}$, it follows that T dominates $V(G) \backslash S$ and S dominates $V(G) \backslash T$. Hence $[S, T]$ is a symmetric γ-set of G, where we may assume without loss of generality that $|S| \leqslant|T|$.

If $|S|=\gamma(G) / 2$, then $[S, T]$ is an even symmetric γ-set of G. By the choice of $D, D \cap(S \cup T) \neq \emptyset$. Since $\alpha(v)=v$ for each $v \in S \cup Q=S \cup T$, we know that $D \cap(S \cup T) \subseteq D$. Hence, by the assumptions of Case $1, D \cap(S \cup T) \subseteq D_{2}$. Without loss of generality, assume there exists $y \in D_{2} \cap T$. By Lemma 2.3(a), y does not dominate any vertex in D_{1}. Now each vertex in D_{1} is either dominated by a vertex in T or is contained in S. But $S \cap D_{1}=\emptyset$ and y does not dominate any vertex in D_{1}. Hence $T \backslash\{y\}$ dominates D_{1}. But $|T|=\gamma(G) / 2$, so by the choice of $D_{1},|T \backslash\{y\}|<\gamma(G) / 2 \leqslant\left|D_{1}\right|$. Therefore D_{1} is not a 2-packing, contradicting Lemma 2.3(c).

Hence assume $|S|<\gamma(G) / 2$. Letting S represent A_{1} and D_{1} represent B_{1} in Property 3.1(a), and recalling that $\left|D_{1}\right| \geqslant \gamma(G) / 2$, we see that $T \cap D_{1} \neq \emptyset$. But then $Q \cap D_{1} \neq \emptyset$, contrary to the assumption of Case 1 . Hence Case 1 cannot occur.

Case 2. Assume that $u \in Q \cup S$. First suppose that $u \in Q$. Then $\alpha(u)=x_{1} \in T$. Since $u x_{1} \in E(G)$ and T is a 2-packing, $u \notin T$. Hence $u \in N(R)$ by definition of T. Let v be a vertex in R adjacent to u. Since x_{1} is the only vertex of D_{1} adjacent to u, $\alpha(v)=v$. Since $\alpha(S)=R$, it follows that $v \in S$. But now $u v$ joins $u \in Q$ to $v \in S$, contrary to the definition of S.

Hence we may assume that $u \in S$. Then $\alpha(u)=x_{1} \in R$. Since $u x_{1} \in E(G)$ and S is a 2-packing, $x_{1} \notin S$. Hence $x_{1} \in N(Q)$ by definition of S. Let v be a vertex in Q adjacent to x_{1}. As above, $\alpha(v)=v$, and since $\alpha(Q)=T, v \in T$. Therefore there exists an edge between R and T, contrary to the definition of T.

Case 3. Assume for some $j \in\{2, \ldots, k-1\}$ that $x_{j} \in Q \cup S$. Suppose we can show that $x_{1}, u \in Q \cap R$. Since $\alpha(Q)=T$ and $u \in Q$, it will follow that $\alpha(u)=x_{1} \in T$, contrary to the fact that $R \cap T=\emptyset$. Hence this is what we do next.

Since $x_{j} \in Q \cup S, \alpha\left(x_{j}\right)=x_{j+1} \in R \cup T$. Suppose there exists a vertex $v \in R$ such that $v x_{j} \in E(G)$. By the choice of $u, v \neq u$. Since D_{1} is independent, $v \notin D_{1}$. Therefore $v \in V(G) \backslash\left(D_{1} \cup\{x\}\right)$ and so $\alpha(v)=v$, which implies that $v \in S$. Since S is a 2-packing, $x_{j} \notin S$, and since no vertex in Q dominates a vertex in $S, x_{j} \notin Q$, contrary to the assumption of Case 3. Hence no such vertex v exists and thus, by definition of R and $T, x_{j} \in R \cup T$. Therefore $\alpha^{-1}\left(x_{j}\right)=x_{j-1} \in Q \cup S$. A similar argument shows that x_{j+1} is not adjacent to any vertex in Q and so $x_{j+1} \in Q \cup S$. We can now apply the same argument inductively to $x_{j+1} \in Q \cup S$ and $x_{j-1} \in Q \cup S$ until we arrive at the conclusion that $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq(Q \cup S) \cap(R \cup T)$. Then $\alpha^{-1}\left(x_{1}\right)=u \in(Q \cup S)$ and $\alpha\left(x_{k}\right)=u \in(R \cup T)$. Since x_{1} and u are adjacent, the definitions of Q and S imply that x_{1} and u are both in Q or both in S; but since S is a 2-packing, $x_{1}, u \in Q$. Similarly, $x_{1}, u \in R$ and thus $x_{1}, u \in Q \cap R$, as required.

Case 4. Assume that either x_{1} or x_{k} is in $Q \cup S$. Applying arguments similar to those in Case 3 yields the same contradiction. Therefore, this case cannot occur either.

Thus, no such dominating set $Q^{1} \cup R^{2}$ exists for αG and the result follows.
If a nontrivial connected prism fixer G with $\gamma(G) \geqslant 4$ has at most one even symmetric γ-set, then the premise of Theorem 3.2 is true and we immediately obtain the following corollary.

Corollary 3.3. Let G be a nontrivial connected prism fixer with $\gamma(G) \geqslant 4$. If G contains at most one even symmetric γ-set, then G is not a universal fixer.

Theorem 3.2 also implies that if a nontrivial connected universal fixer G with $\gamma(G) \geqslant 4$ exists, then for each even symmetric γ-set D of G there exists another even symmetric γ-set E of G such that $D \cap E=\emptyset$. We now consider graphs that contain at least two pairwise disjoint even symmetric γ-sets. Note that in this case $\gamma(G)$ is an even integer.

Theorem 3.4. Let G be a nontrivial connected prism fixer with $\gamma(G)=2 k$ where $k \geqslant 2$. If G contains at least two disjoint even symmetric γ-sets, then G is not a universal fixer.

Proof. Let D_{1}, \ldots, D_{m} be a maximal set of pairwise disjoint even symmetric γ-sets. Since D_{i} is symmetric, for each $1 \leqslant i \leqslant m$ we can write $D_{i}=\left[X_{i}, Y_{i}\right]$ such that X_{i} dominates $V(G) \backslash Y_{i}$ and Y_{i} dominates $V(G) \backslash X_{i}$. We let $X=\bigcup_{i} X_{i}$.

We know that each X_{i} is a 2-packing of size k. Thus, we can index the vertices of X_{i} as $x_{i, 1}, x_{i, 2}, \ldots, x_{i, k}$ such that $x_{i+1, j}$ is adjacent to $x_{i, j}$ for $1 \leqslant i \leqslant m-1$ and $1 \leqslant j \leqslant k$.

In order to define our permutation of $V(G)$, we first assign an additional index to X_{m}, since we will map X_{m} to X_{1}. Note that we have already indexed X_{m} so that $x_{m, j} \in N\left(x_{m-1, j}\right)$ for $j=1, \ldots, k$, and this index will be used to map X_{m-1} to X_{m}. Now for $1 \leqslant j \leqslant k$, define a_{j} such that $x_{m, a_{j}} \in N\left(x_{1, j}\right)$, and this index will be used to map X_{m} to X_{1}. We may define the following permutation of $V(G)$:

$$
\alpha(v)= \begin{cases}x_{i+1, j} & \text { if } v=x_{i, j} \text { for } 1 \leqslant j \leqslant k \text { and } 1 \leqslant i \leqslant m-1, \\ x_{1, j+1} & \text { if } v=x_{m, a_{j}} \text { for } 1 \leqslant j \leqslant k-1, \\ x_{1,1} & \text { if } v=x_{m, a_{k}}, \\ v & \text { otherwise. }\end{cases}
$$

Notice in Figure 2 that when we consider the indices of X_{m} as $x_{m, a_{j}} \in N\left(x_{1, j}\right)$, we can write the vertices of X_{1} and X_{m} as a cyclic permutation

$$
\beta=\left(x_{m, a_{1}}, x_{1,2}, x_{m, a_{2}}, x_{1,3}, \ldots, x_{m, a_{k}}, x_{1,1}\right)
$$

where for each $1 \leqslant j \leqslant k$:
(1) $\beta\left(x_{1, j}\right)=x_{m, a_{j}}$; i.e., $x_{m, a_{j}}$ is adjacent to the vertex immediately preceding it in β, and
(2) $\beta\left(x_{m, a_{j}}\right)=\alpha\left(x_{m, a_{j}}\right)=x_{1, j+1}$; i.e., α maps $x_{m, a_{j}}$ to the vertex immediately following it in β.
Furthermore, by the definitions of α and $a_{j}, 1 \leqslant j \leqslant k, \beta$ cannot be written as a product of subcycles that exhibit the same properties.

Suppose $\gamma(\alpha G)=2 k$ and let $Q^{1} \cup R^{2}$ be a γ-set of αG. Define S^{1} and T^{2} as in Theorem 3.2 with all the associated properties.

We first claim that $Q \cap X \neq \emptyset$. To see this, suppose neither S nor Q contains a vertex of X. By definition of $\alpha, T=\alpha(Q)=Q$ and $R=\alpha(S)=S$. Thus Q and R are disjoint 2-packings and $[Q, R]$ is a symmetric γ-set of G.

By the symmetry of αG we need only to consider two cases. If $|Q|=k=|R|$, then $[Q, R]$ is an even symmetric γ-set. By the choice of $D_{1}, \ldots, D_{m}, D_{i} \cap(Q \cup R) \neq \emptyset$ for some $1 \leqslant i \leqslant m$. Because $\alpha(Q \cup R)=Q \cup R$, the definition of α implies that $D_{i} \cap(Q \cup R) \subseteq Y_{i}$. Assume without loss of generality that $y_{i, j} \in Q$ for some $1 \leqslant j \leqslant k$. Then each vertex of X_{i} is dominated by a vertex of $Q \backslash\left\{y_{i, j}\right\}$ or is contained in S. But by the assumption, $S \cap X=\emptyset$, hence $Q \backslash\left\{y_{i, j}\right\}$ dominates X_{i}. Since $\left|Q \backslash\left\{y_{i, j}\right\}\right|=k-1<\left|X_{i}\right|$, this contradicts X_{i} being a 2-packing. Therefore

Figure 2. Specific case when $m=3$ and $k=4$. Note that $\alpha(v)=v$ for all other vertices of G not depicted.
either $Q \cap X \neq \emptyset$, and we are done, or $S \cap X \neq \emptyset$. In the latter case, we interchange the labels G^{1} and G^{2} and obtain $Q \cap X \neq \emptyset$.

On the other hand, if $|Q|<k$, then $S \cap X_{i} \neq \emptyset$ for each $1 \leqslant i \leqslant m$, since each X_{i} is a 2-packing and every vertex of G is either dominated by Q or is contained in S. This implies for each $1 \leqslant i \leqslant m$ that $R \cap X_{i} \neq \emptyset$ by definition of α. As before, simply relabel G^{1} and G^{2} so that $|Q| \geqslant k$ and obtain $Q \cap X \neq \emptyset$.

We next claim that $T \cap X_{1} \neq \emptyset$. From the above, we may assume $|Q| \geqslant k$. If $|Q|>k$, then $|R|<k$. This implies that $T \cap X_{1} \neq \emptyset$, since X_{1} is a 2-packing and every vertex of G is either dominated by R or is contained in T. So assume that $|Q|=k$, and let $x_{i, a} \in Q$ for some $1 \leqslant i \leqslant m$ and $1 \leqslant a \leqslant k$. If $i=m$, then by definition of α we have $T \cap X_{1} \neq \emptyset$. So assume $i \neq m$. Since Y_{i} is a 2-packing and no vertex of Y_{i} is adjacent to a vertex of X_{i}, there exist at least $\left|Q \cap D_{i}\right|$ vertices in $S \cap Y_{i}$. Moreover, since each vertex of Y_{i} is mapped to itself under α, we know there exist at least $\left|Q \cap D_{i}\right|$ vertices in $R \cap Y_{i}$ as well. This, together with the fact that $|Q|=k=|R|$, gives

$$
\begin{aligned}
\left|R \backslash Y_{i}\right| & \leqslant k-\left|Q \cap D_{i}\right| \\
& \leqslant k-1 .
\end{aligned}
$$

Therefore, since X_{i} is a 2-packing and each vertex of G is either dominated by R or is contained in $T, T \cap X_{i} \neq \emptyset$. So assume $x_{i, b} \in T$ for some $1 \leqslant b \leqslant k$. If $i=1$ or if $m=2$, then we are done with the proof of this claim. So assume $m>2$ and $i \notin\{1, m\}$. By definition of $\alpha, x_{i-1, b} \in Q$. Applying the above argument inductively, eventually we have $T \cap X_{1} \neq \emptyset$. Let $r=\left|T \cap X_{1}\right|>0$.

We next claim that $r<k$. To see this, suppose that $r=k$. Then $X_{1} \subseteq T$. Because X_{1} dominates $V(G) \backslash Y_{1}, R \subseteq Y_{1}$. If $R \subset Y_{1}$, then T contains X_{1} and some vertex $y_{1, j} \in Y_{1}$. Since Y_{1} dominates $V(G) \backslash X_{1}$, some $x_{1, i}$ and $y_{1, j}$ have a common neighbor in $V(G) \backslash D_{1}$, contrary to T being a 2-packing. Therefore $R=Y_{1}$ and so $T=X_{1}$. Then $Q=\alpha^{-1}(T)=\alpha^{-1}\left(X_{1}\right)=X_{m}$ and $S=\alpha^{-1}(R)=Y_{1}$. By the choice of the $D_{i}, D_{1} \cap D_{m}=\emptyset$. Hence $X_{m}=Q$ dominates $Y_{1}=S$, contradicting the fact that, by definition, $S=V(G) \backslash N[Q]$. Thus, we may conclude that $r<k$.

Let $x_{1, b_{1}}, x_{1, b_{2}}, \ldots, x_{1, b_{r}}$ be the vertices of $T \cap X_{1}$. There exist exactly r vertices in $Q \cap X_{m}$; call them $x_{m, c_{1}}, x_{m, c_{2}}, \ldots, x_{m, c_{r}}$. We claim for some $x_{1, b_{j}} \in T \cap X_{1}$ that $x_{1, b_{j}} \notin N\left(Q \cap X_{m}\right)$. So assume not; that is, assume $\left\{x_{1, b_{1}}, x_{1, b_{2}}, \ldots, x_{1, b_{r}}\right\} \subset$ $N\left(Q \cap X_{m}\right)$. This implies there exists a relabeling of the b_{j} 's and c_{j} 's such that $x_{m, c_{j}} \in N\left(x_{1, b_{j}}\right)$ and $\alpha\left(x_{m, c_{j}}\right)=x_{1, b_{j}+1}$ for $b_{j} \in\{1, \ldots, k-1\}$ and $\alpha\left(x_{m, c_{j}}\right)=x_{11}$ if $c_{j}=a_{k}$ where a_{k} is the index first given to x_{m} to define α. Consequently, there exists a subcycle of β consisting of the vertices $x_{1, b_{1}}, x_{1, b_{2}}, \ldots, x_{1, b_{r}}, x_{m, c_{1}}, x_{m, c_{2}}, \ldots, x_{m, c_{r}}$ such that for each $1 \leqslant j \leqslant r$:
(1) $x_{m, c_{j}}$ is adjacent to the vertex immediately preceding it within its subcycle; and
(2) $x_{m, c_{j}}$ is mapped under α to the vertex immediately following it within its subcycle.

However, this contradicts the construction of α unless $r=k$, which we know to be false. Thus, for some $x_{1, b_{j}} \in T \cap X_{1}, x_{1, b_{j}} \in S$ or $x_{1, b_{j}} \in N\left[Q \backslash X_{m}\right]$.

If $x_{1, b_{j}} \in S$, then by definition of $\alpha, x_{2, b_{j}} \in R$. Since $x_{1, b_{j}} \in N\left(x_{2, b_{j}}\right)$, this implies there exists an edge between R and T. This contradiction shows $x_{1, b_{j}} \in N\left[Q \backslash X_{m}\right]$. So assume $v \in Q$ where $x_{1, b_{j}} \in N[v]$. If $\alpha(v)=v$, then v and $x_{1, b_{j}}$ are both in T, which contradicts T being a 2-packing. On the other hand, if $\alpha(v) \neq v$, then $v=x_{i, d}$ for some $i \neq m$ and $1 \leqslant d \leqslant k$.

Case 1. Assume that $i=1$. Since X_{i} is a 2-packing, it follows that $v=x_{1, b_{j}} \in Q$. Thus, $x_{2, b_{j}} \in T$ by definition of α. But $x_{1, b_{j}}$ was assumed to be in T, so this violates T being a 2-packing. Therefore, this case cannot occur.

Case 2. Assume that $i \notin\{1, m\}$. Immediately this implies that $m>2$. Furthermore, $\alpha\left(x_{i, d}\right)=x_{i+1, d}$, and we have $x_{i, d} \in N\left(x_{1, b_{j}}\right) \cap N\left(x_{i+1, d}\right)$, which contradicts T being a 2-packing, as shown in Figure 3. Thus, this case cannot occur either.

Having considered all cases, we have shown such a dominating set $Q^{1} \cup R^{2}$ of αG does not exist of order $2 k$. Hence, the result follows.

Figure 3. Specific case when $\left|T \cap X_{1}\right|=3$.
We now use the results of this section to prove Theorem 1.3.
Proof of Theorem 1.3. Assume that G is a connected universal fixer of order $n \geqslant 2$. By Mynhardt and Xu [7], we may assume that $\gamma(G) \geqslant 4$. Since G is a universal fixer, G is a prism fixer. Theorem 3.2 implies that for every even symmetric γ-set D of G, there exists an even symmetric γ-set D^{\prime} of G such that $D \cap D^{\prime}=\emptyset$. However, this contradicts Theorem 3.4, which states that G cannot contain a pair of disjoint even symmetric γ-sets. Therefore, no such connected universal fixer of order at least 2 exists. That is, if G is a connected universal fixer, then $G=K_{1}$.

In conclusion, we know that any component of a universal fixer must be an isolated vertex. It follows that edgeless graphs are the only universal fixers.

Acknowledgement. I would like to thank Wayne Goddard for several useful suggestions in the write-up of Theorem 3.4, and Doug Rall for many discussions we had over the implications of Property 3.1. I am also very grateful for the anonymous referee's comments and suggestions.

References

[1] A. P. Burger, C. M. Mynhardt: Regular graphs are not universal fixers. Discrete Math. 310 (2010), 364-368.
[2] E. J. Cockayne, R. G. Gibson, C. M. Mynhardt: Claw-free graphs are not universal fixers. Discrete Math. 309 (2009), 128-133.
[3] R. G. Gibson: Bipartite graphs are not universal fixers. Discrete Math. 308 (2008), 5937-5943.
[4] W. Gu: Communication with S. T. Hedetniemi. Southeastern Conference on Combinatorics, Graph Theory, and Computing. Newfoundland, Canada, 1999.
[5] W. Gu, K. Wash: Bounds on the domination number of permutation graphs. J. Interconnection Networks 10 (2009), 205-217.
[6] B. L. Hartnell, D.F. Rall: On dominating the Cartesian product of a graph and K_{2}. Discuss. Math., Graph Theory 24 (2004), 389-402.
[7] C. M. Mynhardt, Z. Xu: Domination in prisms of graphs: universal fixers. Util. Math. 78 (2009), 185-201.

Author's address: Kirsti Wash, Clemson University, Box 340975, Clemson, SC 29634, USA, e-mail: kirstiw@clemson.edu.

