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GLOBAL BEHAVIOR OF THE DIFFERENCE EQUATION
xn+1 = axn−3

b+cxn−1xn−3

Raafat Abo-Zeid

Abstract.
In this paper, we introduce an explicit formula and discuss the global

behavior of solutions of the difference equation

xn+1 =
axn−3

b+ cxn−1xn−3
, n = 0, 1, . . .

where a, b, c are positive real numbers and the initial conditions x−3, x−2,
x−1, x0 are real numbers.

1. Introduction

Difference equations have played an important role in analysis of mathematical
models of biology, physics and engineering. Recently, there has been a great interest
in studying properties of nonlinear and rational difference equations. One can see
[3, 5, 8, 9, 11, 12, 13, 14, 15, 19, 18] and the references therein.
In [4], the authors discussed the global behavior of the difference equation

xn+1 = Axn−2r−1

B + Cxn−2lxn−2k
, n = 0, 1, . . .

where A, B, C are nonnegative real numbers and r, l, k are nonnegative integers
such that l ≤ k and r ≤ k.

In [2] we have discussed global asymptotic stability of the difference equation

xn+1 = A+Bxn−1

C +Dxn2 , n = 0, 1, . . .

where A, B are nonnegative real numbers and C, D > 0.
We have also discussed in [1] the global behavior of the solutions of the difference
equation

xn+1 = Bxn−2k−1

C +D
∏k
i=l xn−2i

, n = 0, 1, . . .

2010 Mathematics Subject Classification: primary 39A20; secondary 39A21, 39A23, 39A30.
Key words and phrases: difference equation, periodic solution, convergence.
Received February 23, 2014, revised November 2014. Editor O. Došlý.
DOI: 10.5817/AM2015-2-77

http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2015-2-77


78 R. ABO-ZEID

In [17], D. Simsek et al. introduced the solution of the difference equation

xn+1 = xn−3

1 + xn−1
, n = 0, 1, . . .

where x−3, x−2, x−1, x0 ∈ (0,∞).
Also in [16], D. Simsek et al. introduced the solution of the difference equation

xn+1 = xn−5

1 + xn−1xn−3
, n = 0, 1, . . .

with positive initial conditions.
R. Karatas et al. [10] discussed the positive solutions and the attractivity of the
difference equation

xn+1 = xn−5

1 + xn−2xn−5
, n = 0, 1, . . .

where the initial conditions are nonnegative real numbers.
In [6], E.M. Elsayed discussed the solutions of the difference equation

xn+1 = xn−5

−1 + xn−2xn−5
, n = 0, 1, . . .

where the initial conditions are nonzero real numbers with x−5x−2 6= 1, x−4x−1 6= 1
and x−3x0 6= 1. Also in [7], E.M. Elsayed determined the solutions to some difference
equations. He obtained the solution to the difference equation

xn+1 = xn−3

1 + xn−1xn−3
, n = 0, 1, . . .

where the initial conditions are nonzero positive real numbers.
In this paper, we introduce an explicit formula and discuss the global behavior of
solutions of the difference equation

(1.1) xn+1 = axn−3

b+ cxn−1xn−3
, n = 0, 1, . . .

where a, b, c are positive real numbers and the initial conditions x−3, x−2, x−1, x0
are real numbers.

2. Solution of equation (1.1)

In this section, we establish the solutions of equation (1.1).
From equation (1.1), we can write

x2n+1 = ax2n−3

b+ cx2n−1x2n−3
, n = 0, 1, . . .(2.1)

x2n+2 = ax2n−2

b+ cx2nx2n−2
, n = 0, 1, . . .(2.2)

Using the substitution y2n−1 = 1
x2n−1x2n−3

, equation (2.1) is reduced to the
linear nonhomogeneous difference equation

(2.3) y2n+1 = b

a
y2n−1 + c

a
, y−1 = 1

x−1x−3
, n = 0, 1, . . .
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Note that for the backward orbits, the product reciprocals v2k−1 = 1
x2k−1x2k−3

satisfy the equation

v2k+1 = a

b
v2k−1 −

c

b
, v−1 = 1

x−1x−3
= −c

b
, k = 0, 1, . . .

Therefore,
x2n−1x2n−3 = − b

c
∑n
r=0(ab )r

.

By induction on n we can show that for any n ∈ N, if x2n−1x2n−3 = − b

c
∑n

r=0
( ab )r

,

then x−1x−3 = − bc .
The same argument can be done for equation (2.2) and will be omitted.

Now we are ready to give the following lemma.
Lemma 2.1. The forbidden set F of equation (1.1) is
F =

⋃∞
n=0

{
(u0, u−1, u−2, u−3) : u−3 = −

(
b

c
∑n

l=0
( ab )i

) 1
u−1

}
∪
⋃∞
m=0

{
(u0, u−1,

u−2, u−3) : u−2 = −
(

b

c
∑m

l=0
( ab )i

) 1
u0

}
.

Clear that the forbidden set F is a sequence of hyperbolas contained entirely in
the interiors of the 2nd and the 4th quadrant of the planes u0u−2 and u−1u−3 of
the four dimensional Euclidean space

R4 = {(u0, u−1, u−2, u−3), u−i ∈ R, i = 0, 1, 2, 3} .
That is the forbidden set is a sequence of hyperbolas contained entirely in the set

{(u0, u−1, u−2, u−3), u−1u−3 < 0} ∪ {(u0, u−1, u−2, u−3), u0u−2 < 0} .
We define αi = x−2+ix−4+i, i = 1, 2.

Theorem 2.2. Let x−3, x−2, x−1 and x0 be real numbers such that (x0, x−1, x−2,
x−3) /∈ F . If a 6= b, then the solution {xn}∞n=−3 of equation (1.1) is

(2.4) xn =



x−3
∏n−1

4
j=0

( ba )2jθ1+c
( ba )2j+1θ1+c , n = 1, 5, 9, . . .

x−2
∏n−2

4
j=0

( ba )2jθ2+c
( ba )2j+1θ2+c , n = 2, 6, 10, . . .

x−1
∏n−3

4
j=0

( ba )2j+1θ1+c
( ba )2j+2θ1+c , n = 3, 7, 11, . . .

x0
∏n−4

4
j=0

( ba )2j+1θ2+c
( ba )2j+2θ2+c , n = 4, 8, 12, . . .

where θi = a−b−cαi
αi

, αi = x−2+ix−4+i, and i = 1, 2.

Proof. We can write the given solution as

x4m+1 = x−3

m∏
j=0

( ba )2jθ1 + c

( ba )2j+1θ1 + c
, x4m+2 = x−2

m∏
j=0

( ba )2jθ2 + c

( ba )2j+1θ2 + c
,

x4m+3 = x−1

m∏
j=0

( ba )2j+1θ1 + c

( ba )2j+2θ1 + c
, x4m+4 = x0

m∏
j=0

( ba )2j+1θ2 + c

( ba )2j+2θ2 + c
, m = 0, 1, . . .
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It is easy to check the result when m = 0. Suppose that the result is true for
m > 0.

Then

x4(m+1)+1 = ax4m+1

b+ cx4m+1x4m+3
=

ax−3
∏m
j=0

( ba )2jθ1+c
( ba )2j+1θ1+c

b+ cx−3
∏m
j=0

( ba )2jθ1+c
( ba )2j+1θ1+cx−1

∏m
j=0

( ba )2j+1θ1+c
( ba )2j+2θ1+c

=
ax−3

∏m
j=0

( ba )2jθ1+c
( ba )2j+1θ1+c

b+ cx−3(
∏m
j=0( ba )2jθ1 + c)x−1

∏m
j=0

1
( ba )2j+2θ1+c

=
ax−3

∏m
j=0

( ba )2jθ1+c
( ba )2j+1θ1+c

b+ cx−1x−3(θ1 + c)( 1
( ba )2m+2θ1+c )

=
ax−3(( ba )2m+2θ1 + c)

∏m
j=0

( ba )2jθ1+c
( ba )2j+1θ1+c

b(( ba )2m+2θ1 + c) + cα1(θ1 + c)

=
ax−3(( ba )2m+2θ1 + c)

∏m
j=0

( ba )2jθ1+c
( ba )2j+1θ1+c

b(( ba )2m+2θ1 + c) + c(a− b)

=
x−3(( ba )2m+2θ1 + c)

∏m
j=0

( ba )2jθ1+c
( ba )2j+1θ1+c

b
a (( ba )2m+2θ1 + c) + c

a (a− b)

= x−3
( ba )2m+2θ1 + c)
(( ba )2m+3θ1 + c)

m∏
j=0

( ba )2jθ1 + c

( ba )2j+1θ1 + c

= x−3

m+1∏
j=0

( ba )2jθ1 + c

( ba )2j+1θ1 + c
.

Similarly we can show that

x4(m+1)+2 = x−2

m+1∏
j=0

( ba )2jθ2 + c

( ba )2j+1θ2 + c
, x4(m+1)+3 = x−1

m+1∏
j=0

( ba )2j+1θ1 + c

( ba )2j+2θ1 + c

and

x4(m+1)+4 = x0

m+1∏
j=0

( ba )2j+1θ2 + c

( ba )2j+2θ2 + c
.

This completes the proof.
�
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3. global behavior of equation (1.1)

In this section, we investigate the global behavior of equation (1.1) with a 6= b,
using the explicit formula of its solution.
We can write the solution of equation (1.1) as

x4m+2t+i = x−4+2t+i

m∏
j=0

β(j, t, i) ,

where β(j, t, i) = ( ba )2j+tθi+c
( ba )2j+t+1θi+c

, t ∈ {0, 1} and i ∈ {1, 2}.
In the following theorem, suppose that αi 6= a−b

c for all i ∈ {1, 2}.

Theorem 3.1. Let {xn}∞n=−3 be a solution of equation (1.1) such that
(x0, x−1, x−2, x−3) /∈ F . Then the following statements are true.

(1) If a < b, then {xn}∞n=−3 converges to 0.
(2) If a > b, then {xn}∞n=−3 converges to a period-4 solution.

Proof.
(1) If a < b, then β(j, t, i) converges to a

b < 1 as j →∞, for all t ∈ {0, 1} and
i ∈ {1, 2}. So, for every pair (t, i) ∈ {0, 1} × {1, 2} we have for a given
0 < ε < 1 that, there exists j0(t, i) ∈ N such that, | β(j, t, i) |< ε for all
j ≥ j0(t, i). If we set j0 = max0≤t≤1,1≤i≤2 j0(t, i), then for all t ∈ {0, 1}
and i ∈ {1, 2} we get

|x4m+2t+i| = |x−4+2t+i| |
m∏
j=0

β(j, t, i)|

= |x−4+2t+i| |
j0−1∏
j=0

β(j, t, i)| |
m∏
j=j0

β(j, t, i)|

< |x−4+2t+i| |
j0−1∏
j=0

β(j, t, i)|εm−j0+1 .

As m tends to infinity, the solution {xn}∞n=−3 converges to 0.
(2) If a > b, then β(j, t, i)→ 1 as j →∞, t ∈ {0, 1} and i ∈ {1, 2}. This implies

that, for every pair (t, i) ∈ {0, 1}×{1, 2} there exists j1(t, i) ∈ N such that,
β(j, t, i) > 0 for all j ≥ j1(t, i). If we set j1 = max0≤t≤1,1≤i≤2 j1(t, i), then
for all t ∈ {0, 1} and i ∈ {1, 2} we get

x4m+2t+i = x−4+2t+i

m∏
j=0

β(j, t, i)

= x−4+2t+i

j1−1∏
j=0

β(j, t, i) exp
( m∑
j=j1

ln
(
β(j, t, i)

))
.
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We shall test the convergence of the series
∑∞
j=j1
| ln
(
β(j, t, i)

)
|.

Since for all t ∈ {0, 1} and i ∈ {1, 2} we have limj→∞
∣∣ ln (β(j+1,t,i)

ln (β(j,t,i)
∣∣ = 0

0 ,
using L’Hospital’s rule we obtain

lim
j→∞

∣∣∣ ln β(j + 1, t, i)
ln β(j, t, i)

∣∣∣ =
( b
a

)2
< 1 .

It follows from the ratio test that the series
∑∞
j=j1
| ln β(j, t, i)| is convergent.

This ensures that there are four positive real numbers νti, t ∈ {0, 1} and
i ∈ {1, 2} such that

lim
m→∞

x4m+2t+i = νti , t ∈ {0, 1} and i ∈ {1, 2}

where

νti = x−4+2t+i

∞∏
j=0

( ba )2j+tθi + c

( ba )2j+t+1θi + c
, t ∈ {0, 1} and i ∈ {1, 2} .

�
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Fig. 1: xn+1 = 2xn−3
3+xn−1xn−3
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Fig. 2: xn+1 = 3xn−3
1+2xn−1xn−3

Example 1. Figure 1 shows that if a = 2, b = 3, c = 1 (a < b), then the solution
{xn}∞n=−3 of equation (1.1) with initial conditions x−3 = 0.2, x−2 = 2, x−1 = −2
and x0 = 0.4 converges to zero.

Example 2. Figure 2 shows that if a = 3, b = 1, c = 2 (a > b), then the solution
{xn}∞n=−3 of equation (1.1) with initial conditions x−3 = 0.2, x−2 = 2, x−1 = −2
and x0 = 0.4 converges to a period-4 solution.

4. Case a = b = c

In this section, we investigate the behavior of the solution of the difference
equation

(4.1) xn+1 = xn−3

1 + xn−1xn−3
, n = 0, 1, . . .
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Lemma 4.1. The forbidden set G of equation (1.1) is
G =

⋃∞
n=0

{
(u0, u−1, u−2, u−3) : u−3 = −

( 1
n+1

) 1
u−1

}
∪
⋃∞
m=0

{
(u0, u−1, u−2, u−3) :

u−2 = −
( 1
m+1

) 1
u0

}
.

Theorem 4.2. Let x−3, x−2, x−1 and x0 be real numbers such that
(x0, x−1, x−2, x−3) /∈ G. Then the solution {xn}∞n=−3 of equation (4.1) is

(4.2) xn =



x−3
∏n−1

4
j=0

1+(2j)α1
1+(2j+1)α1

, n = 1, 5, 9, . . .

x−2
∏n−2

4
j=0

1+(2j)α2
1+(2j+1)α2

, n = 2, 6, 10, . . .

x−1
∏n−3

4
j=0

1+(2j+1)α1
1+(2j+2)α1

, n = 3, 7, 11, . . .

x0
∏n−4

4
j=0

1+(2j+1)α2
1+(2j+2)α2

, n = 4, 8, 12 . . .

Proof. The proof is similar to that of Theorem 2.2 and will be omitted. �

We can write the solution of equation (4.1) as

x4m+2t+i = x−4+2t+i

m∏
j=0

γ(j, t, i) ,

where γ(j, t, i) = 1+(2j+t)αi
1+(2j+t+1)αi , t ∈ {0, 1} and i ∈ {1, 2}.

In the following theorem, suppose that αi 6= 0 for all i ∈ {1, 2}.

Theorem 4.3. Let {xn}∞n=−3 be a solution of equation (4.1) such that
(x0, x−1, x−2, x−3) /∈ G. Then {xn}∞n=−3 converges to 0.

Proof. It is clear that γ(j, t, i) → 1 as j → ∞, t ∈ {0, 1} and i ∈ {1, 2}. This
implies that, for every pair (t, i) ∈ {0, 1}× {1, 2} there exists j2(t, i) ∈ N such that,
γ(j, t, i) > 0 for all j ≥ j2(t, i). If we set j2 = max0≤t≤1,1≤i≤2 j2(t, i), then for all
t ∈ {0, 1} and i ∈ {1, 2} we get

x4m+2t+i = x−4+2t+i

m∏
j=0

γ(j, t, i)

= x−4+2t+i

j2−1∏
j=0

γ(j, t, i) exp
(
−

m∑
j=j2

ln 1
γ(j, t, i)

)
.

We shall show that
∑∞
j=j2

ln 1
γ(j,t,i) =

∑∞
j=j2

ln 1+(2j+t+1)αi
1+(2j+t)αi = ∞, by conside-

ring the series
∑∞
j=j2

αi
1+αi(2j+t) . As

lim
j→∞

1/γ(j, t, i)
αi/(1 + αi(2j + t)) = lim

j→∞

ln ((1 + αi(2j + t+ 1))/(1 + αi(2j + t)))
αi/(1 + αi(2j + t)) = 1,
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using the limit comparison test, we get
∑∞
j=j2

ln 1
γ(j,t,i) =∞.

Therefore,

x4m+2t+i = x−4+2t+i

j2−1∏
j=0

γ(j, t, i) exp
(
−

m∑
j=j2

ln 1
γ(j, t, i)

)
converges to zero as m→∞. �
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