Czechoslovak Mathematical Journal

Jian-Ping Fang
Generalizations of Milne's $U(n+1) q$-Chu-Vandermonde summation

Czechoslovak Mathematical Journal, Vol. 66 (2016), No. 2, 395-407

Persistent URL: http://dml.cz/dmlcz/145731

Terms of use:

© Institute of Mathematics AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

GENERALIZATIONS OF MILNE'S $U(n+1)$ q-CHU-VANDERMONDE SUMMATION

Jian-Ping Fang, Huai'an

(Received March 28, 2015)

Abstract. We derive two identities for multiple basic hyper-geometric series associated with the unitary $U(n+1)$ group. In order to get the two identities, we first present two known q-exponential operator identities which were established in our earlier paper. From the two identities and combining them with the two $U(n+1) q$-Chu-Vandermonde summations established by Milne, we arrive at our results. Using the identities obtained in this paper, we give two interesting identities involving binomial coefficients. In addition, we also derive two nontrivial summation equations from the two multiple extensions.

Keywords: $U(n+1)$ group; multiple basic hypergeometric series; basic hypergeometric series

MSC 2010: 33D80, 33D70, 33C80, 11B65, 15A09

1. Introduction and main results

The importance of the q-analogue of the basic hypergeometric series in $U(n)$ was first discussed by Andrews in [1]. Since the multiple basic hypergeometric series associated with the unitary $U(n+1)$ group was systematically studied by Milne [16], it has been studied by many researchers, who have produced much literature about it. For instance, the authors ([2], [6], [11], [12], [13], [15], [17], [18], [22], [21]) made a systematic study on it. Wang [23] applied the q-Beta integral transformation to obtain several generalizations of Milne's $U(n+1) q$-binomial theorems. Zhang [24] gave

[^0]several $U(n+1)$ generalizations of the Kalnins-Miller transformations by applying q-exponential operators which were constructed by Rogers [19], [20], and developed by Carlitz [4], Chen and Liu [5], Liu [14] and Bowman [3]. Mainly inspired by [15], [23], [24], we will focus on the generalizations of the following Milne's $U(n+1) q$ -Chu-Vandermonde formulas which were presented as Theorem 5.12 and Theorem 5.36 (cf. [15]):

Let b, c and x_{1}, \ldots, x_{n} be indeterminate, and let N_{i} be nonnegative integers for $i=1,2, \ldots, n ; e_{2}\left(y_{1}, \ldots, y_{n}\right)$ is the second elementary symmetric function of $\left\{y_{1}, \ldots, y_{n}\right\}$, and we suppose that none of the denominators vanishes:

$$
\begin{align*}
\prod_{i=1}^{n} \frac{\left(\frac{x_{i}}{x_{n}} \frac{c}{b} ; q\right)_{N_{i}}}{\left(\frac{x_{i}}{x_{n}} c ; q\right)_{N_{i}}}= & \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}}\right. \tag{1}\\
& \times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}}\right)^{y_{i}}\left(\frac{c q^{\mathscr{N}_{n}}}{b}\right)^{\mathcal{Y}_{n}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \\
& \left.\times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c ; q\right)_{y_{i}}^{-1}(b ; q)_{\mathcal{Y}_{n}} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)}\right\}
\end{align*}
$$

and

$$
\begin{align*}
\prod_{i=1}^{n}\left(\frac{x_{n}}{x_{i}} \frac{c q^{N_{n}-N_{i}}}{b} ; q\right)_{N_{i}}= & \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}}\right. \tag{2}\\
& \times \prod_{i=1}^{n}\left(\frac{x_{n}}{x_{i}}\right)^{y_{i}}\left(\frac{c q^{\mathcal{N}_{n}}}{b}\right)^{\mathcal{Y}_{n}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \\
& \times \prod_{i=1}^{n} \frac{\left(\frac{x_{n}}{x_{i}} c q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{N_{i}}}{\left(\frac{x_{n}}{x_{i}} c q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{y_{i}}} \\
& \left.\times(b ; q) \mathcal{Y}_{n} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}+e_{2}\left(y_{1}, \ldots, y_{n}\right)}\right\}
\end{align*}
$$

We adopt the notation used in [10]. Throughout the paper unless otherwise stated we assume that $0<|q|<1$. For any complex parameter a, the q-shifted factorials are defined as
(3) $\quad(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad n=1,2, \ldots, \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)$.

For brevity, we also use the notation
(4) $\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \ldots\left(a_{m} ; q\right)_{n}, \quad \mathscr{N}_{n}=\sum_{i=1}^{n} N_{i}, \mathcal{Y}_{n}=\sum_{i=1}^{n} y_{i}$.

The q-binomial coefficient is defined as

$$
\left[\begin{array}{l}
n \tag{5}\\
k
\end{array}\right]=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} .
$$

The q-differential operator D_{q} and the q-shifted operator η, acting on the variable a, are defined as (cf. [5], [6], [7], [8], [9], [14], [19], [20], [24])

$$
\begin{equation*}
D_{q}\{f(a)\}=\frac{f(a)-f(a q)}{a} \quad \text { and } \quad \eta\{f(a)\}=f(a q) \tag{6}
\end{equation*}
$$

The basic hypergeometric series ${ }_{s} \Phi_{t}$ is given as

$$
{ }_{s} \Phi_{t}\left(\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{s} \tag{7}\\
b_{1}, b_{2}, \ldots, b_{t}
\end{array} ; q, x\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{s} ; q\right)_{k}}{\left(q, b_{1}, \ldots, b_{t} ; q\right)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+t-s} x^{k}
$$

where $s, t=0,1,2, \ldots$ The main results of this paper are stated as follows:
Theorem 1.1. Let b, c, d, e, x, y and $x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{2 t}$ be indeterminate, let N_{i} be nonnegative integers for $i=1,2, \ldots, n$ with $n \geqslant 1$, and suppose that none of the denominators in (8) vanishes. For $|e|<\min \{|x|,|y|\},\left|a_{2 j}\right|<1, j=1,2, \ldots, t$, $e_{2}\left(y_{1}, \ldots, y_{n}\right)$ being the second elementary symmetric function of $\left\{y_{1}, \ldots, y_{n}\right\}$, we have
(8) $\sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\ i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{y_{i}}^{-1}\right.$

$$
\begin{aligned}
& \times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}}\right)^{y_{i}}\left(q^{\mathscr{N}_{n}}\right)^{\mathcal{Y}_{n}} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)} \\
& \left.\times \frac{\left(\frac{x}{b}, \frac{x}{d}, \frac{x}{a_{1}}, \ldots, \frac{x}{a_{2 t-1}} ; q\right)_{\mathcal{Y}_{n}}}{\left(\frac{x}{e}, \frac{x}{a_{2}}, \frac{x}{a_{4}}, \ldots, \frac{x}{a_{22}} ; q\right)_{\mathcal{Y}_{n}}}\left(\frac{c b d a_{1} a_{3} \ldots a_{2 t-1}}{e a_{2} a_{4} \ldots a_{2 t}}\right)^{\mathcal{Y}_{n}}\right\} \\
= & \prod_{i=1}^{n} \frac{\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{N_{i}}}{\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{N_{i}}} \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}}\right. \\
& \times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{y_{i}}^{-1}\left(c b q^{\mathcal{N}_{n}}\right)^{\mathcal{Y}_{n}} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)}\left(\frac{y}{b} ; q\right)_{\mathcal{Y}_{n}} \\
& \times \sum_{0 \leqslant j \leqslant \mathcal{Y}_{n}} \frac{\left(q^{-\mathcal{Y}_{n}}, \frac{x}{b}, \frac{d}{e} ; q\right)_{j} q^{j}}{\left.\left(q, \frac{x}{e}, \frac{y}{b} ; q\right)_{j} \sum_{0 \leqslant j_{t} \leqslant \ldots \leqslant j_{0}} \prod_{i=1}^{t} \frac{\left(q^{-j_{i-1}}, \frac{a_{2 i-1}}{a_{2 i}}, \frac{x}{a_{2 i-3}} ; q\right)_{j_{i}} q^{j_{i}}}{\left(q, \frac{x}{a_{2 i}}, \frac{q^{1-j_{i-1} a_{2 i-2}}}{a_{2 i-3}} ; q\right)_{j_{i}}}\right\},}
\end{aligned}
$$

where $a_{-1}=d, a_{0}=e, j_{0}=j$, and t is a nonnegative integer.

Theorem 1.2. Let b, c, d, e, x, y and $x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{2 t}$ be indeterminate, let N_{i} be nonnegative integers for $i=1,2, \ldots, n$ with $n \geqslant 1$, and suppose that none of the denominators in (9) vanishes. For $|e|<\min \{|x|,|y|\},\left|a_{2 j}\right|<1, j=1,2, \ldots, t$, $e_{2}\left(y_{1}, \ldots, y_{n}\right)$ being the second elementary symmetric function of $\left\{y_{1}, \ldots, y_{n}\right\}$, we have

$$
\begin{align*}
& \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{i=1}^{n}\left(\frac{x_{n}}{x_{i}}\right)^{y_{i}}\left(q^{N_{n}}\right)^{\mathcal{Y}_{n}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}}\right. \tag{9}\\
& \times \prod_{i=1}^{n} \frac{\left(\frac{x_{n}}{x_{i}} c x q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{N_{i}}}{\left(\frac{x_{n}}{x_{i}} c x q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{y_{i}}} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}+e_{2}\left(y_{1}, \ldots, y_{n}\right)} \\
& \left.\times \frac{\left(\frac{x}{b}, \frac{x}{d}, \frac{x}{a_{1}}, \ldots, \frac{x}{a_{2 t-1}} ; q\right)_{\mathcal{Y}_{n}}}{\left(\frac{x}{e}, \frac{x}{a_{2}}, \frac{x}{a_{4}}, \ldots, \frac{x}{a_{2 t}} ; q\right)_{\mathcal{Y}_{n}}}\left(\frac{c b a_{1} a_{3} \ldots a_{2 t-1}}{e a_{2} a_{4} \ldots a_{2 t}}\right)^{\mathcal{Y}_{n}}\right\} \\
= & \sum_{i=1, y_{i} \leqslant N_{i}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{i=1}^{n}\left(\frac{x_{n}}{x_{i}}\right)^{y_{i}}\left(b c q^{N_{n}}\right)^{\mathcal{Y}_{n}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}-N_{s}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}}\right. \\
& \times \prod_{i=1}^{n} \frac{\left(\frac{x_{n}}{x_{i}} c y q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{N_{i}}^{\left.\frac{x}{n}^{x_{i}} c y q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{y_{i}}} q_{2}+\ldots y_{3}+\ldots+(n-1) y_{n}+e_{2}\left(y_{1}, \ldots, y_{n}\right)}{}\left(\frac{y}{b} ; q\right)_{\mathcal{Y}_{n}} \\
& \left.\sum_{0 \leqslant j \mathcal{Y}_{n}} \frac{\left(q^{-\mathcal{Y}_{n}}, \frac{x}{b}, \frac{d}{e} ; q\right)_{j} q^{j}}{\left(q, \frac{x}{e}, \frac{y}{b} ; q\right)_{j}} \sum_{0 \leqslant j_{t} \leqslant \ldots \leqslant j_{0}=j} \prod_{i=1}^{t} \frac{\left(q^{-j_{i-1}}, \frac{a_{2 i-1}}{a_{2 i}}, \frac{x}{a_{2 i-3}} ; q\right)_{j_{i}}^{j_{i}}}{\left(q, \frac{x}{a_{2 i}}, \frac{q^{1-j_{i-1} a_{2 i-2}}}{a_{2 i-3}} ; q\right)_{j_{i}}}\right\},
\end{align*}
$$

where $a_{-1}=d, a_{0}=e$, and t is a nonnegative integer.
Remark. Throughout the paper, convergence of the series is no issue at all because they are terminating series.

2. Lemmas and proofs

In this section, we will apply the q-exponential operator

$$
W(b ; c \theta):={ }_{1} \Phi_{0}\left(\begin{array}{c}
b \tag{10}\\
-
\end{array} q,-c \theta\right)=\sum_{n=0}^{\infty} \frac{(b ; q)_{n}(-c \theta)^{n}}{(q ; q)_{n}}
$$

which is constructed by us (cf. [7], [8], [9]) to obtain the results. For convenience, we will use $W(b ; c \theta)_{a}$ to denote the operator (10) acting on the variable a in this paper.

In order to complete our proof, we need to use the following known identity which was established in our earlier papers [8], [9]:

Lemma 2.1 ([9], Theorem 1.1 or [8], Lemma 2.1). If $|c s t / \omega|<1, s / \omega=q^{-n}$, and n is a nonnegative integer, then

$$
W(b ; c \theta)_{a}\left\{\frac{(a s, a t ; q)_{\infty}}{(a \omega ; q)_{\infty}}\right\}=\frac{(a s, a t, b c t ; q)_{\infty}}{(a \omega, c t ; q)_{\infty}} \Phi_{2}\left(\begin{array}{c}
b, \frac{s}{\omega}, \frac{q}{a t} \tag{11}\\
\frac{q}{c t}, \frac{q}{a \omega}
\end{array} q, q\right) .
$$

Taking $n=0$ in the above lemma, then replacing s by t, we have
Lemma 2.2. If $|c s|<1$, then

$$
\begin{equation*}
W(b ; c \theta)_{a}\left\{(a s ; q)_{\infty}\right\}=\frac{(a s, b c s ; q)_{\infty}}{(c s ; q)_{\infty}} \tag{12}
\end{equation*}
$$

Proof. We will start our proof by the following steps.
Proof of Theorem 1.1. Replacing (b, c) by $(b x, c x)$ and $(b y, c y)$ in (1), then comparing the two identities obtained, we get

$$
\begin{align*}
& \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{y_{i}}^{-1}\right. \tag{13}\\
&\left.\times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}}\right)^{y_{i}}\left(\frac{c q^{\mathscr{N}_{n}}}{b}\right)^{\mathcal{Y}_{n}}(b x ; q)_{y_{n}} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)}\right\} \\
&= \prod_{i=1}^{n} \frac{\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{N_{i}}}{\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{N_{i}}} \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}}\right. \\
& \times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{y_{i}}^{-1} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}}\right)^{y_{i}}\left(\frac{c q^{\mathcal{N}_{n}}}{b}\right)^{\mathcal{Y}_{n}} \\
&\left.\times(b y ; q) \mathcal{y}_{n} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)}\right\}
\end{align*}
$$

Letting $b \rightarrow 1 / b$, we rewrite (13) as

$$
\begin{align*}
& \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}}\right. \tag{14}\\
& \times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{y_{i}}^{-1} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}}\right)^{y_{i}} \\
&\left.\left.\times\left(-c x q^{\mathcal{N}_{n}}\right)^{\mathcal{Y}_{n}} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)} q^{\left(y_{n}\right.}{ }^{\left(y_{n}\right.}\right)\left(q^{1-\mathcal{Y}_{n}} \frac{b}{x} ; q\right)_{\infty}\right\}
\end{align*}
$$

$$
\begin{aligned}
= & \prod_{i=1}^{n} \frac{\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{N_{i}}}{\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{N_{i}}} \sum_{0 \leqslant y_{i} \leqslant N_{i}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}}\right. \\
& \times \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{y_{i}}^{-1}\left(-c y q^{\mathscr{N}_{n}}\right)^{y_{n}} \\
& \left.\times q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)} q^{\left(y_{n}\right)} \frac{\left(q^{1-\mathcal{Y}_{n}} \frac{b}{y}, q \frac{b}{x} ; q\right)_{\infty}}{\left(q \frac{b}{y} ; q\right)_{\infty}}\right\} .
\end{aligned}
$$

Applying the operator $W(d ; e \theta)_{b}$ to both sides of (14) and using (11) and (12), we have
(15) $\sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\ i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}}\right.$

$$
\begin{aligned}
& \times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{y_{i}}^{-1} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}}\right)^{y_{i}} \\
&\left.\times\left(c b d q^{\mathscr{N}_{n}}\right)^{\mathcal{Y}_{n}} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)} \frac{\left(\frac{x}{b}, \frac{x}{d e} ; q\right)_{\mathcal{Y}_{n}}}{\left(\frac{x}{e} ; q\right)_{\mathcal{Y}_{n}}}\right\} \\
&=\prod_{i=1}^{n} \frac{\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{N_{i}}}{\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{N_{i}}} \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}}\right. \\
& \times \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}^{n}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{y_{i}}^{-1}\left(c b q^{\mathscr{N}_{n}}\right)^{\mathcal{Y}_{n}} \\
& \times q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)}\left(\frac{y}{b} ; q\right)_{\mathcal{Y}_{n}}{ }^{3} \Phi_{2}\left(\begin{array}{r}
\left.\left.q^{-\mathcal{Y}_{n}}, \begin{array}{l}
d, \frac{x}{b} \\
\frac{y}{b}, \frac{x}{e}
\end{array} ; q, q\right)\right\} .
\end{array}\right.
\end{aligned}
$$

Letting $d \rightarrow d / e$, we rewrite (15) as

$$
\begin{align*}
& \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{y_{i}}^{-1}\right. \tag{16}\\
& \times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}}\right)^{y_{i}}\left(\frac{c b q^{\mathcal{S}_{n}}}{e}\right)^{\mathcal{Y}_{n}} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)} \\
&\left.\times \frac{(-1)^{\mathcal{Y}_{n}}\left(\frac{x}{b} ; q\right)_{\mathcal{Y}_{n}}}{\left(\frac{x}{e} ; q\right)_{\mathcal{Y}_{n}}} q^{-\left(\frac{y_{n}}{2}\right)}\left(\frac{d q^{1-\mathcal{Y}_{n}}}{x} ; q\right)_{\infty}\right\} \\
&= \prod_{i=1}^{n} \frac{\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{N_{i}}}{\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{N_{i}}} \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}}\right.
\end{align*}
$$

$$
\begin{aligned}
& \times \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{y_{i}}^{-1} \\
& \times\left(c b q^{\mathscr{N}_{n}}\right)^{\mathcal{Y}_{n}} q^{y_{2}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)} \\
& \left.\times\left(\frac{y}{b} ; q\right)_{\mathcal{Y}_{n}} \sum_{0 \leqslant j \leqslant \mathcal{Y}_{n}} \frac{\left(q^{-\mathcal{Y}_{n}}, \frac{x}{b} ; q\right)_{j} q^{j}}{\left(q, \frac{x}{e}, \frac{y}{b} ; q\right)_{j}} \frac{\left(\frac{d q}{e}, \frac{d q}{x} ; q\right)_{\infty}}{\left(\frac{d q}{e} ; q\right)_{\infty}}\right\} .
\end{aligned}
$$

Applying the operator $W\left(a_{1} ; a_{2} \theta\right)_{d}$ to both sides of (16), applying (11) and (12), then letting $a_{1} \rightarrow a_{1} / a_{2}$, we have

$$
\begin{align*}
\sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}} & \left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}}\right. \tag{17}\\
& \times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{y_{i}}^{-1} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}}\right)^{y_{i}}\left(\frac{c b d a_{1} q^{\mathscr{N}_{n}}}{e a_{2}}\right)^{\mathcal{Y}_{n}} \\
& \left.\times q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)} \frac{\left(\frac{x}{b} ; q\right)_{\mathcal{Y}_{n}}}{\left(\frac{x}{e} ; q\right)_{\mathcal{Y}_{n}}} \frac{\left(\frac{x}{d}, \frac{x}{a_{1}} ; q\right)_{\mathcal{Y}_{n}}}{\left(\frac{x}{a_{2}}\right)_{\mathcal{Y}_{n}}}\right\} \\
= & \prod_{i=1}^{n} \frac{\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{N_{i}}}{\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{N_{i}}} \sum_{0 \leqslant y_{i} \leqslant N_{i}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left.\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}}\right. \\
& \times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{y_{i}}^{-1}\left(c b q^{\mathcal{N}_{n}}\right)^{\mathcal{Y}_{n}} q^{y_{2}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)}\left(\frac{y}{b} ; q\right)_{\mathcal{Y}_{n}} \\
& \left.\times \sum_{0 \leqslant j \leqslant \mathcal{Y}_{n}} \frac{\left(q^{-\mathcal{Y}_{n}}, \frac{x}{b}, \frac{d}{e} ; q\right)_{j} q^{j}}{\left(q, \frac{x}{e}, \frac{y}{b} ; q\right)_{j}}{ }_{3} \Phi_{2}\left(\begin{array}{r}
q^{-j}, \frac{a_{1}}{a_{2}}, \quad \frac{x}{d} \\
a_{2}
\end{array}, \frac{e}{d} q^{1-j} ; q, q\right)\right\} .
\end{align*}
$$

The equation (8) follows by induction.
Proof of Theorem 1.2. Replacing (b, c) by $(b x, c x)$ and $(b y, c y)$ in (2), then comparing the two identities, we get

$$
\begin{align*}
& \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{i=1}^{n}\left(\frac{x_{n}}{x_{i}}\right)^{y_{i}}\left(\frac{c q^{N_{n}}}{b}\right)^{\mathcal{Y}_{n}}\right. \tag{18}\\
& \times \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \prod_{i=1}^{n} \frac{\left(\frac{x_{n}}{x_{i}} c x q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{N_{i}}}{\left(\frac{x_{n}}{x_{i}} c x q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{y_{i}}} \\
&\left.\times(b x ; q) \mathcal{Y}_{n} q^{y_{1}+2 y_{2}+\ldots+(n-1) y_{n}+e_{2}\left(y_{1}, \ldots, y_{n}\right)}\right\}
\end{align*}
$$

$$
\begin{aligned}
= & \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{i=1}^{n}\left(\frac{x_{n}}{x_{i}}\right)^{y_{i}}\left(\frac{c q^{N_{n}}}{b}\right)^{\mathcal{Y}_{n}}\right. \\
& \times \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \prod_{i=1}^{n} \frac{\left(\frac{x_{n}}{x_{i}} c y q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{N_{i}}}{\left(\frac{x_{n}}{x_{i}} c y q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{y_{i}}} \\
& \left.\times(b y ; q)_{\mathcal{Y}_{n}} q^{y_{1}+2 y_{2}+\ldots+(n-1) y_{n}+e_{2}\left(y_{1}, \ldots, y_{n}\right)}\right\} .
\end{aligned}
$$

Then similarly to the proof of Theorem 1.1, we complete the proof.
Remark 2.1. Setting $b \rightarrow 1 / b$, and letting $d=e=a_{1}=\ldots=a_{2 t}=0$, then setting $x=1, y=1 / b$ in (8) and (9) we come back to Milne's formulas (1) and (2), respectively.

3. Some special cases

Setting $t=0$, replacing (b, d, e) by $(1 / b, 1 / d, 1 / e)$, then letting $e=b d y$ in (8), we get

Corollary 3.1 ([24], Theorem 3.4). Let b, c, d, x, y and x_{1}, \ldots, x_{n} be indeterminate, let N_{i} be nonnegative integers for $i=1,2, \ldots, n$ with $n \geqslant 1$, and suppose that none of the denominators in (19) vanishes. For $e_{2}\left(y_{1}, \ldots, y_{n}\right)$, the second elementary symmetric function of $\left\{y_{1}, \ldots, y_{n}\right\}$, we have

$$
\begin{align*}
& \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}}\right. \tag{19}\\
& \times \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{y_{i}}^{-1} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}}\right)^{y_{i}}\left(c y q^{\mathscr{N}_{n}}\right)^{y_{n}} \\
&\left.\times q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)} \frac{(b x, d x ; q)_{\mathcal{Y}_{n}}}{(b d x y ; q)_{y_{n}}}\right\} \\
&= \prod_{i=1}^{n} \frac{\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{N_{i}}}{\left(\frac{x_{i}}{x_{n}} c x ; q\right)_{N_{i}}} \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}}\right. \\
& \times \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}^{n}} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{y_{i}}^{-1}\left(c x q^{\mathscr{N}_{n}}\right)^{\mathcal{Y}_{n}} \\
&\left.\times q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)} \frac{(b y, d y ; q)_{y_{n}}}{(b d x y ; q)_{\mathcal{Y}_{n}}}\right\} .
\end{align*}
$$

Setting $t=0$, replacing (b, d, e) by $(1 / b, 1 / d, 1 / e)$, then letting $e=b d y$ in (9), we find

Corollary 3.2 ([24], Theorem 3.16). Let b, c, d, x, y and x_{1}, \ldots, x_{n} be indeterminate, let N_{i} be nonnegative integers for $i=1,2, \ldots, n$ with $n \geqslant 1$, and suppose that none of the denominators in (20) vanishes. For $e_{2}\left(y_{1}, \ldots, y_{n}\right)$, the second elementarily symmetric function of $\left\{y_{1}, \ldots, y_{n}\right\}$, we have

$$
\begin{align*}
& \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\
i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{i=1}^{n}\left(\frac{x_{n}}{x_{i}}\right)^{y_{i}}\left(c y q^{N_{n}}\right)^{\mathcal{Y}_{n}}\right. \tag{20}\\
& \times \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \prod_{i=1}^{n} \frac{\left(\frac{x_{n}}{x_{i}} c x q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{N_{i}}}{\left(\frac{x_{n}}{x_{i}} c x q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{y_{i}}} \\
&\left.\times q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}+e_{2}\left(y_{1}, \ldots, y_{n}\right)} \frac{(b x, d x ; q)_{\mathcal{Y}_{n}}}{(b d x y ; q)_{\mathcal{Y}_{n}}}\right\} \\
&= \sum_{0 \leqslant y_{i} \leqslant N_{i}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{i=1}^{n}\left(\frac{x_{n}}{x_{i}}\right)^{y_{i}}\left(c x q^{N_{n}}\right)^{\mathcal{Y}_{n}}\right. \\
& \times \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}} \prod_{i=1}^{n} \frac{\left(\frac{x_{n}}{x_{i}} c y q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{N_{i}}}{\left(\frac{x_{n}}{x_{i}} c y q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{y_{i}}} \\
&\left.\times q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}+e_{2}\left(y_{1}, \ldots, y_{n}\right)} \frac{(b y, d y ; q)_{\mathcal{Y}_{n}}}{(b d x y ; q) \mathcal{Y}_{n}}\right\} .
\end{align*}
$$

Remark 3.1. Obviously Corollary 3.1 is a limit case of the transformation of Theorem 3.1 in [6] and Corollary 3.2 is a limit case of Theorem 3.13 in [2].

Letting $n=1$ in (8) or (9) and then replacing $\left(b, d, e, a_{i}\right)$ by $\left(1 / b, 1 / d, 1 / e, 1 / a_{i}\right)$, $i=1,2, \ldots, 2 t$, we have

Corollary 3.3. If $|e|<\min \{|x|,|y|\},\left|a_{2 j}\right|<1, j=1,2, \ldots, t$, and t is a nonnegative integer, then

$$
\begin{align*}
&{ }_{t+3} \Phi_{t+2}\left(\begin{array}{r}
q^{-N_{1}}, \\
\\
\\
c x, d x, a_{1} x, \ldots, a_{2 t-1} x
\end{array} ; q, \frac{c e a_{2} \ldots a_{2 t} q^{N_{1}}}{b d a_{1} \ldots a_{2 t-1}}\right) \tag{21}\\
&= \frac{(c y ; q)_{N_{1}}}{(c x ; q)_{N_{1}}} \sum_{y_{1}=0}^{N_{1}} \frac{\left(q^{-N_{1}}, b y ; q\right)_{y_{1}}}{(q, c y ; q)_{y_{1}}}\left(\frac{c q^{N_{1}}}{b}\right)^{y_{1}} \sum_{j=0}^{y_{1}} \frac{\left(q^{-y_{1}}, \frac{e}{d}, b x ; q\right)_{j}}{(q, e x, b y ; q)_{j}} q^{j} \\
& \quad \times \sum_{0 \leqslant j_{t} \leqslant \ldots \leqslant j_{1} \leqslant j_{0}=j} \prod_{i=1}^{t} \frac{\left(q^{-j_{i-1}}, \frac{a_{2 i}}{a_{2 i-1}}, a_{2 i-3} x ; q\right)_{j_{i}}}{\left(q, \frac{a_{2 i-3}}{a_{2 i-2}} q^{1-j_{i-1}}, a_{2 i} x ; q\right)_{j_{i}}^{j_{i}}}
\end{align*}
$$

where $d=a_{-1}, e=a_{0}$.

Letting $c x=e x=a_{2} x=\ldots=a_{2 t} x, a_{2 i} / a_{2 i-1}=q, x=y, a_{-3}=b, a_{-2}=c$, $i=-1,0,1, \ldots, t$ in (21), we find

Corollary 3.4. If $|c x|<1, t$ is a nonnegative integer, then

$$
\begin{align*}
& \sum_{k=0}^{N_{1}} {\left[\begin{array}{c}
N_{1} \\
k
\end{array}\right] \frac{(1-b x)^{t+2}}{\left(1-b x q^{k}\right)^{t+2}}(-1)^{k} q^{\binom{k}{2}+k(t+2)} } \tag{22}\\
&= \sum_{y_{1}=0}^{N_{1}}\left[\begin{array}{c}
N_{1} \\
y
\end{array}\right] \frac{1-b x}{1-b x q^{y_{1}}}(-1)^{y_{1}} q^{\binom{y_{1}}{2}+y_{1}} \\
& \quad \times \sum_{j=0}^{y_{1}}\left[\begin{array}{c}
y_{1} \\
j
\end{array}\right] \frac{(q ; q)_{j}}{(b x q ; q)_{j}}(-1)^{j} q^{\binom{j}{2}-y_{1} j+j} \sum_{0 \leqslant j_{t} \leqslant \ldots \leqslant j_{1} \leqslant j_{0}=j} \prod_{i=1}^{t} \frac{1-b x}{1-b x q^{j_{i}}} q^{j_{i}} .
\end{align*}
$$

Setting $b x=q$ in the above identity, then letting $q \rightarrow 1$, we have

Corollary 3.5. If t is a nonnegative integer, then
(23) $\sum_{k=0}^{N_{1}} \frac{\binom{N_{1}}{k}(-1)^{k}}{(k+1)^{t+2}}=\sum_{y_{1}=0}^{N_{1}} \frac{\binom{N_{1}}{y_{1}}(-1)^{y_{1}}}{y_{1}+1} \sum_{j=0}^{y_{1}} \frac{\binom{y_{1}}{j}(-1)^{j}}{j+1} \sum_{0 \leqslant j_{t} \leqslant \ldots \leqslant j_{1} \leqslant j_{0}=j} \prod_{i=1}^{t} \frac{1}{j_{i}+1}$.

Letting $c x=e x=a_{2} x=\ldots=a_{2 t} x, a_{2 i} / a_{2 i-1}=q, q x=y$ in (21), we get

Corollary 3.6. If $|c x|<1, t$ is a nonnegative integer, then

$$
\begin{align*}
\sum_{k=0}^{N_{1}}\left[\begin{array}{c}
N_{1} \\
k
\end{array}\right] & \frac{(1-b x)^{t+2}}{\left(1-b x q^{k}\right)^{t+2}}(-1)^{k} q^{\binom{k}{2}+k(t+2)} \tag{24}\\
= & \frac{1-b x q^{N_{1}+1}}{(1-b x q)} \sum_{y_{1}=0}^{N_{1}}\left[\begin{array}{c}
N_{1} \\
y
\end{array}\right]_{1} \frac{(1-b x q)(-1)^{y_{1}}}{1-b x q^{y_{1}+1}} \\
& \times q^{\binom{y_{1}}{2}+y_{1}} \sum_{j=0}^{y_{1}}\left[\begin{array}{c}
y_{1} \\
j
\end{array}\right] \frac{\left.(q ; q)_{j}(1-b x)(-1)^{j} q^{(j)} 2\right)+j-y_{1} j}{(b x q ; q)_{j}\left(1-b x q^{j}\right)} \\
& \quad \times \sum_{0 \leqslant j_{t} \leqslant \ldots \leqslant j_{1} \leqslant j_{0}=j} \prod_{i=1}^{t} \frac{1-b x}{1-b x q^{j_{i}}} q^{j_{i}} .
\end{align*}
$$

Setting $b x=q$ in the above identity, then letting $q \rightarrow 1$, we have

Corollary 3.7. If t is a nonnegative integer, then

$$
\begin{align*}
& \frac{1}{N_{1}+2} \sum_{k=0}^{N_{1}} \frac{\binom{N_{1}}{k}(-1)^{k}}{(k+1)^{t+2}} \tag{25}\\
& \quad=\sum_{y_{1}=0}^{N_{1}} \frac{\binom{N_{1}}{y_{1}}(-1)^{y_{1}}}{y_{1}+2} \sum_{j=0}^{y_{1}} \frac{\binom{y_{1}}{j}(-1)^{j}}{(j+1)^{2}} \sum_{0 \leqslant j_{t} \leqslant \ldots \leqslant j_{1} \leqslant j_{0}=j} \prod_{i=1}^{t} \frac{1}{j_{i}+1} .
\end{align*}
$$

Setting $x \rightarrow a_{2 t-1}$ in (8), we get

Corollary 3.8. Let b, c, d, e, y and $x_{1}, \ldots, x_{n}, a_{1}, a_{2}, \ldots, a_{2 t}$ be indeterminate, let N_{i} be nonnegative integers for $i=1,2, \ldots, n$ with $n \geqslant 1$, and suppose that none of the denominators in (26) vanishes. For $|e|<\min \{|x|,|y|\},\left|a_{2 j}\right|<1, j=1,2, \ldots, t$, $e_{2}\left(y_{1}, \ldots, y_{n}\right)$ being the second elementary symmetric function of $\left\{y_{1}, \ldots, y_{n}\right\}$, we have
(26) $1=\prod_{i=1}^{n} \frac{\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{N_{i}}}{\left(\frac{x_{i}}{x_{n}} c a_{2 t-1} ; q\right)_{N_{i}}} \sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\ i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s} q^{y_{r}}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left.\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}}\right.$

$$
\times\left(c b q^{\mathscr{N}_{n}}\right)^{\mathcal{Y}_{n}} \prod_{i=1}^{n}\left(\frac{x_{i}}{x_{n}} c y ; q\right)_{y_{i}}^{-1} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}-e_{2}\left(y_{1}, \ldots, y_{n}\right)}\left(\frac{y}{b} ; q\right)_{\mathcal{Y}_{n}}
$$

$$
\times \sum_{0 \leqslant j \leqslant \mathcal{Y}_{n}} \frac{\left(q^{-\mathcal{Y}_{n}}, \frac{a_{2 t-1}}{b}, \frac{d}{e} ; q\right)_{j} q^{j}}{\left(q, \frac{a_{2 t-1}}{e}, \frac{y}{b} ; q\right)_{j}}
$$

$$
\left.\times \sum_{0 \leqslant j_{t} \leqslant \ldots \leqslant j_{0}} \prod_{i=1}^{t} \frac{\left(q^{-j_{i-1}}, \frac{a_{2 i-1}}{a_{2 i}}, \frac{a_{2 t-1}}{a_{2 i-3}} ; q\right)_{j_{i}} q^{j_{i}}}{\left(q, \frac{a_{2 t-1}}{a_{2 i}}, \frac{a_{2 i-2}}{a_{2 i-3}} q^{1-j_{i-1}} ; q\right)_{j_{i}}}\right\},
$$

where $a_{-1}=d, a_{0}=e, j_{0}=j$, and t is a nonnegative integer.
Setting $x \rightarrow a_{2 t-1}$ in (9), we find

Corollary 3.9. Let b, c, d, e, y and $x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{2 t}$ be indeterminate, let N_{i} be nonnegative integers for $i=1,2, \ldots, n$ with $n \geqslant 1$, and suppose that none of the denominators in (27) vanishes. For $|e|<\min \{|x|,|y|\},\left|a_{2 j}\right|<1, j=1,2, \ldots, t$, $e_{2}\left(y_{1}, \ldots, y_{n}\right)$ being the second elementary symmetric function of $\left\{y_{1}, \ldots, y_{n}\right\}$, we
have
(27) $\prod_{i=1}^{n}\left(\frac{x_{n}}{x_{i}} c a_{2 t-1} q^{N_{n}-N_{i}} ; q\right)_{N_{i}}$

$$
=\sum_{\substack{0 \leqslant y_{i} \leqslant N_{i} \\ i=1,2, \ldots, n}}\left\{\prod_{1 \leqslant r<s \leqslant n} \frac{1-\frac{x_{r}}{x_{s}} q^{y_{r}-y_{s}}}{1-\frac{x_{r}}{x_{s}}} \prod_{i=1}^{n}\left(\frac{x_{n}}{x_{i}}\right)^{y_{i}}\left(b c q^{N_{n}}\right)^{y_{n}} \prod_{r, s=1}^{n} \frac{\left(\frac{x_{r}}{x_{s}} q^{-N_{s}} ; q\right)_{y_{r}}}{\left(\frac{x_{r}}{x_{s}} q ; q\right)_{y_{r}}}\right.
$$

$$
\times \prod_{i=1}^{n} \frac{\left(\frac{x_{n}}{x_{i}} c y q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{N_{i}}}{\left(\frac{x_{n}}{x_{i}} c y q^{N_{n}-N_{i}} q^{\mathcal{Y}_{n}-y_{i}} ; q\right)_{y_{i}}} q^{y_{2}+2 y_{3}+\ldots+(n-1) y_{n}+e_{2}\left(y_{1}, \ldots, y_{n}\right)}\left(\frac{y}{b} ; q\right)_{\mathcal{Y}_{n}}
$$

$$
\times \sum_{0 \leqslant j \leqslant \mathcal{Y}_{n}} \frac{\left(q^{-\mathcal{Y}_{n}}, \frac{a_{2 t-1}}{b}, \frac{d}{e} ; q\right)_{j} q^{j}}{\left(q, \frac{a_{2 t-1}}{e}, \frac{y}{b} ; q\right)_{j}}
$$

$$
\left.\times \sum_{0 \leqslant j_{t} \leqslant \ldots \leqslant j_{0}=j} \prod_{i=1}^{t} \frac{\left(q^{-j_{i-1}}, \frac{a_{2 i-1}}{a_{2 i}}, \frac{a_{2 t-1}}{a_{2 i-3}} ; q\right)_{j_{i}} q^{j_{i}}}{\left(q, \frac{a_{2 t-1}}{a_{2 i}}, \frac{a_{2 i-2}}{a_{2 i-3}} q^{1-j_{i-1}} ; q\right)_{j_{i}}}\right\} .
$$

Acknowledgement. I would like to thank the referees and editors for their many valuable comments and suggestions.

References

[1] G.E. Andrews: Problems and prospects for basic hypergeometric functions. Theory and Application of Special Functions (R. Askey, ed.). Academic Press, New York, 1975, pp. 191-224.
[2] G. Bhatnagar, M. Schlosser: C_{n} and D_{n} very-well-poised ${ }_{10} \varphi_{9}$ transformations. Constr. Approx. 14 (1998), 531-567.
[3] D. Bowman: q-difference operators, orthogonal polynomials, and symmetric expansions. Mem. Am. Math. Soc. 159 (2002), 56 pages.
[4] L. Carlitz: Generating functions for certain q-orthogonal polynomials. Collect. Math. 23 (1972), 91-104.
[5] W. Y. C. Chen, Z.-G. Liu: Parameter augmentation for basic hypergeometric series. II. J. Combin. Theory Ser. A 80 (1997), 175-195.
[6] R.Y.Denis, R.A.Gustafson: An $S U(n) q$-beta integral transformation and multiple hypergeometric series identities. SIAM J. Math. Anal. 23 (1992), 552-561.
[7] J.-P. Fang: Some applications of q-differential operator. J. Korean Math. Soc. 47 (2010), 223-233.
[8] J.-P. Fang: Extensions of q-Chu-Vandermonde's identity. J. Math. Anal. Appl. 339 (2008), 845-852.
[9] J.-P. Fang: q-differential operator identities and applications. J. Math. Anal. Appl. 332 (2007), 1393-1407.
[10] G. Gasper, M. Rahman: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge, 2004.
[11] R.A. Gustafson: Some q-beta and Mellin-Barnes integrals with many parameters associated to the classical groups. SIAM J. Math. Anal. 23 (1992), 525-551.
[12] R. A. Gustafson: Multilateral summation theorems for ordinary and basic hypergeometric series in $U(n)$. SIAM J. Math. Anal. 18 (1987), 1576-1596.
[13] R.A. Gustafson, C. Krattenthaler: Heine transformations for a new kind of basic hypergeometric series in $U(n)$. J. Comput. Appl. Math. 68 (1996), 151-158.
[14] Z.-G. Liu: Some operator identities and q-series transformation formulas. Discrete Math. 265 (2003), 119-139.
[15] S. C. Milne: Balanced ${ }_{3} \Phi_{2}$ summation theorems for $U(n)$ basic hypergeometric series. Adv. Math. 131 (1997), 93-187.
[16] S. C. Milne: A new symmetry related to $S U(n)$ for classical basic hypergeometric series. Adv. Math. 57 (1985), 71-90.
[17] S. C. Milne: An elementary proof of the Macdonald identities for $A_{l}^{(1)}$. Adv. Math. 57 (1985), 34-70.
[18] S. C. Milne, J. W. Newcomb: $U(n)$ very-well-poised ${ }_{10} \Phi_{9}$ transformations. J. Comput. Appl. Math. 68 (1996), 239-285.
[19] L. J. Rogers: On the expansion of some infinite products. Lond. M. S. Proc. 25 (1894), 318-343.
[20] L. J. Rogers: On the expansion of some infinite products. Lond. M. S. Proc. 24 (1893), 337-352.
[21] M. Schlosser: Summation theorems for multidimensional basic hypergeometric series by determinant evaluations. Discrete Math. 210 (2000), 151-169.
[22] M. Schlosser: Some new applications of matrix inversions in A_{r}. Ramanujan J. 3 (1999), 405-461.
[23] M. Wang: Generalizations of Milne's $U(n+1) q$-binomial theorems. Comput. Math. Appl. 58 (2009), 80-87.
[24] Z. Zhang: Operator identities and several $U(n+1)$ generalizations of the Kalnins-Miller transformations. J. Math. Anal. Appl. 324 (2006), 1152-1167.

Author's address: Jian-Ping Fang, School of Mathematical Sciences, Huaiyin Normal University, 111 Changjiang W Rd, Huai'an, Jiangsu 223300, P. R. China, e-mail: fjp7402@163.com, fjp7402@sina.com.

[^0]: The author is supported by National Natural Sci. Foundation of China (No. 11471138). The author is also supported by Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-Aged Teachers and Presidents, Universities Natural Science Foundation of Jiangsu (No. 14KJB110002) and SRF for ROCS, SEM. The author is also partly supported by Universities Natural Science Foundation of Jiangsu (No. 15KJB110002).

