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STURM-LIOUVILLE EQUATIONS

Nina A. Chernyavskaya, Be’er Sheva, Leonid A. Shuster, Ramat Gan

(Received October 8, 2013)

Abstract. We consider the equation

(∗) −(r(x)y′(x))′ + q(x)y(x) = f(x), x ∈ R

where f ∈ Lp(R), p ∈ (1,∞) and

r > 0, q > 0,
1

r
∈ L

loc
1 (R), q ∈ L

loc
1 (R),

lim
|d|→∞

∫ x

x−d

dt

r(t)
·

∫ x

x−d
q(t) dt =∞.

In an earlier paper, we obtained a criterion for correct solvability of (∗) in Lp(R), p ∈ (1,∞).
In this criterion, we use values of some auxiliary implicit functions in the coefficients r and q
of equation (∗). Unfortunately, it is usually impossible to compute values of these functions.
In the present paper we obtain sharp by order, two-sided estimates (an estimate of a function
f(x) for x ∈ (a, b) through a function g(x) is sharp by order if c−1|g(x)| 6 |f(x)| 6 c|g(x)|,
x ∈ (a, b), c = const) of auxiliary functions, which guarantee efficient study of the problem
of correct solvability of (∗) in Lp(R), p ∈ (1,∞).

Keywords: correct solvability; Sturm-Liouville equation

MSC 2010 : 34B24

1. Introduction

In the present paper, we consider the equation

(1.1) −(r(x)y′(x))′ + q(x)y(x) = f(x), x ∈ R
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where f ∈ Lp(R) (Lp(R) := Lp), p ∈ (1,∞) and

r > 0, q > 0,
1

r
∈ Lloc

1 (R), q ∈ Lloc
1 (R),(1.2)

lim
|d|→∞

∫ x

x−d

dt

r(t)
·
∫ x

x−d

q(t) dt = ∞.(1.3)

In the sequel, by a solution of (1.1) we mean any function y, absolutely continuous

together with ry′ and satisfying (1.1) almost everywhere on R. In addition, we say

that for a given p ∈ (1,∞), equation (1.1) is correctly solvable in Lp if the following

hold:

I) for every function f ∈ Lp, there exists a unique solution y ∈ Lp of (1.1);

II) there is an absolute (i.e., not dependent on f ∈ Lp(R)) constant c(p) ∈ (0,∞)

such that the solution y ∈ Lp of (1.1) satisfies the inequality

‖y‖p 6 c(p)‖f‖p, ∀f ∈ Lp.

From now on, for brevity we say “problem I)–II),” “question on I)–II)”.

The conditions for validity of I)–II) are given in [2]. To state them, we need the

following lemma.

Lemma 1.1 ([5]). Under conditions (1.2)–(1.3), for a given x ∈ R consider the

equations in d > 0:

∫ x

x−d

dt

r(t)
·
∫ x

x−d

q(t) dt = 1,

∫ x+d

x

dt

r(t)
·
∫ x+d

x

q(t) dt = 1.

Each equation has a unique finite positive solution. Denote these solutions by d1(x)

and d2(x), respectively, and set

ϕ(x) =

∫ x

x−d1(x)

dt

r(t)
, ψ(x) =

∫ x+d2(x)

x

dt

r(t)
, x ∈ R,(1.4)

h(x) =
ϕ(x)ψ(x)

ϕ(x) + ψ(x)
, x ∈ R.(1.5)

Further, consider the equation in d > 0

(1.6)

∫ x+d

x−d

dt

r(t)h(t)
= 1.

Equation (1.6) has a unique finite positive solution. Denote it by d(x). The function

d(x) is continuous for x ∈ R and, in addition,

lim
x→−∞

(x+ d(x)) = −∞, lim
x→∞

(x− d(x)) = ∞.
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We now present the main result of [2] (see [3] for the case r ≡ 1, 0 6 q ∈ Lloc(R)).

Theorem 1.2 ([2]). Under conditions (1.2)–(1.3), equation (1.1) is correctly solv-

able in Lp, p ∈ (1,∞) if and only if B <∞. Here

(1.7) B = sup
x∈R

(h(x)d(x)).

The following assertions allow us to answer the question on I)–II) without using

the function d (see (1.7)).

Corollary 1.3 ([2]). Under conditions (1.2)–(1.3), equation (1.1) is correctly

solvable in Lp, p ∈ (1,∞) if any of the following conditions holds:

1) B1 <∞, B1 = sup
x∈R

(r(x)h2(x));(1.8)

2) B2 <∞, B2 = sup
x∈R

(|x| · h(x));

3) B3 <∞, B3 = sup
x∈R

(

|x| ·
∫ x

−∞

dt

r(t)
·
∫ ∞

x

dt

r(t)

)

.(1.9)

Note that the solution of (1.1), as well as the functions h and d, can be found only

in special cases. Therefore, after obtaining the results in [2], the main problem in

the investigation of I)–II) is checking the inequality B <∞ for particular equations.
In other words, we have to find technical tools and standard procedures that allow

us to apply Theorem 1.2 to concrete equations (1.1) in an efficient way. Our general

approach to this problem consists in finding, under additional requirements on the

coefficients of (1.1), two-sided, sharp by order estimates for the functions h and d

(see (1.7)), which, by Theorem 1.2, provide a complete answer to the question on

I)–II). (We say an estimate of a function f(x) for x ∈ (a, b) through a function g(x)

is sharp by order if c−1|g(x)| 6 |f(x)| 6 c|g(x)|, x ∈ (a, b), c = const. Note that in

this paper some results from [4], [5] are strengthened. Moreover, in the special case

r ≡ 1, 0 6 q ∈ Lloc(R), another more effective form for the solution of the considered

problem is obtained (for details see [1], [3])).

The structure of the paper is as follows. Preliminaries are given in §2, results are

presented in §3, proofs are collected in §4, and examples are given in §5.
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2. Preliminaries

Lemma 2.1 ([2]). Under conditions (1.2)–(1.3), for a given x ∈ R, let us introduce

functions Fi(η), 1, 3 for η > 0:

F1(η) =

∫ x

x−η

dt

r(t)
·
∫ x

x−η

q(t) dt, F2(η) =

∫ x+η

x

dt

r(t)
·
∫ x+η

x

q(t) dt,(2.1)

F3(η) =

∫ x+η

x−η

dt

r(t)h(t)
.

Then the following assertions hold:

1) the inequality η > di(x) (0 6 η 6 di(x)) holds if and only if Fi(η) > 1

(Fi(η) 6 1), i = 1, 2;

2) the inequality η > d(x) (0 6 η 6 d(x)) holds if and only if F3(η) > 1 (F3(η) 6 1).

Remark 2.2. Auxiliary functions similar to the functions from Lemma 1.1 were

first introduced by M.Otelbaev (see [8]). Lemma 2.1 is nothing else than a formal-

ization of a trick used by Otelbaev (see [8]).

3. Results

Below we give estimates for the functions h and d (see (1.5) and (1.6)) and some

consequences.

Towards this end, we provide two definitions.

Definition 3.1. We say that a pair {r, q} of functions, defined on R, everywhere
positive and absolutely continuous for all |x| ≫ 1 (in the sequel “a pair {r, q}”)
belongs to the class K(µ) (denoted as {r, q} ∈ K(µ)), µ > 0 if

lim
|x|→∞

κi(x, µ) = 0, i = 1, 2,(3.1)

lim
|x|→−∞

(x + µd̂(x)) = −∞, lim
x→∞

(x − µd̂(x)) = ∞.(3.2)

Here

κ1(x, µ) = r(x) sup
|t|6µd̂(x)

∣

∣

∣

∣

∫ x+t

x

r′(ξ)

r2(ξ)
dξ

∣

∣

∣

∣

, |x| ≫ 1,(3.3)

κ2(x, µ) =
1

q(x)
sup

|t|6µd̂(x)

∣

∣

∣

∣

∫ x+t

x

q′(ξ) dξ

∣

∣

∣

∣

, |x| ≫ 1,(3.4)

d̂(x) =

√

r(x)

q(x)
, x ∈ R.
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Note that the following inclusion obviously holds:

K(µ2) ⊆ K(µ1), 0 6 µ1 6 µ2.

Below we will see that for a sufficiently large µ the class K(µ) contains pairs for

which the question on I)–II) for the corresponding equations (1.1) admits a particular

simple answer (see Corollary 3.6 below).

Definition 3.2. Suppose that the functions r and q satisfy (1.2). We say that

the pair of functions {r, q} (in the sequel “pair”) belongs to the class S(µ), µ > 0

(and denote that as {r, q} ∈ S(µ)) if there exists a pair {r1, q1} ∈ K(µ) such that

the following relations hold:

inf
x∈R

r(x)

r1(x)
> δ, δ ∈ (0, 1],(3.5)

lim
|x|→∞

κi(x, µ) = 0, i = 3, 4.(3.6)

Here

κ3(x, µ) =
√

r1(x)q1(x) sup
|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

r(ξ) − r1(ξ)

r21(ξ)
dξ

∣

∣

∣

∣

, |x| ≫ 1,(3.7)

κ4(x, µ) =
1

√

r1(x)q1(x)
sup

|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

(q(ξ)− q1(ξ)) dξ

∣

∣

∣

∣

, |x| ≫ 1,(3.8)

d̂1(x) =

√

r1(x)

q1(x)
, x ∈ R.(3.9)

Note the obvious relations

K(µ) ⊆ S(µ), S(µ) \K(µ) 6= ∅, µ > 0,

S(µ2) ⊆ S(µ1), 0 6 µ1 6 µ2.

Below we will see that if for a sufficiently large µ the pair {r, q} ∈ S(µ) can be

“approximated” (in the sense of (3.6), (3.7), (3.8)) by a pair {r1, q1} ∈ K(µ), then the

problems I)–II) for the equations (1.1) corresponding to these pairs are equivalent,

i.e., these equations either are or are not correctly solvable together in Lp, p ∈ (1,∞).

In other words, equations (1.1) with coefficients {r, q} ∈ S(µ) are perturbations of

the corresponding (in the sense of Definition 3.2) equations (1.1) with coefficients

{r1, q1} ∈ K(µ).

We need some more notation. Let µ > 0, and let {r, q} ∈ S(µ). Then we write

{r, q} ∼ {r1, q1} ∈ K(µ)
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if the pair {r1, q1} satisfies Definition 3.2. By c, c(·) we denote absolute (not de-
pendent on the input data of the problem under consideration) positive constants

which are not essential for exposition and may differ even within a single chain of

computations.

Finally, let f(x) and g(x) be continuous, positive functions for x ∈ (a, b) (−∞ 6

a < b 6 ∞). Then we write f(x) ≍ g(x), x ∈ (a, b) if the following inequalities hold:

c−1f(x) 6 g(x) 6 cf(x), x ∈ (a, b).

Let us now formulate our main statements.

Theorem 3.3. Let {r, q} ∈ S(µ), µ > 2 and let {r, q} ∼ {r1, q1} ∈ K(µ). Then

(1.3) holds, and

(3.10) h(x)
√

r1(x)q1(x) ≍ 1, x ∈ R.

Corollary 3.4. Suppose that under the hypotheses of Theorem 3.3 any of the

following inequalities holds:

B4 <∞, B4 = sup
x∈R

|x|
√

r1(x)q1(x)
,(3.11)

B5 <∞, B5 = sup
x∈R

r(x)

r1(x)q1(x)
.(3.12)

Then equation (1.1) is correctly solvable in Lp, p ∈ (1,∞).

Theorem 3.5. Let {r, q} ∈ S(µ) and let {r, q} ∼ {r1, q1} ∈ K(µ). If µ > 100δ−2

(see (3.5)), then

(3.13) d(x) ≍ d̂1(x), x ∈ R

(see (1.6) and (3.9)).

Corollary 3.6. Under the hypotheses of Theorem 3.5, equation (1.1) is correctly

solvable in Lp, p ∈ (1,∞) if and only if m > 0. Here

m = inf
x∈R

q1(x).

Remark 3.7. In the condition µ > 100δ−2, the main obstacle for reducing µ (in

our main Theorem 3.3 we have µ > 2 and so it does not depend on δ) is the factor δ−2.
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Let us emphasize that in the framework of the method presented here it is impossible

to make a choice of µ independent of δ. On the other hand, the factor 100 in the

same condition is chosen for convenience in calculations. In the proof presented

here, one can, of course, reduce it but such a reduction is not essential because it is

majorated by reducing δ. Note that the constant 30 in Theorem 3.8 is the integer

closest to the number 4e2 from a priori inequalities (4.17) and (4.18). The choice

of 30 instead of 4e2 is necessary, as above, for the proof as well as for the convenience

in applications of Theorem 3.8.

The next assertion is often more convenient than Theorem 3.5.

Theorem 3.8. Suppose that under conditions (1.2)–(1.3), the function r is abso-

lutely continuous together with r′ for |x| ≫ 1, and

lim
|x|→∞

l(x) = 0, l(x) = sup
|t|630r(x)h(x)

r2(x)h(x)

∣

∣

∣

∣

∫ x+t

x−t

( 1

r(ξ)

)′′
dξ

∣

∣

∣

∣

.

Then

(3.14) d(x) ≍ r(x)h(x), x ∈ R.

Corollary 3.9. Under the hypotheses of Theorem 3.8, the inequality B < ∞
holds if and only if B1 < ∞ (see (1.8)). In addition, equation (1.1) is correctly

solvable in Lp, p ∈ (1,∞) if B6 <∞, where

B6 = sup
x∈R

r(x)

(
∫ x

−∞

dt

r(t)
·
∫ ∞

x

dt

r(t)

)2

.

Remark 3.10. The proofs of Theorems 3.5 and 3.8 rely on a priori inequalities

(4.20) below. Here different goals naturally lead to different results. More precisely,

in Theorem 3.5, by strengthening one of the requirements of Theorem 3.3 (µ >

100δ−2 instead of µ > 2), we get estimates for the function d (see (3.17)). In

Theorem 3.8, under conditions (1.2) and (1.3), we only strengthen requirements to

the function r and, therefore we have new possibilities and get an explicit relationship

between the functions h and d (compare (4.20) and (3.17)). We want to emphasize

that in this case the requirements of Theorem 3.3 may not hold. Note that from the

point of view of Theorem 3.8, we need Theorem 3.3 only in the case where one has

to obtain estimates for the function d relying only on (3.17). In this special case, we

use (3.11). Thus, by obtaining new possibilities for estimating the function d under

different assumptions of Theorems 3.5 and 3.8, we increase our chances for success

in our investigation of (1.1).
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The following assertion is applicable to equations (1.1) with an oscillating coeffi-

cient q.

Theorem 3.11. Suppose that together with (1.2)–(1.3) the functions r and q

satisfy the following additional conditions:

1) the function q is three times continuously differentiable, vanishes at the points

{xk}∞k=1, and

(3.15) q(xk) = q′(xk) = 0, q′′(xk) > 0, k ≫ 1;

2) there exists an everywhere positive, absolutely continuous function r1(x) for

|x| ≫ 1 such that

r(x) > δr1(x), |x| ≫ 1, δ ∈ (0, 1];

3) the equalities

(3.16) lim
k→∞

τi(xk) = 0, i = 1, 2, 3

hold where for k > 1:

τ1(xk) = r1(xk) sup
|s|6ηk

∣

∣

∣

∣

∫ xk+s

xk

r′1(ξ)

r21(ξ)
dξ

∣

∣

∣

∣

,(3.17)

τ2(xk) =
4

√

r31(xk)q
′′(xk) sup

|s|6ηk

∣

∣

∣

∣

∫ xk+s

xk

∆r(ξ)

r21(ξ)
dξ

∣

∣

∣

∣

,(3.18)

τ3(xk) =
1

q′′(xk)
sup

|s|6ηk

∣

∣

∣

∣

∫ xk+s

xk

q′′′(t) dt

∣

∣

∣

∣

.(3.19)

Here

∆r(t) = r(t) − r1(t), t ∈ R; ηk =
100d̂k
δ2

, d̂k = 4

√

r1(xk)

q′′(xk)
.

Then the following relations hold:

h(xk)d(xk) ≍ (r(xk)q
′′(xk))

−1/2, k ≫ 1,(3.20)

B2
> c−1 sup

k>1
(r(xk)q

′′(xk))
−1.(3.21)

Remark 3.12. Note that we prefer not to integrate in (3.19) because it is often

easier to estimate the value of the integral in (3.19) rather than the value of the

difference (q′′(xk + s)− q′′(xk)). Our way keeps both the possibilities for estimating

τ3(xk).
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Let us return to Theorems 3.3 and 3.5. These statements may not be applicable,

say, to pairs of functions {r, q} such that for one of them the integral in the product
(1.3) converges, whereas the integral of the other one diverges but grows sufficiently

slowly. For example, if

r(x) =

{

1, |x| 6 1,

x2, |x| > 1,
q(x) = exp(|x|), x ∈ R

then by Theorems 3.3 and 3.5 we have

|x| exp
(1

2
|x|

)

h(x) ≍ 1, exp
(1

2
|x|

)

d(x) ≍ |x|, x≫ 1.

However, the same theorems are not applicable to the pair

r(x) =

{

1, |x| 6 1,

x2, |x| > 1,
q(x) =

{

1, |x| 6 1,

|x|−1/2, |x| > 1.

Let us list all such situations. We introduce the following notation:

J (−) =

∫ 0

−∞

dt

r(t)
, J (+) =

∫ ∞

0

dt

r(t)
,(3.22)

I(−) =

∫ 0

−∞
q(t) dt, I(+) =

∫ ∞

0

q(t) dt.(3.23)

Clearly, for the pairs α = {J (−), I(−)} and β = {J (+), I(+)}, only the following
situations can arise:

α1: J (−) = ∞, I(−) = ∞
α2: J (−) <∞, I(−) = ∞
α3: J (−) = ∞, I(−) <∞

β1: J (+) = ∞, I(+) = ∞
β2: J (+) <∞, I(+) = ∞
β3: J (+) = ∞, I(+) <∞

Thus, there are altogether eight interesting combinations (αi, βi), i, j = 1, 3 (the

case (α1, β1) is naturally excluded). Below we only consider the case (α2, β2) because

all the other ones can be treated similarly, using the theorems stated above. We also

note that below we present only the statements related to estimates for the functions

d1 and d2 (the proofs for d1 and d2 are similar, and therefore in Section 4 we only

consider the function d1). We believe that a deeper discussion of this topic would

be superfluous here, because usually once one has estimates for d1 and d2 all the

remaining parts of the investigation of problem I)–II) can be concluded with help of

the results presented above, or by the methods of proofs (see §5).
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Thus, until the end of this section, we combine (1.2) and (1.3) with the condition

1/r ∈ L1 and do not include these requirements in the statement, using them as

standing assumptions. Note that the estimates for d1(x) and d2(x) as x→ −∞ and
x→ ∞ are given in a different way, and we have to study them separately.
Let us start with the first case. For x ≪ −1, a 6 0 and ν > 1, consider the

equations in d > 0

∫ x

−∞

dt

r(t)
·
∫ x

x−d

q(t) dt = ν,(3.24)

∫ x+d

x

dt

r(t)
·
∫ a

x

q(t) dt = ν.(3.25)

Theorem 3.13. For given ν > 1 and x ≪ −1, equation (3.24) has at least one

finite positive solution. Set

(3.26) α
(−)
1 (x) = sup

d>0

{

d :

∫ x

−∞

dt

r(t)
·
∫ x

x−d

q(t) dt = 1

}

,

β
(−)
1 (x, ν) = inf

d>0

{

d :

∫ x

−∞

dt

r(t)
·
∫ x

x−d

q(t) dt = ν

}

.

We have the inequality

(3.27) d1(x) > α
(−)
1 (x), x≪ −1.

In addition, if for some ν > 1 there is x0 ≪ −1 such that

(3.28)

∫ x

−∞

dt

r(t)
6 ν

∫ x

x−β
(−)
1 (x,ν)

dt

r(t)
for x 6 x0,

then we have the estimate

(3.29) d1(x) 6 β
(−)
1 (x, ν), x 6 x0.

Theorem 3.14. For given a 6 0, ν > 1 and x≪ −1, equation (3.25) has a unique

solution. Let α
(−)
2 (x) and β

(−)
2 (x, ν) be the solutions of (3.25) for ν = 1 and ν > 1,

respectively. We have the relations

lim
x→−∞

(x+ α
(−)
2 (x)) = −∞, lim

x→−∞
(x+ β

(−)
2 (x, ν)) = −∞,

d2(x) > α
(−)
2 (x), for x+ α

(−)
2 (x) 6 a.
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In addition, if for some ν > 1 there is x0 ≪ −1 such that

∫ a

x

q(t) dt 6 ν

∫ x+β
(−)
2 (x,ν)

x

q(t) dt for x+ β
(−)
2 (x, ν) 6 a, x 6 x0,

then we have the estimate

d2(x) 6 β
(−)
2 (x, ν) for x+ β

(−)
2 (x, ν) 6 a, x 6 x0.

Let us now study d1(x) and d2(x) as x → ∞. Towards this end, for given a > 0,

ν > 1 and x≫ 1, consider the equations in d > 0

∫ x

x−d

dt

r(t)
·
∫ x

a

q(t) dt = ν, x≫ 1,(3.30)

∫ ∞

x

dt

r(t)
·
∫ x+d

x

q(t) dt = ν, x≫ 1.(3.31)

Theorem 3.15. For given a > 0, ν > 1 and x≫ 1, equation (3.30) has a unique

solution. Let α
(+)
1 (x) and β

(+)
1 (x, ν) be the solutions of (3.30) for ν = 1 and ν > 1,

respectively. We have the following relations:

lim
x→∞

(x − α
(+)
1 (x)) = ∞, lim

x→∞
(x− β

(+)
1 (x, ν)) = ∞,(3.32)

d1(x) > α
(+)
1 (x), x− α

(+)
1 (x) > a.(3.33)

In addition, if for some ν > 1 there is x0 ≫ 1 such that

(3.34)

∫ x

a

q(t) dt 6 ν

∫ x

x−β
(+)
1 (x,ν)

q(t) dt for x− β
(+)
1 (x, ν) > a, x > x0,

then we have the estimate

(3.35) d1(x) 6 β
(+)
1 (x, ν) for x− β

(+)
1 (x, ν) > a, x > x0.

1077



Theorem 3.16. For given ν > 1 and x ≫ 1, equation (3.31) has at least one

finite positive solution. Set

α
(+)
2 (x) = sup

d>0

{

d :

∫ ∞

x

dt

r(t)
·
∫ x+d

x

q(t) dt = 1

}

,

β
(+)
2 (x, ν) = inf

d>0

{

d :

∫ ∞

x

dt

r(t)
·
∫ x+d

x

q(t) dt = ν

}

.

Then we have the inequality

d2(x) > α
(+)
2 (x), x≫ 1.

In addition, if for some ν > 1 there is x0 ≫ 1 such that

∫ ∞

x

dt

r(t)
6 ν

∫ x+β
(+)
2 (x,ν)

x

dt

r(t)
for x > x0,

then we have the estimate

d2(x) 6 β
(+)
2 (x, ν) for x > x0.

4. Proofs

P r o o f of Theorem 3.3. Below we assume that the hypotheses of the theorem

are satisfied and do not include them in the statements.

Lemma 4.1. Let δ ∈ (0, 1] and θ + 1 > δ. Then

(4.1) 1− 1 + θ

δ2
6

θ

θ + 1
6 θ.

P r o o f. The following relations imply (4.1):

θ − θ

θ + 1
=

θ2

θ + 1
> 0,

θ

θ + 1
+
θ + 1

δ2
=
θδ2 + (θ + 1)2

(θ + 1)δ2
>

θδ2 + δ2

(θ + 1)δ2
= 1.

�

Denote for t ∈ R

(∆r)(t) = r(t)− r1(t), θ(t) =
(∆r)(t)

r1(t)
(∆q)(t) = q(t)− q1(t).
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Lemma 4.2. Let x ∈ R, η > 0. Then

(4.2)

∫ x+η

x

dt

r(t)
=

∫ x+η

x

dt

r1(t)
−
∫ x+η

x

θ(t)

θ(t) + 1

dt

r1(t)
.

P r o o f. The following relations are obvious:

∫ x+η

x

dt

r(t)
=

∫ x+η

x

dt

r1(t)
+

∫ x+η

x

[ 1

r(t)
− 1

r1(t)

]

dt

=

∫ x+η

x

dt

r1(t)
−
∫ x+η

x

θ(t)

θ(t) + 1

dt

r1(t)
.

�

Lemma 4.3. Let x ∈ R, η > 0. Then

∫ x+η

x

dt

r(t)
6

1

δ2

∫ x+η

x

dt

r1(t)
+

1

δ2

∣

∣

∣

∣

∫ x+η

x

θ(t)

r1(t)
dt

∣

∣

∣

∣

,(4.3)

∫ x+η

x

dt

r(t)
>

∫ x+η

x

dt

r1(t)
−
∣

∣

∣

∣

∫ x+η

x

θ(t)

r1(t)
dt

∣

∣

∣

∣

.(4.4)

P r o o f. Since 1+ θ(t) > δ, t ∈ R (see (3.5)), from (4.1) and (4.2) it follows that

∫ x+η

x

dt

r(t)
6

∫ x+η

x

dt

r1(t)
+

∫ x+η

x

[1 + θ(t)

δ2
− 1

] dt

r1(t)

6
1

δ2

∫ x+η

x

dt

r1(t)
+

1

δ2

∣

∣

∣

∣

∫ x+η

x

θ(t)

r1(t)
dt

∣

∣

∣

∣

.

Inequality (4.4) is checked in a similar way. �

Lemma 4.4. Let x ∈ R, η = µd̂1(x), µ > 0. Then (see (3.3), (3.7))

∫ x+η

x

dt

r(t)
6

1

δ2
µ

√

r1(x)q1(x)

(

1 + κ1(x, µ) +
κ3(x, µ)

µ

)

,(4.5)

∫ x+η

x

dt

r(t)
>

µ
√

r1(x)q1(x)

(

1− κ1(x, µ) −
κ3(x, µ)

µ

)

.(4.6)
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P r o o f. Below we use (4.3).

∫ x+η

x

dt

r(t)
6

1

δ2

∫ η

0

dξ

r1(x+ ξ)
+

1

δ2
sup

|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

θ(ξ)

r1(ξ)
dξ

∣

∣

∣

∣

=
1

δ2
η

r1(x)
+

1

δ2

∫ η

0

∫ x+ξ

x

( 1

r1(s)

)′
ds dξ +

1

δ2
κ3(x, µ)

√

r1(x)q1(x)

6
1

δ2
µ

√

r1(x)q1(x)
+

1

δ2
µd̂1(x) sup

|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

r′1(ξ)

r21(ξ)
dξ

∣

∣

∣

∣

+
1

δ2
κ3(x, µ)

√

r1(x)q1(x)

6
µ

δ2
1

√

r1(x)q1(x)

[

1 + κ1(x, µ) +
κ3(x, µ)

µ

]

.

In a similar way (using (4.4)), we obtain (4.6). �

Lemma 4.5. Let x ∈ R, η = µd̂1(x), µ > 0. Then

∫ x+η

x

q(t) dt 6 µ
√

r1(x)q1(x)
[

1 + κ2(x, µ) +
κ4(x, µ)

µ

]

,

∫ x+η

x

q(t) dt > µ
√

r1(x)q1(x)
[

1− κ2(x, µ)−
κ4(x, µ)

µ

]

.(4.7)

P r o o f. Below we use (3.4), (3.8) and (3.9):

∫ x+η

x

q(t) dt =

∫ x+η

x

q1(t) dt+

∫ x+η

x

(∆q)(t) dt

6

∫ η

0

q1(x+ ξ) dξ + sup
|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+η

x

(∆q)(ξ) dξ

∣

∣

∣

∣

= ηq1(x) +

∫ η

0

(
∫ x+t

x

q′1(ξ) dξ

)

dt+
√

r1(x)q1(x)κ4(x, µ)

6 q1(x)µd̂1(x) + µd̂1(x) sup
|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

q′1(ξ) dξ

∣

∣

∣

∣

+
√

r1(x)q(x)κ4(x, µ)

= µ
√

r1(x)q1(x)
[

1 + κ2(x, µ) +
κ4(x, µ)

µ

]

.

Inequality (4.7) can be checked in a similar way. �
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Corollary 4.6. Let x ∈ R, η = µd̂1(x), µ > 0. Then (see (2.1))

F2(η) > µ2
(

1− κ1(x, µ)−
κ3(x, µ)

µ

)(

1− κ2(x, µ)−
κ4(x, µ)

µ

)

,(4.8)

F2(η) 6
(µ

δ

)2(

1 + κ1(x, µ) +
κ3(x, µ)

µ

)(

1 + κ2(x, µ) +
κ4(x, µ)

µ

)

.(4.9)

P r o o f. Both estimates follow from Lemmas 4.4 and 4.5. �

Lemma 4.7. Equality (1.3) holds.

P r o o f. Let us prove (see (3.22), (3.23)) that the relations

J (−) + I(−) = J (+) + I(+) = ∞,(4.10)
∫ x

−∞
q(t) dt > 0,

∫ ∞

x

q(t) dt > 0, ∀x ∈ R(4.11)

are valid. Assume that J (+)+ I(+) <∞. Then for any ε > 0 there is x0 = x0(ε) ≫ 1

such that
∫ ∞

x

dt

r(t)
6 ε,

∫ ∞

x

q(t) dt 6 ε for x > x0(ε).

On the other hand, if η = µd̂1(x), µ > 0, then for x≫ x0 we obtain (see (3.1), (3.6),

(4.8))

(4.12) ε2 >

∫ ∞

x

dt

r(t)
·
∫ ∞

x

q(t) dt >

∫ x+η

x

dt

r(t)
·
∫ x+η

x

q(t) dt = F2(η)

> µ2
(

1− κ1(x, µ) −
κ3(x, µ)

µ

)(

1− κ4(x, µ)−
κ4(x, µ)

µ

)

>

(µ

4

)2

.

From (4.12), for ε < µ/4, we get a contradiction. In addition, since F2(η) > 0 for

x ≫ 1, the second inequality in (4.11) also holds. The remaining relations in (4.10)

and (4.11) can be checked in a similar way. From (4.10) and (4.11) we obtain (1.3).

�

Lemma 4.8. There exists x0 ≫ 1 such that

(4.13) 2−1δd̂1(x) 6 d2(x) 6 2d̂1(x) for |x| > x0.

P r o o f. There is x1 ≫ 1 such that

κ1(x, 2) + 2−1
κ3(x, 2) 6 2−1 for |x| > x1,

κ2(x, 2) + 2−1
κ4(x, 2) 6 2−1 for |x| > x1.
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Then from (4.8), for η = 2d̂1(x) and |x| > x1, it follows that

F2(η) > 4
(

1− 1

2

)(

1− 1

2

)

= 1.

Hence, for |x| > x1, the upper estimate in (4.13) holds (see Lemma 2.1). In a similar

way, using (4.9) one can show that there is x2 ≫ 1 such that for |x| > x2 the lower

estimate in (4.13) holds. Then for |x| > x0 = max{x1, x2}, (4.13) holds. �

Let us turn to (3.10). Below, to estimate ψ (see (1.4)) for |x| ≫ 1, we use (4.13),

(4.5), (4.6), (3.1) and (3.6):

ψ(x) =

∫ x+d2(x)

x

dt

r(t)
6

∫ x+2d̂1(x)

x

dt

r(t)
6

2

δ2
1 + κ1(x, 2) + κ3(x, 2)

√

r1(x)q1(x)
6

c
√

r1(x)q1(x)
,

ψ(x) =

∫ x+d2(x)

x

dt

r(t)
>

∫ x+ δ

2 d̂1(x)

x

dt

r(t)
>
δ

2

1− κ1(x, 2)− 2
δκ3(x, 2)

√

r1(x)q1(x)
>

c−1

√

r1(x)q1(x)
.

Thus, ψ(x)
√

r1(x)q1(x) ≍ 1 for |x| ≫ 1. In a similar way, we prove the relations

δ

2
d̂1(x) 6 d1(x) 6 2d̂1(x), |x| > x0; ϕ(x)

√

r1(x)q1(x) ≍ 1, |x| ≫ 1.

Together with (1.5), this implies (3.10) for |x| ≫ 1, and it remains to get (3.10) for

any finite segment.

We need Otelbaev’s inequalities (see [5])

(4.14) 2−1h(x) 6 ̺(x) 6 2h(x), x ∈ R.

Here ̺(x), x ∈ R is a continuous positive function constructed from a special funda-

mental system of solutions of the equation

(r(x)z′(x))′ = q(x)z(x), x ∈ R.

Since the functions r1(x) and q1(x) are also continuous for x ∈ R, for any a ∈ (0,∞)

it follows from (4.14) that

(4.15) c−1(a) 6 ̺(x)
√

r1(x)q1(x) 6 c(a), x ∈ [−a, a].

Here c(a) is a constant depending only on a.

Our assertion now follows from (4.14) and (4.15). �

P r o o f of Corollary 3.4. This is an immediate consequence of Corollary 1.3 and

Theorem 3.3. �
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P r o o f of Theorem 3.5. The estimates of the functions ϕ, ψ and h for |x| > x0,

which were obtained above, can be written in a different way as follows:

(4.16)
δ

4

1
√

r1(x)q1(x)
6 ϕ(x), ψ(x) 6

4

δ2
1

√

r1(x)q1(x)
, |x| > x0,

δ

8

1
√

r1(x)q1(x)
6 h(x) 6

2

δ2
1

√

r1(x)q1(x)
, |x| > x0.

Below we use the a priori inequalities from [5], which hold under conditions (1.2)–

(1.3):

(4.17)
1

4e2
6
h(t)

h(x)
6 4e2 for |t− x| 6 d(x), x ∈ R.

From (1.6) and (4.17) we obtain the estimates

(4.18)
1

4e2

∫ x+d(x)

x−d(x)

dt

r(t)
6 h(x) 6 4e2

∫ x+d(x)

x−d(x)

dt

r(t)
, x ∈ R.

Assume that there exists x such that

(4.19) d(x) > µd̂1(x), |x| > x0, µ =
(10

δ

)2

.

Below, for |x| > x0, we use (4.19), (4.18), (4.17) and (4.16):

(4.20)

∫ x+µd̂(x)

x−µd̂(x)

dt

r(t)
6

∫ x+d(x)

x−d(x)

dt

r(t)
6 4e2h(x) 6

8e2

δ2
1

√

r1(x)q1(x)
.

On the other hand, from (4.6), (3.1) and (3.6), we obtain

(4.21)

∫ x+µd̂1(x)

x−µd̂1(x)

dt

r(t)
>

200

δ2

(

1− κ1(x, µ)−
κ3(x, µ)

µ

) 1
√

r1(x)q1(x)

>
100

δ2
1

√

r1(x)q1(x)
, |x| > x0.

Now from (4.20) and (4.21), it follows that

100

δ2
6

√

r1(x)q1(x)

∫ x+µd̂1(x)

x−µd̂1(x)

dt

r(t)
6

8e2

δ2
, |x| > x0,

which is a contradiction. Hence we have the inequality

(4.22) d(x) 6 100δ−2d̂1(x), |x| > x0.
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Let us now assume that there exists x such that

(4.23) d(x) 6 µd̂1(x), |x| > x0, µ = 16−2e−2δ3.

Then, enlarging x0 if needed and using (4.16), (4.18), (4.23), (4.5), (3.6) and (3.1),

we obtain successively

δ

8

1
√

r1(x)q1(x)
6 h(x) 6 4e2

∫ x+d(x)

x−d(x)

d(t)

r(t)
6 4e2

∫ x+µd̂1(x)

x−µd̂1(x)

dt

r(t)

6
8µ

δ2
1 + κ1(x, µ) + µ−1

κ3(x, µ)
√

r1(x)q1(x)
6

16

δ2
µ

√

r1(x)q1(x)
=

16−1δ
√

r1(x)q1(x)
,

which is a contradiction. Hence we have the inequality

(4.24) d(x) > (16e)−2δ3, |x| > x0.

Further, by Lemma 1.1, the function

f(x) = d(x)(d1(x))
−1, |x| 6 x0

is continuous and positive for |x| 6 x0. Hence

(4.25) c−1
6 f(x) 6 c, |x| > x0.

The theorem follows from (4.22), (4.24) and (4.25). �

P r o o f of Corollary 3.6. This is a consequence of Theorems 1.2, 3.3 and 3.5. �

P r o o f of Theorem 3.8. We need the following assertion.

Lemma 4.9. If a function f is defined on R and is absolutely continuous together

with f ′, then for x ∈ R and d > 0, we have

(4.26)

∫ x+d

x−d

f(t) dt = 2f(x)d+

∫ d

0

∫ t

0

∫ x+ξ

x−ξ

f ′′(s) ds dξ dt.

P r o o f. The following transformations lead to (4.26):

∫ x+d

x−d

f(t) dt =

∫ d

0

[f(x+ t) + f(x− t)] dt

= 2f(x) +

∫ d

0

[f(x+ t)− f(x)] dt−
∫ d

0

[f(x)− f(x− t)] dt

= 2f(x) +

∫ d

0

∫ t

0

[f(x+ ξ)]′ dξ dt−
∫ d

0

∫ t

0

[f(x− ξ)]′ dξ dt

= 2f(x) +

∫ d

0

∫ t

0

∫ x+ξ

x−ξ

f ′′(s) ds dξ dt.

�
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Let

δ =
119

16

1

e2
− 1 > 0, µ =

1

60
,

and let x0 ≫ 1 be such that l(x) 6 δ for |x| > x0. Suppose that there exists x ∈ R

such that

d(x) 6 µr(x)h(x), |x| > x0.

Below we successively apply (4.16) and (4.26):

h(x) 6 4e2
∫ x+d(x)

x−d(x)

dt

r(t)
6 4e2

∫ x+µr(x)h(x)

x−µr(x)h(x)

dt

r(t)

= 8e2µh(x) + 4e2
∫ µr(x)h(x)

0

∫ t

0

∫ x+ξ

x−ξ

( 1

r(s)

)′′
ds dξ dt

6 8e2µh(x) +
1

2
µ2h(x)l(x) = 8e2

(

1 +
µ

16e2
l(x)

)

6 8e2(1 + δ)
h(x)

60
< h(x),

and we get a contradiction. Hence our assumption is wrong, and therefore

d(x) > 60−1r(x)h(x), |x| > x0.

We keep the values of δ and x0 but set µ = 30 and assume that there exists x ∈ R

such that

d(x) > µr(x)h(x), |x| > x0.

Below we use (4.16) and (4.26):

h(x) >
1

4e2

∫ x+d(x)

x−d(x)

dt

r(t)
>

1

4e2

∫ x+µr(x)h(x)

x−µr(x)h(x)

dt

r(t)

=
1

4e2

[

2µh(x) +

∫ µr(x)h(x)

0

∫ t

0

∫ x+ξ

x−ξ

( 1

r(s)

)′′
ds dξ dt

]

>
1

4e2

[

2µh(x)−
(
∫ µr(x)h(x)

0

∫ t

0

ds dt

)

· sup
|ξ|6µr(x)h(x)

∣

∣

∣

∣

∫ x+ξ

x−ξ

( 1

r(s)

)′′
ds

∣

∣

∣

∣

]

=
1

4e2

[

2µh(x)− µ2

2
h(x)l(x)

]

>
µh(x)

4e2
=

30

4e2
h(x) > h(x),

which is a contradiction. Hence

d(x) 6 30r(x)h(x) for |x| > x0.

Further, since the functions d and r are continuous and positive (see Lemma 1.1),

using (4.14), one can easily show (see, e.g., the proof of (4.15)) that

c−1r(x)h(x) 6 d(x) 6 cr(x)h(x), |x| 6 x0, c = c(x0).

These estimates imply (3.14). �

1085



P r o o f of Corollary 3.9. The first statement follows from (1.8) and (3.14), and

the other one is a consequence of Corollary 1.3 and the following estimate (see [2]):

h(x) 6 τ

∫ x

−∞

dt

r(t)
·
∫ ∞

x

dt

r(t)
, x ∈ R, τ−1 =

∫ ∞

−∞

dt

r(t)
.

�

P r o o f of Theorem 3.11. The proofs of (3.10), (3.13) and (3.20) are similar.

Therefore, below we only present the details of the proof of (3.20) that are different

from those that are known.

Let α, β ∈ (0, 100δ−2). The following inequalities can be checked similarly to (4.5)

and (4.6):

∫ xk+αd̂k

xk

dt

r(t)
6

α

δ2

(

1 + τ1(xk) +
τ2(xk)

α

) 1
4
√

r31(xk)q
′′(xk)

, k > 1,(4.27)

∫ xk+βd̂k

xk

dt

r(t)
> β

(

1− τ1(xk)−
τ2(xk)

β

) 1
4
√

r31(xk)q
′′(xk)

, k > 1.(4.28)

�

Lemma 4.10. Let η > 0, k > 1. Then

(4.29)

∫ xk+η

xk

q(t) dt =
η3

6
q′′(xk)

[

1 +
1

q′′(xk)η3

∫ xk+η

xk

q′′′(t)(xk + η − t)3 dt

]

.

P r o o f. Below we use integration by parts and (3.15):

∫ xk+η

xk

q(t) dt = q(t)(t− xk − η)

∣

∣

∣

∣

xk+η

xk

−
∫ xk+η

xk

q′(t)(t− xk − η) dt

= − (t− xk − η)2

2
q′(t)

∣

∣

∣

∣

xk+η

xk

+
1

2

∫ xk+η

xk

q′′(t)(t− xk − η)2 dt

=
(t− xk − η)3

6
q′′(t)

∣

∣

∣

∣

xk+η

xk

− 1

6

∫ xk+η

xk

q′′′(t)(t− xk − η)3 dt

=
η3

6
q′′(xk) +

1

6

∫ xk+η

xk

q′′′(t)(xk + η − t)3 dt ⇒ (4.29).

�
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Lemma 4.11. Let α, β ∈ (0, 100δ−2), k > 1. Then

∫ xk+αd̂k

xk

q(t) dt 6
α3

6
4

√

r31(xk)q
′′(xk)(1 + τ3(xk)),(4.30)

∫ xk+βd̂k

xk

q(t) dt >
β3

6
4

√

r31(xk)q
′′(xk)(1− τ3(xk)).(4.31)

P r o o f. Both the inequalities are checked in the same way. Consider, say, (4.30).

Below we use (4.29) and the second mean-value theorem ([9]):

∫ xk+αd̂k

xk

q′′′(t)(xk + αd̂k − t)3 dt =
(αd̂k)

3

6

∫ xk+s

xk

q′′′(t) dt, s ∈ (xk, xk + αd̂k)

⇒
∫ xk+αd̂k

xk

q(t) dt =
(αdk)

3

6
q′′(xk)

[

1 +
1

q′′(xk)

∫ xk+s

xk

q′′′(t) dt

]

6
α3

6
4

√

r31(xk)q
′′(xk)(1 + τ3(xk)).

�

Let us establish the inequalities

(4.32)
3

2

√
δd̂k 6 d1(xk), d2(xk) 6 2d̂k, k ≫ 1.

Below we only consider d2(xk) because (4.32) for d1(xk) can be proved similarly.

Let α = 3 · 2−1
√
δ.

From (3.16) it follows that

(

1 + τ1(xk) +
τ2(xk)

α

)

(1 + τ3(xk)) 6
11

10
, k ≫ 1.

Therefore (see (4.27), (4.30) and (2.1)),

F2(αd̂k) 6
1

6

(3

2

)4 11

10
< 1.

Hence (see Lemma 2.1), the lower estimate in (4.32) holds. Similarly, if β := 4
√
12,

then (3.16) yields that

(

1− τ1(xk)−
τ2(xk)

β

)

(1− τ3(xk)) >
1

2
,
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and then (see (4.27), (4.31) and (2.1))

F2(βd̂k) > 1.

Hence the upper estimate in (4.32) holds by Lemma 2.1. Let k ≫ 1. Below we

estimate ψ(xk) using (4.32), (4.27) and (4.28), (3.16), (3.17) and (3.18):

ψ(xk) =

∫ xk+d2(xk)

xk

dt

r(t)
6

∫ xk+2d̂k

xk

dt

r(t)

6
2

δ2
1 + τ1(xk) + 1/2τ2(xk)

4
√

r31(xk)q
′′(xk)

6

(2

δ

)2 1
4
√

r31(xk)q
′′(xk)

;

ψ(xk) =

∫ xk+d2(xk)

xk

dt

r(t)
>

∫ xk+3δd̂k/2

xk

dt

r(t)
>

3

2

√
δ
1− τ1(xk)− 2

3
√
δ
τ2(xk)

4
√

r31(xk)q
′′(xk)

>
4

3

√
δ

1
4
√

r31(xk)q
′′(xk)

⇒ 4
√
δ

3

1
4
√

r31(xk)q
′′(xk)

6 ϕ(xk), ψ(xk) 6
(2

δ

)2 1
4
√

r31(xk)q
′′(xk)

, k ≫ 1,

2
√
δ

3

1
4
√

r31(xk)q
′′(xk)

6 h(xk) 6
(2

δ

)2 1
4
√

r31(xk)q
′′(xk)

, k ≫ 1.(4.33)

(Estimates (4.33) follow from (1.5) and the estimates proved earlier.) Assume now

that there is k ≫ 1 such that

d(xk) > µd̂k, µ = 100δ−2.

Then (see the proof of (3.13)), using (4.33), (4.18), (4.28) and (3.16), we get

2

δ2
1

4
√

r31(xk)q
′′(xk)

> h(xk) >
1

30

∫ xk+d(xk)

xk−d(xk)

dt

r(t)
>

1

30

∫ xk+µd̂k

xk−µd̂k

dt

r(t)

>
µ

15

1− τ1(xk)− τ2(xk)/µ
4
√

r31(xk)q
′′(xk)

>
100

30δ2
1

4
√

r31(xk)q
′′(xk)

,

which is a contradiction. Hence

d(xk) 6 100δ−2d̂k, k ≫ 1.

Similarly, assume that there is k ≫ 1 such that

d(xk) 6 µd̂k, µ = 100−1δ5/2.
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Then (see (4.33), (4.18), (4.27) and (3.16))

2

3

√
δ

4
√

r31(xk)q
′′(xk)

6 h(xk) 6 30

∫ xk+d(xk)

xk−d(xk)

dt

r(t)
6 30

∫ xk+µd̂k

xk−µd̂k

dt

r(t)

6
60µ

δ2
1 + τ1(xk) + τ2(xk)/µ

4
√

r31(xk)q
′′(xk)

6
60µ

δ2
11

10

1
4
√

r31(xk)q
′′(xk)

⇒ 2

3
6

33

50
,

which is a contradiction. Hence

d(xk) >
δ5/2

100
d̂k, k ≫ 1.

The estimates of h(xk), d(xk), k ≫ 1, imply (3.20) and (3.21). �

P r o o f of Theorem 3.13. Denote

Φ(d) =

∫ x

−∞

dt

r(t)
·
∫ x

x−d

q(t) dt, d > 0.

Then Φ(0) = 0, Φ(∞) = ∞, and

Φ′(d) = q(x− d)

∫ x

−∞

dt

r(t)
> 0.

This implies that equation (3.24) has at least one finite positive solution. Further

(see (3.24), (3.26)),

1 =

∫ x

−∞

dt

r(t)
·
∫ x

x−α
(−)
1 (x)

q(t) dt >

∫ x

x−α
(−)
1 (x)

dt

r(t)
·
∫ x

x−α
(−)
1 (x)

q(t) dt.

This, in view of Lemma 2.1, implies (3.27). Let us now consider (3.29). From (3.24)

and (3.28), it follows that

ν =

∫ x

−∞

dt

r(t)
·
∫ x

x−β
(−)
1 (x,ν)

q(t) dt 6 ν

∫ x

x−β
(−)
1 (x,ν)

dt

r(t)
·
∫ x

x−β
(−)
1 (x,ν)

q(t) dt

⇒ F1(β
(−)
1 (x, ν)) > 1.

Hence (see Lemma 2.1) estimate (3.29) holds. �
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P r o o f of Theorem 3.15. For a given x≫ a, introduce the function

Φ(d) =

∫ x

x−d

dt

r(t)
·
∫ x

a

q(t) dt, d > 0.

From the obvious relations Φ(0) = 0, Φ(x) > ν, for x≫ a and

Φ′(d) =
1

r(x− d)

∫ x

a

q(t) dt > 0,

it follows that equation (3.30) has a unique finite solution. Both equalities in (3.32)

are checked in the same way. Consider, say, the first. If it does not hold, then there

exist c ∈ (0,∞) and a sequence {xn}∞n=1 such that

xn − α
(+)
1 (xn) 6 c, xn → ∞ as n→ ∞

⇒ 1 =

∫ xn

xn−α
(+)
1 (xn)

dt

r(t)
·
∫ xn

a

q(t) dt >

∫ xn

c

dt

r(t)
·
∫ xn

a

q(t) dt→ ∞, n→ ∞

(see (1.3)). This is a contradiction, i.e., (3.32) holds. Therefore, for x−α
(+)
1 (x) > a,

it follows from (3.30) that

1 =

∫ x

x−α
(+)
1 (x)

dt

r(t)
·
∫ x

a

q(t) dt >

∫ x

x−α
(+)
1 (x)

dt

r(t)
·
∫ x

x−α
(+)
1 (x)

q(t) dt.

By Lemma 2.1, this implies (3.33). Further, for x − β
(+)
1 (x) > a, from (3.30) and

(3.34), we obtain that

ν =

∫ x

x−β
(+)
1 (x)

dt

r(t)
·
∫ x

a

q(t) dt 6 ν

∫ x

x−β
(+)
1 (x)

dt

r(t)
·
∫ x

x−β
(+)
1 (x)

q(t) dt

⇒ F1(β
(+)
1 (x)) > 1.

Hence (see Lemma 2.1), estimate (3.35) holds. �

5. Examples

Below we give three examples of applications of our statements to concrete equa-

tions of the form (1.1). Since in all the examples the coefficients r and q of these

equations are even functions, in the first two examples we estimate the functions h

and d only for x > 1. In the third example, the cases x 6 −1 and x > 1 will be

studied separately because the corresponding auxiliary functions depend on the sign

of the argument (see, e.g., Theorems 3.13 and 3.15).
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Example 5.1. Consider equation (1.1) with coefficients

r(x) = (1 + x2) +
1 + x2

2
sin(e|x|), x ∈ R,(5.1)

q(x) = e|x| + e|x| cos(eα|x|), x ∈ R, α > 0.(5.2)

Conditions (1.2) in the case (5.1)–(5.2) obviously hold. Let us show that

(5.3)

∫ 0

−∞
q(t) dt =

∫ ∞

0

q(t) dt = ∞.

Consider, say, the latter equality in (5.3). Let

x̂k =
1

α
ln
(

2k +
1

2

)

π, x̃k =
1

α
ln(2kπ), k > 1

⇒
∫ ∞

0

q(t) dt >
∞
∑

k=1

∫ x̂k

x̃k

(et + et cos eαt) dt >
∞
∑

k=1

∫ x̂k

x̃k

et dt

>
1

α

∞
∑

k=1

(2kπ)1/α ln
(

1 +
1

4k

)

> c−1
∞
∑

k=1

1

k
= ∞.

Let us go to I)–II). From (5.1), it follows that

1 + x2

2
6 r(x) 6

3

2
(1 + x2), x ∈ R ⇒ 1

r
∈ L1.

Hence, for all α > 0, equation (1.1) is correctly solvable in Lp, p ∈ (1,∞) by Corol-

lary 1.3 (since B3 < ∞, see (1.9)). Using the same example, let us consider Theo-
rems 3.3, 3.5, 3.8 and their corollaries. Set

(5.4) r1(x) = 1 + x2, q1(x) = e|x|, x ∈ R ⇒ d̂1(x) =

√

1 + x2

e|x|
, x ∈ R.

Let us show that {r1, q1} ∈ K(µ), µ > 2. Checking (3.2) is obvious. Further, we

use the elementary estimates

(5.5)
1

2
6
ξ

x
6 2 for |ξ − x| 6 µd̂1(x), |x| ≫ 1.

Below, to check (3.1) we use (5.5) (see (3.3), (3.4)):

κ1(x, µ) = (1 + x2) sup
|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

2ξ

(1 + ξ2)2
dξ

∣

∣

∣

∣

6 cµ
|x|

1 + x2
d̂1(x) → 0 as |x| → ∞,

κ2(x, µ) =
1

e|x|
sup

|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

e|ξ| dξ

∣

∣

∣

∣

6 cµd̂1(x) → 0 as |x| → ∞.
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Thus, {r1, q1} ∈ K(µ), µ > 2. Let us show that {r, q} ∈ S(µ), µ > 2. From (5.4)

and (5.1), we obtain that δ = 1/2. To check (3.6) for i = 3, 4 and x≫ 1, we use the

second mean-value theorem (see [9]) and (5.5):

κ3(x, µ) =
√

(1 + x2)ex sup
|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

eξ cos eξ

eξ(1 + ξ2)
dξ

∣

∣

∣

∣

6 cµ

√

(1 + x2)ex

ex(1 + x2)
sup

|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

eξ sin eξ dξ

∣

∣

∣

∣

=
cµ

√

(1 + x2)ex
→ 0, x→ ∞.

We estimate κ4(x, µ) for α > 1/2, x≫ 1:

κ4(x, µ) =
1

√

(1 + x2)ex
sup

|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

eξ cos(eαξ) dξ

∣

∣

∣

∣

=
1

√

(1 + x2)ex
sup

|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

e(1−α)ξ

α
[αeαξ cos(eαξ)] dξ

∣

∣

∣

∣

6 c
e(1−2α)x/2

√
1 + x2

sup
|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

αeαξ cos(eαξ) dξ

∣

∣

∣

∣

6 c
e(1−2α)x/2

√
1 + x2

→ 0 as x→ ∞.

Since in all the estimates given above the number µ > 0 can be as large as we wish,

by Theorems 3.3 and 3.5 we have

h(x) ≍ ((1 + x2)e|x|)−1/2, x ∈ R, α >
1

2
,(5.6)

d(x) ≍ ((1 + x2)e−|x|)1/2, x ∈ R, α >
1

2
(5.7)

((5.7) also follows from (5.6) and Theorem 3.8). Hence, for α > 1/2, by Corollary 3.6

(or Corollary 3.4) equation (1.1) is correctly solvable in Lp, p ∈ (1,∞). Thus, prob-

lem I)–II) in the case (5.1)–(5.2) can be studied with help of Theorems 3.3, 3.5 and 3.8

only for α > 1/2. In this example, the combination of these theorems is weaker than

Corollary 1.3 by itself, which encompasses all the cases α > 0 (see (1.9)). On the

other hand, from Corollary 1.3 we can only extract information on problem I)–II)

whereas the potential of Corollary 3.3, Theorem 3.5 and Theorem 3.8 is far beyond

that.

Relations (5.6)–(5.7) allow one (for α > 1/2) to study properties of solutions

of problem I)–II) in more detail, while the mere existence of these solutions can

be proved in a simpler way, using Corollary 1.3 (see (1.9)). In particular, using

(5.6)–(5.7), one can obtain precise information on the solvability of the Dirichlet and

Neumann problems for this particular equation (1.1) (see [6], [7]).
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Example 5.2. Consider equation (1.1) with coefficients

r(x) =

{

1 if |x| 6 1,

|x|−1/2 if |x| > 1,
(5.8)

q(x) = 1 + cos(|x|α), x ∈ R, α > 0.(5.9)

Below, we show that equation (1.1) with coefficients given by (5.8)–(5.9) is cor-

rectly solvable in Lp, p ∈ (1,∞) if and only if α > 5/4.

Let us start the proof. To apply Theorem 3.3 for |x| ≫ 1, set

r1(x) := r(x), q1(x) := 1, d̂1(x) =

√

r1(x)

q1(x)
=

1
4
√

|x|
.

Then {r1, q1} ∈ K(µ), µ > 2 (we do not present an elementary proof of this inclusion

which is straightforward). It is easy to see that {r, q} ∈ S(µ), µ > 2, in the case

(5.8)–(5.9). Indeed, the identity κ3(x, µ) ≡ 0, x ∈ R is obvious, and (3.6) for i = 4

and α > 5/4 follows from the second mean-value theorem (see [9]):

κ4(x, µ) =
4
√
x sup

|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

cos(tα) dt

∣

∣

∣

∣

= 4
√
x sup

|t|6µd̂1(x)

∣

∣

∣

∣

∫ x+t

x

1

αtα−1
[αtα−1 cos(tα)] dt

∣

∣

∣

∣

6
c

xα−5/4
→ 0, x→ ∞.

Then (see (3.10))

h(x) ≍ (r1(x)q1(x))
−1/2 = 4

√
x, x≫ 1.

Since {r, q} ∈ S(µ) for any µ > 2, by Theorem 3.5 we have

d(x) ≍ d̂1(x) =
1

4
√

|x|
, |x| ≫ 1.

(Theorem 3.8 gives an analogous result.) Hence B <∞ (see (1.7)), and therefore for
α > 5/4 equation (1.1) is correctly solvable in Lp, p ∈ (1,∞). Let us now consider

the case α ∈ (0, 5/4).

Below we apply Theorem 3.11. Towards this end, set

r1 := r ⇒ δ = 1,

q(x) = 1 + cos(|x|α) := 0 ⇒ |xk| = [(2k + 1)π]1/α, k > 1.(5.10)
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It is easy to check the following relations:

q′′(xk) ≍ x2α−2
k , xk > 1, k > 1,(5.11)

|q′′′(x)| 6 c(xα−3 + x2α−3 + x3α−3), x > 1,(5.12)

d̂k = 4

√

r(xk)

q′′(xk)
≍ 1

x
(4α−3)/8
k

, k > 1.(5.13)

Equality (3.16) for i = 1 can be established in a straightforward way, and for i = 2

it is trivial. Consider τ3(xk), k ≫ 1. From (5.10), (5.12), (5.13), (5.11) and (3.19),

it follows that

τ3(xk) 6 C
xα−3
k + x2α−4

k + x3α−3
k

x2α−2
k

x
−(4α−3)/8
k 6

C

x
(5/4−α)/2
k

→ 0, k → ∞.

Then (3.20) and (3.21) imply that B = ∞, i.e., by Theorem 1.2 for α ∈ (0, 5/4)

equation (1.1) is not correctly solvable in Lp, p ∈ (1,∞). It remains to consider the

case α = 5/4. Below we use Lemma 2.1 and show that

(5.14) d1(x) ≍ d2(x) ≍ |x|1/4 for α =
5

4
, |x| ≫ 1.

We need the following obvious inequalities:

1 +
3

2
ν 6 (1 + ν)3/2 6 1 + 2ν, ν ∈ [0, 1],(5.15)

1− 3

2
ν 6 (1 − ν)3/2 6 1− ν, ν ∈

[

0,
3

4

]

.

Let η(x) = νx−1/4, x≫ 1, ν > 0. If we are able to choose ν ∈ (0,∞) so that for all

x ≫ 1 the inequality F (η(x)) 6 1 holds, then by Lemma 2.1 we get that with such

a choice of η(x) the estimate d2(x) > η(x) holds for x≫ 1.

Thus (see (2.1) and (5.15)):

F2(η) =

∫ x+η

x

√
t dt ·

∫ x+η

x

(1 + cos t5/4) dt

6
2

3
[(x+ η)3/2 − x3/2]2η =

4

3
ηx3/2

[(

1 +
η

x

)3/2

− 1
]

6
4

3
ν
x3/2

x1/4

[

1 +
2ν

x5/4
− 1

]

=
8

3
ν2 = 1.

Hence we have

(5.16) ν =

√

3

8
, d2(x) >

1

2 4
√
x
, x≫ 1.
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Further, η := βx−1/4, x≫ 1, β > 0. Then (see (2.1), (5.15))

(5.17) F2(η) =

∫ x+η

x

√
t dt ·

∫ x+η

x

(1 + cos t5/4) dt

=
2

3
x3/2

[(

1 +
η

x

)3/2

− 1
]

[

η − 4

5

∫ x+η

x

(cos t5/4)′

t1/4
dt

]

>
2

3
x3/2

[

1 +
3

2

η

x
− 1

]

[

η − 4

5

cos t5/4

t1/4

∣

∣

∣

∣

x+η

x

− 1

5

∫ x+η

x

cos t5/4

t5/4
dt

]

> βx1/4
[

η − 8

5

1

x1/4
− 1

5

∫ x+η

x

dt

t1/4

]

> βx1/4
[ β

x1/4
− 8

5

1

x1/4
− η

5x1/4

]

> β(β − 2) > 1

⇒ β :=
5

2
⇒ d2(x) 6

5

2

1
4
√
x
, x≫ 1.

From (5.16) and (5.17), we obtain (5.14) for d2(x), |x| ≫ 1 and similarly for d1(x),

|x| ≫ 1.

Now, from (1.4) and (5.14), it follows that

(5.18) c−1|x|1/4 6 ϕ(x), ψ(x) 6 c|x|1/4, |x| ≫ 1,

and from (5.18) and (1.5), we get

(5.19) h(x) ≍ |x|1/4, |x| ≫ 1.

Finally, from (5.19) and (4.14) we obtain that (see (1.8)) B1 <∞, and it remains to

refer to Corollary 1.3.

Example 5.3. Consider equation (1.1) with coefficients

(5.20) r(x) =

{

1 if |x| 6 1,

x2 if |x| > 1;
q(x) =

{

1 if |x| 6 1,

|x|−1/2 if |x| > 1.

In [2], using test functions and Lemma 2.1, we have shown that in the case (5.20)

equation (1.1) is correctly solvable in Lp, p ∈ (1,∞). Below, we get the same result

using standardized methods proposed in (3.9)–(3.12) and Theorem 1.2 or Corol-

lary 1.3.
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Thus, according to (5.20), equation (1.1) is of type (α2, β2) (see §3). Our first step

consists in getting estimates for d1(x) and d2(x) for |x| ≫ 1 (see Lemma 1.1):

x2

4
6 d1(x) 6 2x2 for x≪ −1,(5.21)

x− 2
√
x 6 d1(x) 6 x−

√
x

2
for x≫ 1,(5.22)

|x| − 2
√

|x| 6 d2(x) 6 |x| −
√

|x|
2

for x≪ −1,(5.23)

x2

4
6 d2(x) 6 2x2 for x≫ 1.(5.24)

The estimates for d1 and d2 are proved in the same way, and therefore below we

only consider d1. To prove (5.21), we use Theorem 3.13. In this case, we have q > 0

(see (5.20)), and therefore equation (3.24) has a unique solution for x ≪ −1. For

ν > 1 and x≪ −1, we get

ν =

∫ x

−∞

dt

t2
·
∫ x

x−d

dt√−t =
2

|x| [
√

|x|+ d−
√

|x|]

⇒ β
(−)
1 (x, ν) =

ν2x2

4
+ ν|x|3/2 + |x| > ν2x2

4
.(5.25)

For ν = 1, from (5.25) we obtain the lower estimate in (5.21). To get the upper

estimate in (5.21), we check (3.28). For x≪ −1, we have

∫ x

−∞

dt

t2
6 ν

∫ x

x−β
(−)
1 (x,ν)

dt

t2
⇔ 1

|x| 6 ν
[ 1

|x| −
1

|x|+ β
(−)
1 (x, ν)

]

⇔ 1

ν
6 1− |x|

|x|+ β
(−)
1 (x, ν)

, x≪ −1.(5.26)

From (5.25) and (5.26), it follows that (3.28) holds for any ν > 1. Let ν = 2. Then

(see (5.25))

d1(x) 6 β
(+)
1 (x, ν) 6 2x2, x≪ −1 ⇒ (5.21).

Let us go to (5.22). These estimates are proved with help of Theorem 3.15. For

a = 1 we have (see (3.30))

ν =

∫ x

x−β
(+)
1 (x,ν)

dt

t2
·
∫ x

1

dt√
t
=

( 1

x− β
(+)
1 (x, ν)

− 1

x

)

(2
√
x− 2)

⇒ β
(+)
1 (x, ν) =

νx2

νx+ 2
√
x− 2

.
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Hence for x≫ 1, we obtain

(5.27) β
(+)
1 (x, ν) =

x

1 + (2
√
x− 2)/(νx)

= x
[

1− 2
√
x− 2

νx
+
(2

√
x− 2

νx

)2

+O
( 1

x
√
x

)]

= x
[

1− 2

ν

1√
x
+

2

νx
+

4

ν2

(1

x
− 2

x
√
x
+

1

x2

)

+O
( 1

x
√
x

)]

= x− 2

ν

√
x+

(2

ν
+

4

ν2

)

+O
( 1√

x

)

.

Here the constant in the symbol O(·) is absolute, i.e., it does not depend on ν > 1

for all x≫ 1.

In (5.27), set ν = 1. Then

α
(+)
1 (x) = x− 2

√
x+ 6 +O

( 1√
x

)

> x− 2
√
x, x≫ 1

⇒ d1(x) > α
(+)
1 (x) > x− 2

√
x, x≫ 1.

Let us check (3.34). Let ν > 1, x≫ 1. Then

2(
√
x− 1) =

∫ x

1

dt√
t
6 ν

∫ x

x−β
(+)
1 (x,ν)

dt√
t
= 2ν

(√
x−

√

x− β
(+)
1 (x, ν)

)

.

The following implication is obvious:

2(
√
x− 1) 6 2

√
x 6 2ν

(√
x−

√

x− β
(+)
1 (x, ν)

)

⇒ 1

ν
6 1−

√

1− β
(+)
1 (x, ν)

x
= 1−

√

2

ν

1√
x
+O

( 1√
x

)

, x≫ 1.

The latter inequality holds for any ν > 1 and x≫ 1. In particular, for ν = 2, we get

β
(+)
1 (x, 2) = x−√

x+ 2 +O
( 1√

x

)

6 x− 1

2

√
x, x≫ 1.

Hence estimate (5.22) holds. From inequalities (5.21)–(5.24), (1.4) and (1.5), it easily

follows (see [2]) that

ϕ(x) ≍
{

|x|−1, x≪ −1,

|x|−1/2, x≫ 1,
ψ(x) ≍

{

|x|−1/2, x≪ −1,

|x|−1, x≫ 1,

h(x) ≍ |x|−1, |x| ≫ 1.(5.28)
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Now, to prove the correct solvability of (1.1) in the case (5.20), we can use any

of the assertions of Corollary 1.3 (in this case we have B1 < ∞, B2 < ∞). Finally,

by (5.28), using the scheme of the proof of Theorem 3.5, one can show that

d(x) ≍ |x|, |x| ≫ 1

and then refer to Theorem 1.2. The rest of the proof is simple and so we leave it to

the reader.
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