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Abstract. In the present paper a generalized Kählerian space GK
1
N of the first kind is

considered as a generalized Riemannian space GRN with almost complex structure F
h
i that

is covariantly constant with respect to the first kind of covariant derivative.

Using a non-symmetric metric tensor we find necessary and sufficient conditions for
geodesic mappings f : GRN → GK

1
N with respect to the four kinds of covariant deriva-

tives. These conditions have the form of a closed system of partial differential equations
in covariant derivatives with respect to unknown components of the metric tensor and the
complex structure of the Kählerian space GK

1
N .
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1. Introduction

Geodesic mappings of Kählerian manifolds have been studied by many authors.

We continue the general idea by introducing the notion of generalized Kählerian

spaces of the first kind GK
1
N , which generalize Kählerian spaces in the spirit of

Einstein’s Unified Field Theory and Moffat’s non-symmetrical gravitational theory.

This paper is devoted to the study of geodesic mappings of generalized Riemannian

spaces to generalized Kählerian spaces of the first kind GK
1
N ,

The authors gratefully acknowledge support from the research project 174012 of the
Serbian Ministry of Science and FAST-S-13-2088 of the Brno University of Technology.
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The main results of the paper: New explicit formulas of geodesic mappings onto

GK
1
N are given in Subsection 3.1, new explicit formulas of equitorsion geodesic map-

pings onto GK
1
N in Subsection 3.2.

In a similar way we can consider generalized Kählerian spaces of the second, the

third and the fourth kind.

2. Generalized Kählerian spaces of the first kind

2.1. Generalized Riemannian spaces. A generalized Riemannian space GRN

in the sense of Eisenhart’s definition [5] is a differentiable N -dimensional manifold,

equipped with a non-symmetric metric tensor gij (i.e. gij 6= gji). The symmetric and

the antisymmetric parts of gij are

gij =
1

2
(gij + gji) =

1

2
g(ij), gij

∨

=
1

2
(gij − gji) =

1

2
g[ij].

The lowering and the rising of indices are defined by the tensors gij and g
ij , respec-

tively, where gij is defined by the equation

(2.1) gijg
jk = δki

(δki is the Kronecker symbol). From (2.1) we have that the matrix (g
ij) is inverse

to (gij), wherefrom it is necessary that g = det(gij) 6= 0. Connection coefficients of

this space are generalized Christoffel symbols of the second kind, where

Γi
jk = gipΓp.jk, Γi.jk =

1

2
(gji,k − gjk,i + gik,j), gij,k =

∂gij

∂xk
.

Generally Γi
jk 6= Γi

kj . Therefore, one can define the symmetric and the anti-

symmetric part of Γi
jk, respectively, by

Γi
jk =

1

2
(Γi

jk + Γi
kj) =

1

2
Γi
(jk), Γi

jk
∨

=
1

2
(Γi

jk − Γi
kj) =

1

2
Γi
[jk].

The quantity Γi
jk
∨

is the torsion tensor of the spaces GRN .

The use of a non-symmetric metric tensor and a non-symmetric connection became

especially topical after the appearance of the papers of A. Einstein [2]–[4] related to

the attempt to formulate a Unified Field Theory (UFT). We remark that in UFT

the symmetric part gij of gij is related to gravitation, and the antisymmetric one

gij
∨

to electromagnetism. More recently the ides of a non-symmetric metric tensor

1114



appears in Moffat’s non-symmetric gravitational theory [17]. In Moffat’s theory the

antisymmetric part represents a Proca field (massive Maxwell field) which is part of

the gravitational interaction, contributing to the rotation of galaxies.

Based on the non-symmetry of the connection in a generalized Riemannian space

one can define four kinds of covariant derivatives. For example, for a tensor aij in

GRN we have

aij |
1

m = aij,m + Γi
pma

p
j − Γp

jma
i
p, aij |

2

m = aij,m + Γi
mpa

p
j − Γp

mja
i
p,

aij |
3

m = aij,m + Γi
pma

p
j − Γp

mja
i
p, aij |

4

m = aij,m + Γi
mpa

p
j − Γp

jma
i
p.

By applying four kinds of covariant derivatives of tensors, it is possible to con-

struct several Ricci type identities. In these identities 12 curvature tensors appear

as well as 15 quantities, which are not tensors, named “curvature pseudotensors”

by S.M.Minčić [12], [13]. In the case of the space GRN we have five independent

curvature tensors.

2.2. Generalized Kählerian space of the first kind. Kählerian spaces and

their mappings were investigated by many authors, for example T.Otsuki and

Y.Tasiro [18], [25], K.Yano [26], J.Mikeš, V.V. Domashev [1], [6], [7], [8], [9], [10],

[11], [22], M.Prvanović [19], N. Pušić [21], S. S. Pujar [20], M. S. Stanković at al. [16],

[24], and many others.

An N -dimensional Riemannian space with metric tensor gij is a Kählerian space

KN if there exists an almost complex structure F i
j such that

Fh
p F

p
i = −δhi ,

gpqF
p
i F

q
j = gij , gij = gpqF i

pF
j
q ,

Fh
i;j = 0,

where “;” denotes the covariant derivative with respect to the metric tensor gij .

Definition 2.1. A generalized N -dimensional Riemannian space with non-

symmetric metric tensor gij is a generalized Kählerian space of the first kind GK
1
N

if there exists an almost complex structure F i
j such that

Fh
p F

p
i = −δhi ,(2.2)

gpqF
p
i F

q
j = gij , gij = gpqF i

pF
j
q ,(2.3)

Fh
i|
1

j = 0, Fh
i;j = 0,

where “|
1

” denotes the covariant derivative of the first kind with respect to the con-

nection Γi
jk (Γi

jk 6= Γi
kj) and “;” denotes the covariant derivative with respect to the

symmetric part of the metric tensor Γi
jk.

1115



From (2.3), using (2.2), we get Fij = −Fji and F ij = −F ji, where we denote

Fji = F
p
j gpi, F

ji = F j
p g

pi.

The following theorem holds.

Theorem 2.1 ([23]). For the almost complex structure F i
j of GK

1
N the relations

Fh
i|
2

j = 0, Fh
i|
3

j = 2Fh
p Γ

p
ij
∨

, Fh
i|
4

j = 2F p
i Γ

h
jp
∨

are valid, where Γh
ij
∨

is the torsion tensor.

3. Geodesic mapping

3.1. Geodesic mapping between generalized Kählerian spaces of the first

kind. In this part we consider geodesic mappings f : GRN → GK
1
N .

Definition 3.1. A diffeomorphism f : GRN → GK
1
N is geodesic, if geodesics of

the space GRN are mapped to geodesics of the space GK
1
N .

At the corresponding points M and M we can put

(3.1) Γi
jk = Γi

jk + P i
jk (i, j, k = 1, . . . , N),

where P i
jk is the deformation tensor of the connection Γ of GRN corresponding to

the mapping f : GRN → GK
1
N .

Theorem 3.1 ([14]). A necessary and sufficient condition for the mapping f :

GRN → GK
1
N to be geodesic is that the deformation tensor P

i
jk from (3.1) has the

form

(3.2) P i
jk = δijψk + δikψj + ξijk,

where

ψi =
1

N + 1
(Γ̄α

iα − Γα
iα), ξijk = P i

jk
∨

=
1

2
(P i

jk − P i
kj).

We remark that in GK
1
N the following equations are valid:

Γα
iα
∨

= 0, ξαiα = 0, Fα
α = 0.

In [11] Mikeš et al. proved necessary and sufficient conditions for geodesic mappings

of a Riemannian space onto a Kählerian space.
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Theorem 3.2. The Riemannian space RN admits a nontrivial geodesic mapping

onto the Kählerian space KN with metric gij and complex structure F
h
i satisfying

gij = gji, det(gij) 6= 0, F
p
i gpj + F

p
jgpi = 0, Fh

pF
p
i = −δhi ,

if and only if, in the common coordinate system x with respect to the mapping, the

conditions

a) gij;k = 2ψkgij + ψigjk + ψjgik;

b) Fh
i;k = Fh

kψi − δhkF
α
i ψα

hold, where ψi 6= 0.

Our idea is to find the corresponding equations with respect to the four kinds of

covariant derivative.

In all the following theorems concerning mappings from a generalized Riemannian

space onto a generalized Kählerian space, gij and F
j
i denote the metric and the

almost complex structure of GK
1
N , respectively, satisfying

(3.3) gij 6= gji, det(gij) 6= 0, F
p
i gpj + F

p
jgpi = 0, Fh

pF
p
i = −δhi .

Theorem 3.3. The generalized Riemannian space GRN admits a nontrivial

geodesic mapping onto the generalized Kählerian space GK
1
N if and only if, in the

common coordinate system x with respect to the mapping, the conditions

a) gij |
1

k = g
ij
∨

|
1

k
+ 2ψkgij + ψigjk + ψjgik + ξαikgαj + ξαjkgiα;(3.4)

b) Fh
i|
1

k = Fh
kψi − δhkF

α
i ψα − ξhαkF

α
i + ξαikF

h
α,

hold with respect to the first kind of covariant derivatives, where ψi 6= 0.

P r o o f. Equation (3.4) a) guarantees the existence of a geodesic mapping from

the generalized Riemannian space GRN onto the generalized Riemannian space GRN

with metric tensor gij with respect to the first kind of covariant derivatives (see [15]).

Formula (3.4) b) implies that the structure Fh
i in GRN is covariantly constant

with respect to the first kind of covariant derivative. The algebraic conditions (3.3)

guarantee that gij and F
h
i are the metric tensor and the structure of GK

1
N , respec-

tively.

The deformation tensor is determined by equation (3.2), i.e.,

(3.5) Γ
h

ij − Γh
ij = ψiδ

h
j + ψjδ

h
i + ξhij .
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For the structure F , we have the following equations:

(3.6) Fh
i|
1

k = Fh
i,k + Γh

pkF
p
i − Γp

ikF
h
p , Fh

i|
2

k = Fh
i,k + Γh

kpF
p
i − Γp

kiF
h
p .

Replacing Γh
ij from (3.5) in (3.6), we get

Fh
i|
1

k = Fh
i,k + (Γ

h

pk − ψpδ
h
k − ψkδ

h
p − ξhpk)F

p
i − (Γ

p

ik − ψiδ
p
k − ψkδ

p
i − ξ

p
ik)F

h
p

= Fh
i,k + Γ

h

pkF
p
i − ψpδ

h
kF

p
i − ψkδ

h
pF

p
i − ξhpkF

p
i − Γ

p

ikF
h
p

+ ψiδ
p
kF

h
p + ψkδ

p
i F

h
p + ξ

p
ikF

h
p

= Fh

i|
1

k
− ψpδ

h
kF

p
i − ψkδ

h
pF

p
i − ξhpkF

p
i + ψiδ

p
kF

h
p + ψkδ

p
i F

h
p + ξ

p
ikF

h
p

= Fh

i|
1

k
− ψpδ

h
kF

p
i − ψkF

h
i − ξhpkF

p
i + ψiF

h
k + ψkF

h
i + ξ

p
ikF

h
p

= Fh

i|
1

k

︸︷︷︸

0

− ψpδ
h
kF

p
i + ψiF

h
k − ξhpkF

p
i + ξ

p
ikF

h
p ,

where “ | ”, and “ | ” are covariant derivatives in GRN and GK
1
N , respectively. �

Theorem 3.4. The generalized Riemannian space GRN admits a nontrivial

geodesic mapping onto the generalized Kählerian space GK
1
N if and only if, in the

common coordinate system x with respect to the mapping, the conditions

a) gij |
2

k = g
ij
∨

|
2

k
+ 2ψkgij + ψigjk + ψjgik + ξαkigαj + ξαkjgiα;

b) Fh
i|
2

k = Fh
kψi − δhkF

α
i ψα − ξhkαF

α
i + ξαkiF

h
α,

hold with respect to the second kind of covariant derivatives, where ψi 6= 0.

P r o o f. For the second kind of covariant derivatives in GRN , we have

Fh
i|
2

k = Fh
i,k + (Γ

h

kp − ψkδ
h
p − ψpδ

h
k − ξhkp)F

p
i − (Γ

p

ki − ψkδ
p
i − ψiδ

p
k − ξ

p
ki)F

h
p

= Fh
i,k + Γ

h

kpF
p
i − ψkδ

h
pF

p
i − ψpδ

h
kF

p
i − ξhkpF

p
i − Γ

p

kiF
h
p

+ ψkδ
p
i F

h
p + ψiδ

p
kF

h
p + ξ

p
kiF

h
p

= Fh

i|
2

k
− ψkδ

h
pF

p
i − ψpδ

h
kF

p
i − ξhkpF

p
i + ψkδ

p
i F

h
p + ψiδ

p
kF

h
p + ξ

p
kiF

h
p

= Fh

i|
2

k
− ψkF

h
i − ψpδ

h
kF

p
i − ξhkpF

p
i + ψkF

h
i + ψiF

h
k + ξ

p
kiF

h
p

= ψiF
h
k − ψpδ

h
kF

p
i − ξhkpF

p
i + ξ

p
kiF

h
p .

�
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In a similar way, we can prove the corresponding theorems for the third and the

fourth kind of covariant derivative:

Theorem 3.5. The generalized Riemannian space GRN admits a nontrivial

geodesic mapping onto the generalized Kählerian space GK
1
N if and only if, in the

common coordinate system x with respect to the mapping, the conditions

a) gij |
3

k = g
ij
∨

|
3

k
+ 2ψkgij + ψigjk + ψjgik + ξαikgαj + ξαkjgiα;

b) Fh
i|
3

k
= Fh

i|
3

k
− ψpδ

h
kF

p
i + ψiF

h
k − ξhpkF

p
i + ξ

p
kiF

h
p ,

hold with respect to the third kind of covariant derivatives, where ψi 6= 0.

Theorem 3.6. The generalized Riemannian space GRN admits a nontrivial

geodesic mapping onto the generalized Kählerian space GK
1
N if and only if, in the

common coordinate system x with respect to the mapping, the conditions

a) gij |
4

k = g
ij
∨

|
4

k
+ 2ψkgij + ψigjk + ψjgik + ξαkigαj + ξαjkgiα;

b) Fh
i|
4

k
= Fh

i|
4

k
− ψpδ

h
kF

p
i + ψiF

h
k − ξhkpF

p
i + ξ

p
ikF

h
p ,

hold with respect to the fourth kind of covariant derivatives, where ψi 6= 0.

3.2. Equitorsion geodesic mapping. Equitorsion mappings play an important

role in the theories of geodesic, conformal and holomorphically projective transfor-

mations between two spaces of non-symmetric affine connection.

Definition 3.2 ([14]). A mapping f : GRN → GK
1
N is an equitorsion geodesic

mapping if the torsion tensors of the spaces GRN and GK
1
N are equal. Then from

(3.1), (3.2) and (3.5):

Γh
ij
∨

− Γh
ij
∨

= ξhij = 0,

where ij
∨
denotes an antisymmetrization with respect to i, j.

In the case of these mappings, the previous Theorems 3.3–3.6 become:

Theorem 3.7. The generalized Riemannian space GRN admits a nontrivial equi-

torsion geodesic mapping onto the generalized Kählerian space GK
1
N if and only if,

in the common coordinate system x with respect to the mapping, the conditions

a) gij |
1

k = 2ψkgij + ψigjk + ψjgik;

b) Fh
i|
1

k
= Fh

kψi − δhkF
p
iψp,

hold with respect to the first kind of covariant derivatives, where ψi 6= 0.
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Theorem 3.8. The generalized Riemannian space GRN admits a nontrivial equi-

torsion geodesic mapping onto the generalized Kählerian space GK
1
N if and only if,

in the common coordinate system x with respect to the mapping, the conditions

a) gij |
2

k = 2ψkgij + ψigjk + ψjgik;

b) Fh
i|
2

k
= Fh

kψi − δhkF
p
iψp,

hold with respect to the second kind of covariant derivatives, where ψi 6= 0.

Theorem 3.9. The generalized Riemannian space GRN admits a nontrivial equi-

torsion geodesic mapping onto the generalized Kählerian space GK
1
N if and only if,

in the common coordinate system x with respect to the mapping, the conditions

a) gij |
3

k = 2ψkgij + ψigjk + ψjgik;

b) Fh
i|
3

k
= Fh

i|
3

k
− ψpδ

h
kF

p
i + ψiF

h
k ,

hold with respect to the third kind of covariant derivatives, where ψi 6= 0.

Theorem 3.10. The generalized Riemannian space GRN admits a nontrivial

equitorsion geodesic mapping onto the generalized Kählerian space GK
1
N if and only

if, in the common coordinate system x with respect to the mapping, the conditions

a) gij |
4

k = 2ψkgij + ψigjk + ψjgik;

b) Fh
i|
4

k = Fh

i|
4

k
− ψpδ

h
kF

p
i + ψiF

h
k ,

hold with respect to the fourth kind of covariant derivatives, where ψi 6= 0.

4. Conclusion

We have shown that the notions of geodesic and equitorsion geodesic mappings

from Riemannian to Kählerian spaces can be generalized to the case of a non-

symmetric metric, and we have given necessary and sufficient conditions for nontrivial

such mappings.
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[14] S.M.Minčić, M. S. Stanković: Equitorsion geodesic mappings of generalized Riemannian
spaces. Publ. Inst. Math., Nouv. Sér. 61 (1997), 97–104.
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