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INJECTIVE DIMENSION
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Abstract. We study the relations between finitistic dimensions and restricted injective di-
mensions. Let R be a ring and T a left R-module with A = EndR T . If RT is selforthogonal,
then we show that rid(TA) 6 findim(AA) 6 findim(RT ) + rid(TA). Moreover, if R is a left
noetherian ring and T is a finitely generated left R-module with finite injective dimension,
then rid(TA) 6 findim(AA) 6 fin.inj.dim(RR)+ rid(TA). Also we show by an example that
the restricted injective dimensions of a module may be strictly smaller than the Gorenstein
injective dimension.
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1. Introduction

Throughout this paper R is a nontrivial associative ring with identity. We de-

note by R-Mod (respectively, Mod-R) the category of all left (respectively, right)

R-modules and by R-mod (respectively, mod-R) the category of all left (respectively,

right) R-modules possessing finitely generated projective resolutions. The left little

(respectively, big) finitistic (projective) dimension of R, denoted by findim(RR) (re-

spectively, Findim(RR)), is defined as the supremum of the projective dimensions of

all modules in R-mod (respectively, R-Mod) of finite projective dimension. Clearly,

findim(RR) 6 Findim(RR). Similarly, one may define the right finitistic dimension

of R by using the projective dimensions of right R-modules.

It is well known that Findim(RR) coincides with the Krull dimension of R in

case R is commutative and noetherian and that findim(RR) = depthR in case R is
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commutative local and noetherian. Therefore, in the latter case both the dimensions

are finite and they coincide if and only if R is a Cohen-Macaulay ring.

In the case when R is a finite-dimensional algebra over a field, the little and

the big finitistic dimensions may also differ; that is, the First Finitistic Dimension

Conjecture fails (cf. [7]). However, it is still an open question, known as the Second

Finitistic Dimension Conjecture, whether the little finitistic dimension of a finite-

dimensional algebraR is always finite. This conjecture is closely related to Nakayama

conjecture, Gorenstein symmetry conjecture, Wakamatsu tilting conjecture and other

homological conjectures, and attracts many algebraists (cf. [1], [3], [9]).

One can use the injective dimensions of rightR-modules to define the right finitistic

injective dimension of R, denoted by fin.inj.dim(RR), by

fin.inj.dim(RR) = sup{id(MR) ; id(MR) < ∞, MR ∈ mod -R}.

Note that findim(RR) = fin.inj.dim(RR) provided that R is artinian.

As a refinement of Gorenstein flat dimension in some sense, Christensen, Foxby

and Frankild in [5] defined the large restricted flat dimension of a right homologically

bounded complex X as RfdR X = sup{sup(T ⊗L
R X) ; T ∈ F0(R)}, where F0(R)

denotes the category of R-modules of finite flat dimension.

The small restricted flat dimension of a right homologically bounded complex X

is rfdR X = sup{sup(T ⊗L
R X) ; T ∈ Pf

0 (R)}, where Pf
0 (R) denotes the category of

finitely generated R-modules of finite projective dimension.

Dually, the large restricted injective dimension of a left homologically bounded

complex Y is defined by RidR Y = sup{− inf(RHomR(T, Y )) ; T ∈ P0(R)}, where

P0(R) denotes the category of R-modules of finite projective dimension.

The small restricted injective dimension of a left homologically bounded complex Y

is ridR Y = sup{− inf(RHomR(T, Y )) ; T ∈ Pf
0 (R)}.

For right R-modules one has Rid(MR) = sup{m ∈ N ; ExtmR (T,M) 6= 0 for some

T ∈ P0(R)}; rid(NR) = sup{m ∈ N ; ExtmR (T,N) 6= 0 for some T ∈ Pf
0 (R)}.

In [8], Wei investigated the finitistic dimension in terms of the restricted flat

dimension. Inspired by this, we find that the restricted injective dimension is also

a useful tool to describe the finitistic dimension.

2. Preliminaries

In this paper, we fix R to be a ring and T ∈ R-Mod with the endomorphism ring A.

We denote by AddR T or addR T the class of modules isomorphic, respectively, to

direct summands of direct or finite direct sums of copies of RT . Further, ProdR T
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will denote the class of modules isomorphic to direct summands of direct products

of copies of RT .

Let C ⊆ R-Mod be a category and M ∈ R-Mod. We denote by C-dim(RM)

the minimal integer m such that there is an exact sequence 0 → M → T0 → . . . →

Tm → 0 with each Ti ∈ C and call it the C-dimension of RM . Note that for some RM

the C-dimension of RM may not exist. In the latter case, we denote C-dim(RM) = ∞.

The category of all modulesM ∈ R-Mod such that C-dim(RM) < ∞ is denoted by Ĉ.

We define Findim(RT ) to be the supremum of the AddR T -dimensions of all mod-

ules in R-Mod of finite AddR T -dimension. Similarly, findim(RT ) is denoted to be

the supremum of the addR T -dimensions of all modules in R-Mod of finite addR T -

dimension.

Recall that T ∈ R-Mod is selforthogonal if T ∈ KerExti>1
R (T,−), i.e., T belongs

to the category of all modules M such that ExtiR(T,M) = 0 for all i > 1.

Let A be a ring and T ∈ Mod-A. Then TA is said to be Gorenstein injective

provided there is an exact sequence of injective modules . . . → I1 → I0 → I−1 → . . .

such that T ∼= Im(I1 //I0) and such that HomA(J,−) leaves the sequence exact

whenever JA is an injective module. The Gorenstein injective dimension of TA is

denoted by Gid(TA). We denote by pd(RT ) and id(RT ), respectively, the projective

and injective dimension of the module RT .

Finally, we recall the definitions of tilting and cotilting modules.

Let R be a ring and T ∈ R-Mod. We say RT is tilting if (1) pd(RT ) < ∞,

(2) Exti>1
R (T, T (X)) = 0 for all sets X and (3) there is an exact sequence 0 → R →

T0 → . . . → Tn → 0 for some n with each Ti ∈ AddR T . And RT is classical tilting

if (1) pd(RT ) < ∞ and T ∈ R-mod, (2) Exti>1
R (T, T ) = 0 and (3) there is an exact

sequence 0 → R → T0 → . . . → Tn → 0 for some n with each Ti ∈ addR T .

Dually, we say RT is cotilting if (1) id(RT ) < ∞, (2) Exti>1
R (TX , T ) = 0 for all

sets X and there exists (3) an injective cogenerator E and a long exact sequence

0 → Tn → . . . → T0 → E → 0 for some n with each Ti ∈ ProdR T .

3. Finitistic dimension of endomorphism rings

First note that the following relations between finitistic dimensions and restricted

injective dimensions.

Lemma 3.1. Let A be a ring and TA ∈ Mod-A.

(1) Rid(TA) 6 Findim(AA).

(2) rid(TA) 6 findim(AA).
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P r o o f. We show that if Findim(AA) = n < ∞ or findim(AA) = n < ∞,

then Rid(TA) 6 n or rid(TA) 6 n, respectively. (1) It is sufficient to show that

Extn+1
A (M,T ) = 0 for anyMA with finite projective dimension. Since Findim(AA) =

n, we have pd(MA) 6 n. Hence Extn+1
A (M,T ) = 0. (2) Similarly. �

Lemma 3.2. If T is a selforthogonal left R-module with A = EndR T , then

(1) addR T -dim(RM) = pd(HomR(M,T )A) for any M ∈ âddR T ;

(2) findim(RT ) 6 pd(RT ).

P r o o f. (1) Suppose that addR T -dim(RM) = m. There is an exact sequence of

minimal length

0 // M
f0

// T 0
f1

// T 1 // . . .
fm

// Tm // 0

with T i ∈ addR T for each 0 6 i 6 m. By applying the functor HomR(−, T ) to the

above sequence, we have the exact sequence

0 // HomR(T
m, T )

HomR(fm,T )
// HomR(T

m−1, T ) // . . .

// HomR(T
0, T )

HomR(f0,T )
//// HomR(M,T ) // 0

as T is selforthogonal. Note that the above sequence is a projective resolution of the

A-module HomR(M,T ) and so pd(HomR(M,T )A) 6 m. If pd(HomR(M,T )A) < m,

then it is easy to see that CokerHomR(f
m, T ) is a projective A-module. Now by

applying the functor HomA(−, T ) to the exact sequence

0 // HomR(T
m, T )

HomR(fm,T )
// HomR(T

m−1, T ) // CokerHomR(f
m, T ) // 0

we obtain that Ker fm ∼= HomA(CokerHom(fm, T ), T ) ∈ addR T . This shows that

addR T -dim(RM) < m, a contradiction. Therefore,

addR T -dim(RM) = pd(HomR(M,T )A)

for any M ∈ âddR T .

(2) Let M ∈ âddR T . There is an exact sequence

0 // M
f0

// T 0
f1

// T 1 // . . .
fm

// Tm // 0

with T i ∈ addR T for each 0 6 i 6 m. Assume that pd(RT ) = s. If m 6 s,

then there is nothing to prove. So we suppose that m > s. Write Ki = Ker f i+1
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for each 0 6 i 6 m. Note that K0 = M and Km = Tm in this case. Since T is

selforthogonal, we have that ExtjR(Km, T i) = 0 for all j > 1 and 0 6 i 6 m. Note

that Ext1R(Km,Km−1) ∼= ExtmR (Km,K0) by dimension shifting. Since pd(RT ) = s

and m > s, we have Ext1R(Km,Km−1) = 0. Hence the sequence

0 // Km−1
// Tm−1 // Tm // 0

splits. It follows that findim(RT ) 6 pd(RT ). �

Lemma 3.3. Let R be a ring and RT ∈ R-Mod with A = EndR T . If RT is

selforthogonal, then for any Y ∈ mod-A with Exti>1
A (Y, T ) = 0 and pd(YA) < ∞,

one has Y ∼= HomR(HomA(Y, T ), T ) canonically and addR T -dim(HomA(Y, T )) < ∞.

P r o o f. Since Y ∈ mod-A and pd(YA) < ∞, we can take a finitely generated

projective resolution of YA,

0 // Pn
// . . . // P1

// P0
// Y // 0,

with each Pi finitely generated and projective. Note that YA ∈ KerExti>1
A (−, T ) and

KerExti>1
A (−, T ) is closed under kernels of epimorphisms. Therefore, we have the

following exact sequence by applying the functor HomA(−, T ):

0 // HomA(Y, T ) // HomA(P0, T ) // . . . // HomA(Pn, T ) // 0.

Note that HomA(Pi, T ) ∈ addR T for 0 6 i 6 n. As addR T -dim(HomA(Y, T )) < ∞.

Moreover, by applying the functor HomR(−, T ) to the above sequence, we obtain

the exact sequence

0 // HomR(HomA(Pn, T ), T ) // . . .

// HomR(HomA(P0, T ), T ) // HomR(HomA(Y, T ), T ) // 0

as T is selforthogonal and KerExti>1
R (−, T ) is closed under kernels of epimorphisms.

Since Pi is finitely generated and projective, we have that

HomR(HomA(Pi, T ), T ) ∼= Pi ⊗A HomR(T, T ) ∼= Pi

for each i. It follows that YA
∼= HomR(HomA(Y, T ), T ) canonically. �

Now we can prove one of our main results.
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Theorem 3.4. Let R be a ring and RT ∈ R-Mod with A = EndR T . If RT is

selforthogonal, then one has

rid(TA) 6 findim(AA) 6 findim(RT ) + rid(TA).

P r o o f. By Lemma 3.1, we have rid(TA) 6 findim(AA). If findim(RT ) or rid(TA)

is infinite, then we have nothing to prove. Now assume that findim(RT ) = m < ∞

and rid(TA) = n < ∞. We will show that findim(AA) 6 m+ n.

Let YA ∈ mod-A with pd(YA) < ∞. By taking a finitely generated projective

resolution of YA, we have the exact sequence

0 // Pr
// . . . // P0

// Y // 0,

where Pi is finitely generated and projective for each 0 6 i 6 r. Now we claim that

pd(Ωn(YA)) 6 m and so pd(YA) 6 n+m, where Ωn(YA) denotes the nth syzygy of

the A-module Y . Thus the conclusion will follow from the arbitrarity of the choice

of YA.

In fact, since rid(TA) = n, we have that Ωn(YA) ∈ KerExti>1
A (−, T ). It is easy to

see that pd(Ωn(YA)A) < ∞. By Lemma 3.3, we have that

Ωn(YA)A ∼= HomR(HomA(Ω
n(YA), T ), T )

canonically and addR T -dim(HomA(Ω
n(YA), T )) < ∞. It follows that

addR T -dim(HomA(Ω
n(YA), T )) 6 findim(RT ) = m.

Now by Lemma 3.2, we obtain that

pd(Ωn(YA)A) = pd(HomR(HomA(Ω
n(YA), T ), T )A) 6 m,

as desired. �

Corollary 3.5. Let R be a ring and RT ∈ R-Mod with A = EndR T . If RT is

selforthogonal, then rid(TA) 6 findim(AA) 6 pd(RT ) + rid(TA).

P r o o f. The result follows from Lemma 3.2 and Theorem 3.4. �

Corollary 3.6. Let R be a ring and RT ∈ R-Mod with A = EndR T . If RT is

selforthogonal with addR T closed under kernels of epimorphisms, then findim(AA) =

rid(TA).

P r o o f. It is easy to see that findim(RT ) = 0. Now the result follows from

Theorem 3.4. �
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Corollary 3.7. If A is an Artin algebra, then findim(AA) = rid(AA).

P r o o f. It is clear. �

Lemma 3.8. Let A be an Artin algebra. If fin.inj.dim(AA) < ∞, then there

exists a cotilting module T such that ⊥T = ⊥A-mod and id(AT ) = fin.inj.dim(AA).

P r o o f. See [4], Proposition 2.1. �

Proposition 3.9. Let R be an Artin algebra with fin.inj.dim(RR) < ∞. If

RT is a classical cotilting module with A = EndR T such that ⊥T = ⊥R-mod and

id(RT ) = fin.inj.dim(RR), then addR T is closed under kernels of epimorphisms. In

particular,

findim(AA) = rid(TA) 6 id(RT ) = fin.inj.dim(RR).

P r o o f. Let 0 //M //T0
//T1

//0 be an exact sequence with T0, T1 ∈ addR T .

Clearly, RM ∈ R-mod. By hypothesis, we have Ext1R(T,M) = 0 and so the above

exact sequence splits. Hence RM ∈ addR T , i.e., addR T is closed under kernels of epi-

morphisms. The remaining part follows from a dual argument of [8], Lemma 1.2 (2),

Corollary 3.6 and Lemma 3.8. �

Proposition 3.10. Let R be a ring and RT ∈ R-Mod with A = EndR T . If RT

is a selforthogonal module with finite injective dimension, then

rid(TA) 6 findim(AA) 6 Fin.inj.dim(RR) + rid(TA).

Moreover, if R is left noetherian and RT ∈ R-mod, then

rid(TA) 6 findim(AA) 6 fin.inj.dim(RR) + rid(TA).

P r o o f. It is sufficient to show that Fin.inj.dim(RR) > findim(RT ) by Theo-

rem 3.4. Assume that Fin.inj.dim(RR) = t < ∞. Let M ∈ âddR T . We have

an exact sequence

0 // M
f0

// T 0
f1

// T 1 // . . .
fm

// Tm // 0

with each T i ∈ addR T . Since id(RT ) < ∞, we have id(RM) < ∞ and so id(RM) 6 t.

It is easy to see that Exti>1
R (Ker f i, T ) = 0 as T is selforthogonal. If m > t, then by

the dimension shifting we have that

Ext1R(Ker f t+2,Ker f t+1) ∼= Extt+1
R (Ker f t+2,M) = 0.

It follows that Ker f t+1 ∈ addR T . Consequently, addR T -dim(RM) 6 t. Therefore,

findim(RT ) 6 Fin.inj.dim(RR). The last statement is clear. �
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Corollary 3.11. Let R be a ring and RT ∈ R-Mod with A = EndR T . If

RT is injective, then findim(AA) 6 Fin.inj.dim(RR) + rid(TA). Moreover, if R is

left noetherian and RT is finitely generated, then findim(AA) 6 fin.inj.dim(RR) +

rid(TA).

Note that the restricted injective dimensions may be strictly smaller than the

Gorenstein injective dimension as the following example shows.

Example 3.12. There exists a finite dimensional algebra A satisfying the follow-

ing statement: There is a right A-module TA such that

rid(TA) = Rid(TA) < Gid(TA) = id(TA) < ∞.

P r o o f. By [6], for any arbitrary finite numbers m and n, there is a finite

dimensional algebra A with findim(AA) = Findim(AA) = m and findim(AA) =

Findim(AA) = n. It is well known that findim(AA) = fin.inj.dim(AA) and

Findim(AA) = Fin.inj.dim(AA). Let us take m > 0 and n = 0. We have

rid(TA) = Rid(TA) = 0 by Lemma 3.1. Now we take TA ∈ mod-A with id(TA) = m.

By the remark after [2], Theorem 2.3, we have 0 = rid(TA) = Rid(TA) < Gid(TA) =

id(TA) < ∞. �

Recall that for an Artin algebra R, RT ∈ R-mod is classical cotilting if

(1) id(RT ) < ∞,

(2) Exti>1
R (T, T ) = 0 and

(3) there is an exact sequence 0 → Tn → . . . → T0 →R (DR) → 0 for some n with

each Ti ∈ addR T , where D is the usual duality in Artin algebras.

Proposition 3.13. Let R, A be Artin algebras and T ∈ R-mod with A = EndR T .

If RT is classical tilting and classical cotilting, then

max{findim(RR)− pd(RT ), pdR T } 6 findim(AA) 6 pd(RT ) + id(RT ).

P r o o f. Since rid(TA) 6 id(TA) = id(RT ), the second inequality above follows

from Corollary 3.5. Now consider the classical tilting and cotilting module A(DT )R.

By Proposition 3.10, we have the inequalities

findim(RR) 6 fin.inj.dim(AA) + rid((DT )R) 6 fin.inj.dim(AA) + id((DT )R)

= findim(AA) + id((DT )R).

It follows that findim(RR) − id((DT )R) 6 findim(AA). Note that id((DT )R) =

pd(RT ) and so findim(RR)− pd(RT ) 6 findim(AA). In addition,

findim(AA) = fin.inj.dim(AA) > id(A(DT )) = id((DT )R) = pd(RT ).

Thus the first inequality holds. �
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