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A weighted inequality for the

Hardy operator involving suprema

Pavla Hofmanová

Abstract. Let u be a weight on (0,∞). Assume that u is continuous on (0,∞).
Let the operator Su be given at measurable non-negative function ϕ on (0,∞)
by

Suϕ(t) = sup
0<τ≤t

u(τ)ϕ(τ).

We characterize weights v, w on (0,∞) for which there exists a positive constant
C such that the inequality

(∫ ∞

0

[Suϕ(t)]qw(t) dt

) 1
q

.

(∫ ∞

0

[ϕ(t)]pv(t) dt

) 1
p

holds for every 0 < p, q < ∞. Such inequalities have been used in the study of
optimal Sobolev embeddings and boundedness of certain operators on classical
Lorenz spaces.

Keywords: Hardy operators involving suprema; weighted inequalities

Classification: 47G10, 26D15

1. Introduction

In [1], it was characterized when the Hardy–Littlewood maximal operator M is
bounded on the so-called classical Lorentz spaces. We recall that the operator M

is defined at every f ∈ L1
loc(R

n) by

(Mf)(x) = sup
Q∋x

|Q|−1

∫

Q

|f(y)| dy, x ∈ R
n,

where the supremum is taken over all cubes Q ⊂ R
n with sides parallel to the

coordinate axes and |E| denotes the n-dimensional Lebesgue measure of E ⊂ R
n.

To prove this result, two ingredients have been used. First of them was the well-
known two-sided estimate for the non-increasing rearrangement of Mf in terms of
the maximal non-increasing rearrangement. This result is due to Riesz, Wiener,
Stein and Herz (cf. [2, Chapter 3, Theorem 3.8]). Second key ingredient was the
characterization of the boundedness of the Hardy averaging operator

Af(t) :=
1

t

∫ t

0

f(s) ds
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on the cone of non-increasing functions in a weighted Lebesgue space. An analo-
gous problem was later in [4] considered for the fractional maximal operator . This
operator, denoted by Mγ , where γ ∈ (0, n), is defined at f ∈ L1

loc(R
n) by

Mγf(x) = sup
Q∋x

|Q|
γ
n
−1

∫

Q

|f(y)| dy, x ∈ R
n,

where the supremum is taken over all cubes Q ⊂ R
n with sides parallel to the

coordinate axes. It turned out that in order to handle the fractional maximal
operator one needs to characterize a weighted inequality involving a substantially
different operator than the Hardy’s average integral operator. Namely, the ope-
rator Rγ was employed, which is defined at a measurable and positive on (0,∞)
function g by

Rγg(t) = sup
t≤s<∞

s
γ
n
−1g(s), t ∈ (0,∞).

The operator Rγ is a typical example of what we may call a Hardy-type operator

involving suprema. In [10], a more general (weighted) version of such operator
was studied. We recall that by a weight we shall throughout understand a positive
measurable function on (0,∞). For a weight u, the operator Ru was defined in [10]
at each non-negative measurable function g by

Rug(t) = sup
t≤s<∞

u(s)g(s), t ∈ (0,∞).

An analogous, in a certain sense, dual operator, denoted by Su and defined by

Sug(t) = sup
0<s≤t

u(s)g(s), t ∈ (0,∞),

has been recently proved useful in various applications. These cover, for example,
the search for optimal pairs of rearrangement-invariant norms for which a Sobolev-
type inequality holds either in the Euclidean space (see e.g. [11], [12]) or in the
product probability spaces of which the Gaussian space is a key example ([5], [6]).
They further constitute a useful tool for characterization of the associate norm of
an operator-induced norm, which naturally appears as an optimal domain norm in
a Sobolev embedding ([13]). Supremum operators are also very useful in limiting
interpolation theory as can be seen from their appearance for example in [8], [9],
[7] or [14].

Although both the operators Ru and Su are of interest, a comprehensive study
was so far devoted only to the operator Ru. In this paper we characterize
a weighted inequality for the operator Su, restricted to the cone of non-increasing
functions. The method of the proof is in some sense similar to that used in [10]
but the characterizing conditions are different in nature and the technical steps
of the proof had to be modified in a corresponding way.
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Let 0 < p, q < ∞ and let u be a continuous weight. Our principal goal is to
give a characterization of weights v and w such that inequality

(1.1)

(∫ ∞

0

[Suϕ(t)]qw(t) dt

)
1
q

.

(∫ ∞

0

[ϕ(t)]pv(t) dt

)
1
p

holds for all non-negative and non-increasing functions ϕ on (0,∞). It will be
useful to observe that, for every non-negative function ϕ, the function Suϕ is
non-decreasing on (0,∞).

We treat the cases p ≤ q and p > q separately since the techniques we use in
their proofs are quite different.

As usual, here and below, by A . B we mean that A ≤ CB, where C is a
positive constant independent of appropriate quantities involved in the expressions
A and B.

2. Main results

Theorem 1. Let 0 < p ≤ q < ∞ and let u be a continuous weight. Let v

and w be weights such that 0 <
∫ x

0
v(t) dt < ∞ and 0 <

∫∞

x
w(t) dt < ∞ for

every x ∈ (0,∞). Then inequality (1.1) is satisfied for all non-negative and non-

increasing functions ϕ on (0,∞) if and only if

(2.1) sup
a∈(0,∞)

(∫ a

0 (ū(t))qw(t) dt
)

1
q + ū(a)

(∫∞

a
w(t) dt

)
1
q

(∫ a

0
v(t) dt

)
1
p

< +∞,

where ū(t) = sup0<τ≤t u(τ).

Proof: Sufficiency. We distinguish several cases. First, let
∫∞

0
w(t) dt = ∞ and

∫∞

0 v(t) dt = ∞. We define sequences {xk}k∈Z and {y′
s}s∈Z by

(2.2)

∫ ∞

xk

w(t) dt = 2−k and

∫ y′

s

0

v(t) dt = 2s.

Then we have

(2.3) (0,∞) =
⋃

k∈Z

[xk, xk+1) =
⋃

s∈Z

[y′
s, y

′
s+1).

Consequently, using (2.3), the definition of the operator Su, its monotonicity
and (2.2), we get

∫ ∞

0

[Suϕ(t)]qw(t) dt =
∑

k∈Z

∫ xk+1

xk

[Suϕ(t)]qw(t) dt

=
∑

k∈Z

∫ xk+1

xk

[ sup
0<τ≤t

u(τ)ϕ(τ)]qw(t) dt
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≤
∑

k∈Z

sup
0<τ≤xk+1

[u(τ)ϕ(τ)]q
∫ xk+1

xk

w(t) dt

≤
∑

k∈Z

2−k−1 sup
−∞<i≤k

sup
xi<τ≤xi+1

[u(τ)ϕ(τ)]q .

Using a simple upper estimate of a supremum by a corresponding sum, (2.2)
and (2.3) again, and interchanging the sums, we obtain

∫ ∞

0

[Suϕ(t)]qw(t) dt ≤
∑

k∈Z

2−k−1
k
∑

i=−∞

sup
xi<τ≤xi+1

[u(τ)ϕ(τ)]q

=
∑

i∈Z

sup
xi<τ≤xi+1

[u(τ)ϕ(τ)]q
∞
∑

k=i

2−k−1

=
∑

i∈Z

2−i sup
xi<τ≤xi+1

[u(τ)ϕ(τ)]q

=
∑

i∈Z

∫ ∞

xi

w(t) dt sup
xi<τ≤xi+1

[u(τ)ϕ(τ)]q

.
∑

i∈Z

∫ xi+2

xi+1

w(t) dt sup
xi<τ≤xi+1

[u(τ)ϕ(τ)]q .

Now, given i ∈ Z, let us find points zi ∈ [xi, xi+1] such that

(2.4) sup
xi<τ≤xi+1

[u(τ)ϕ(τ)]q ≤ 2[u(zi)ϕ(zi)]
q.

Thus, [xi+1, xi+2] ⊆ [zi, zi+2] and

∫ ∞

0

[Suϕ(t)]qw(t) dt .
∑

i∈Z

(∫ zi+2

zi

w(t) dt

)

[u(zi)ϕ(zi)]
q.

For a technical reason we divide the sum in two parts, write

∑

k∈Z

(∫ z2k+2

z2k

w(t) dt

)

[u(z2k)ϕ(z2k)]q =: Seven,

∑

k∈Z

(

∫ z2k+3

z2k+1

w(t) dt

)

[u(z2k+1)ϕ(z2k+1)]
q =: Sodd.

We shall estimate Seven. First, we reduce the sequence {y′
s}. Fix k ∈ Z. If

the interval [z2k, z2k+2) contains more than one element of the sequence {y′
s},

we delete from this sequence all such elements except the one which lies nearest
to z2k. Thus, every interval [z2k, z2k+2), k ∈ Z, now contains at most one element
of the reduced sequence, which we denote by {yn}n∈Z. More formally, we denote
Yk = {s ∈ Z; y′

s ∈ [z2k, z2k+2)}, k ∈ Z, further J = {k ∈ Z; Yk 6= 0}, θk =
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min{y′
s; s ∈ Yk}, k ∈ J , and finally Y = {θk}k∈Jy. Then Y is a subsequence of

{y′
s}, which we enumerate as {yn}n∈Z. Clearly, yn < yn+1 for all n ∈ Z and this

sequence is a covering sequence having the following properties: Suppose that for
some n, k, s ∈ Z we have

(2.5) yn < z2k ≤ yn+1 = y′
s.

Then one can easily check that

yn−1 ≤ y′
s−2,(2.6)

y′
s−1 < z2k,(2.7)

yn−1 < z2k−2.(2.8)

By (2.6) and (2.7), for all n, k, s ∈ Z satisfying (2.5),

∫ yn+1

0

v(t) dt = 4

∫ y′

s−1

y′

s−2

v(t) dt ≤ 4

∫ z2k

yn−1

v(t) dt.

We need to estimate ϕp(z2k) and to use this estimate in inequality for Seven. So,
since the function ϕ is non-increasing, we have

(2.9) ϕp(z2k) =

∫ z2k

yn−1
v(t) dt

∫ z2k

yn−1
v(t) dt

ϕp(z2k) ≤

(

∫ z2k

yn−1

v(t) dt

)−1
∫ z2k

yn−1

ϕp(t)v(t) dt.

Hence

(2.10) ϕq(z2k) .

(∫ yn+1

0

v(t) dt

)−
q
p

(

∫ yn+1

yn−1

ϕp(t)v(t) dt

)
q
p

.

Let us still write

uq(x) ≤

(

sup
0<τ≤t

u(τ)

)q

= [ū(t)]q for all t ≥ x.

Denote An = {k ∈ Z; yn < z2k ≤ yn+1}, n ∈ Z. Then

Seven =
∑

n∈Z

∑

k∈An

∫ z2k+2

z2k

w(t) dt [u(z2k)ϕ(z2k)]q.

Fix n ∈ Z and define numbers ln1 = min{k; k ∈ An} and ln2 = max{k; k ∈ An}.
Thanks to (2.4), the definition of ln1 and ln2 and the fact that ϕ is non-increasing,
we get

∑

k∈An

∫ z2k+2

z2k

w(t) dt [u(z2k)ϕ(z2k)]q
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≤

(

∫ yn+1

z2ln
1

(ū(t))qw(t) dt + [ū(yn+1)]
q

∫ z2ln
2

+2

yn+1

w(t) dt

)

[ϕ(z2ln
1
)]q.

Thus by (2.5) and (2.10),

∑

k∈An

∫ z2k+2

z2k

w(t) dt [u(z2k)ϕ(z2k)]q

≤

(

∫ yn+1

0

(ū(t))qw(t) dt + (ū(yn+1))
q

∫ ∞

yn+1

w(t) dt

)

[ϕ(z2ln
1
)]q

.
∑

n∈Z

(

∫ yn+1

0

(ū(t))qw(t) dt + (ū(yn+1))
q

∫ ∞

yn+1

w(t) dt

)

×

(∫ yn+1

0

v(t) dt

)−
q
p

(

∫ yn+1

yn−1

ϕp(t)v(t) dt

)
q
p

.
∑

n∈Z

(

∫ yn+1

yn−1

ϕp(t)v(t) dt

)
q
p

,

where in the last inequality we use the condition (2.1). Since p ≤ q, we can use

the convexity of the function x
q
p and we have

Seven .
∑

n∈Z

(

∫ yn+1

yn−1

ϕp(t)v(t) dt

)
q
p

.

(

∑

n∈Z

∫ yn+1

yn−1

ϕp(t)v(t) dt

)
q
p

.

(∫ ∞

0

ϕp(t)v(t) dt

)
q
p

.

In order to estimate Sodd, we define a possibly different sequence {yn}n∈Z.
Again, we reduce the sequence y′

n in the same way, but this time in intervals
[z2k+1, z2k+3). Now, it is clear that we can estimate Sodd in the same way as
Seven was estimated. The main reason for the division into sums Seven and Sodd

is to guarantee that the sets An are non-empty.
If
∫∞

0 w(t) dt < ∞, then we can without loss of generality assume that
∫∞

0 w(t)dt

= 1 and work instead of the sequence {xk}k∈Z only with the reduced sequence
{xk}

∞
k=0. In the case when moreover

∫∞

0
v(t) dt < ∞, then we replace the sequence

{yn}n∈Z by a reduced sequence {yn}
N
n=−∞ with an appropriate N ∈ Z.

This completes the proof of the sufficiency part.



A weighted inequality for the Hardy operator involving suprema 323

Necessity. We first observe that

Suχ(0,a](t) = ū(t)χ(0,a](t) + ū(a)χ(a,∞)(t).

Now, testing the inequality (1.1) with functions ϕ(t) = χ(0,a](t), a ∈ (0,∞), we
get exactly the inequality (2.1). �

Our next aim is to handle the case when 0 < q < p < ∞. We shall need the
following special case of [10, Theorem 4.4].

Theorem 2. Let U be a continuous weight and let V and W be weights such

that 0 <
∫ x

0
V (t) dt < ∞ and 0 <

∫ x

0
W (t) dt < ∞ for every x ∈ (0,∞). Let

0 < Q < 1 and let R be defined by

1

R
=

1

Q
− 1.

Then the inequality

(

∫ ∞

0

(

sup
t≤s<∞

U(s)

s

∫ s

0

g(y) dy

)Q

W (t) dt

)
1
Q

.

∫ ∞

0

g(t)V (t) dt

holds for every non-negative measurable function g if and only if







∫ ∞

0





∫ ∞

t

(

Ũ(s)

s

)Q

W (s) ds





R
(

Ũ(t)

t

)Q
[

ess sup
a<t<b

1

V (t)

]R

W (t) dt







1
R

< ∞

and





∫ ∞

0

(∫ t

0

W (s) ds

)R
[

sup
t≤τ<∞

Ũ(τ)

τ
ess sup
a<t<b

1

V (t)

]R

W (t) dt





1
R

< ∞,

where

Ũ(t) = t sup
t≤τ<∞

U(τ)

τ
, t ∈ (0,∞).

Theorem 3. Let 0 < q < p < ∞ and let u be a continuous weight. Let v

and w be weights such that 0 <
∫ x

0 v(t) dt < ∞ and 0 <
∫∞

x
w(t) dt < ∞ for

every x ∈ (0,∞). Then inequality (1.1) is satisfied for all non-negative and non-

increasing functions ϕ on (0,∞) if and only if the following two conditions are



324 Hofmanová P.

satisfied:

(2.11)

∫ ∞

0

(∫ t

0

sup
0<τ≤s

u(τ)
q
p w(s) ds

)

q
q−p

sup
0<y≤t

u(y)
q
p

× w(t)

(∫ t

0

v(s) ds

)−
q

p−q

dt < ∞

and

(2.12)

∫ ∞

0

(∫ ∞

t

w(y) dy

)
q

p−q

(

sup
0<τ≤t

sup0<z≤τ u(z)
∫ τ

0
v(y) dy

)
q

p−q

w(t) dt < ∞.

Proof: Changing variables (y = 1
t
) on both sides of the inequality (1.1), we get

(

∫ ∞

0

(

sup
0<τ≤ 1

y

u(τ)ϕ(τ)

)q

w( 1
y
)
dy

y2

)
1
q

.

(∫ ∞

0

ϕp( 1
y
)v( 1

y
)
dy

y2

)
1
p

.

On denoting z = 1
τ
, we arrive at the inequality

(

∫ ∞

0

(

sup
0< 1

z
≤ 1

y

u(1
z
)ϕ(1

z
)

)q

w( 1
y
)
dy

y2

)
1
q

.

(∫ ∞

0

ϕp( 1
y
)v( 1

y
)
dy

y2

)
1
p

for every non-increasing positive function ϕ. Noting that 0 < 1
z
≤ 1

y
is equivalent

to y ≤ z < ∞, we actually have

(∫ ∞

0

(

sup
y≤z<∞

u(1
z
)ϕ(1

z
)

)q

w( 1
y
)
dy

y2

)
1
q

.

(∫ ∞

0

ϕp( 1
y
)v( 1

y
)
dy

y2

)
1
p

.

By a simple re-scaling, this is equivalent to

(

∫ ∞

0

(

sup
y≤z<∞

up(1
z
)ϕp(1

z
)

)
q
p

w( 1
y
)
dy

y2

)
p
q

.

∫ ∞

0

ϕp( 1
y
)v( 1

y
)
dy

y2
.

Since ϕ is a non-increasing positive function, the function z 7→ ϕp(1
z
) is positive

and non-decreasing on (0,∞) in the variable z. By a standard approximation
argument based on the Monotone Convergence Theorem (see, e.g., [3]), one can
equivalently reduce the last inequality to the same one but restricted only to
functions of the form

ϕp(1
z
) =

∫ z

0

h(s) ds.
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We thus get

(

∫ ∞

0

(

sup
y≤z<∞

up(1
z
)

∫ z

0

h(s) ds

)
q
p

w( 1
y
)
dy

y2

)
p
q

.

∫ ∞

0

∫ t

0

h(s)ds v(1
t
)
dt

t2

for every measurable non-negative function h on (0,∞). By the Fubini theorem,
this is nothing else than

(

∫ ∞

0

(

sup
y≤z<∞

up(1
z
)

∫ z

0

h(s) ds

)
q
p

w( 1
y
)
dy

y2

)
p
q

.

∫ ∞

0

h(s)

∫ ∞

s

v(1
t
)
dt

t2
ds,

that is,

(

∫ ∞

0

(

sup
y≤z<∞

up(1
z
)

∫ z

0

h(s) ds

)
q
p

w( 1
y
)
dy

y2

)
p
q

.

∫ ∞

0

h(s)

∫ 1
s

0

v(y) dy ds.

Theorem 2 applied to parameters

Q = q
p
, U(z) = zup(1

z
), W (y) = w( 1

y
)y−2, V (s) =

∫ 1
s

0

v(y) dy

now shows that the latter inequality holds if and only if the conditions (2.11)
and (2.12) are satisfied. The proof is complete. �
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[9] Evans W.D., Opic B., Real interpolation with logarithmic functors and reiteration, Canad.
J. Math. 52 (2000), 920–960.

[10] Gogatishvili A., Opic B., Pick L., Weighted inequalities for Hardy-type operators involving

suprema, Collect. Math. 57 (2006), no. 3, 227–255.
[11] Kerman R., Pick L., Optimal Sobolev imbeddings, Forum Math. 18 (2006), no. 4, 535–570.
[12] Kerman R., Pick L., Optimal Sobolev imbedding spaces, Studia Math. 192 (2009), no. 3,

195–217.
[13] Pick L., Supremum operators and optimal Sobolev inequalities, Function Spaces, Differ-

ential Operators and Nonlinear Analysis, Vol. 4, Proceedings of the Spring School held
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