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Abstract. The nullity of a graph G is the multiplicity of zero as an eigenvalue in the
spectrum of its adjacency matrix. From the interlacing theorem, derived from Cauchy’s
inequalities for matrices, a vertex of a graph can be a core vertex if, on deleting the vertex,
the nullity decreases, or a Fiedler vertex, otherwise. We adopt a graph theoretical approach
to determine conditions required for the identification of a pair of prescribed types of root
vertices of two graphs to form a cut-vertex of unique type in the coalescence. Moreover, the
nullity of subgraphs obtained by perturbations of the coalescence G is determined relative
to the nullity of G. This has direct applications in spectral graph theory as well as in the
construction of certain ipso-connected nano-molecular insulators.
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1. Introduction

The adjacency matrix A(G) = (aij) of a labelled simple graph G on n vertices

is the n × n matrix whose entry aij is 1 if the vertices i and j are adjacent and 0

otherwise. The subgraph of a graph G formed from a subset S of the vertices of

G and all the edges connecting pairs of vertices of S in G is a subgraph induced

by S in G. The graph G − v denotes the subgraph of G obtained by deleting the

vertex v (and all the edges incident to it). If G1 is an induced subgraph of G, G−G1

is obtained from G by deleting all the vertices of G. The graph G + v is obtained

from G by adding a vertex v adjacent to a nonempty subset of vertices, which is

a prescribed set of neighbours of v in G.

Two nonadjacent vertices i and j of a graph G are identified (or coalesced) when

these two vertices are replaced by a single vertex incident to all the edges which are
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incident in G to either i or j. A graph has a root vertex v if one of its vertices, v, is

distinguished. LetH1 andH2 be two graphs with root vertices v1 and v2, respectively.

The coalescence H1 ◦H2 of the component graphs H1 and H2 is a connected graph

G obtained by identifying v1 with v2 to form the coalescence vertex v in G. We note

that the coalescence vertex v is a cut-vertex of G. The coalescence G of s (> 2)

component graphs is obtained by identifying a root vertex of each of the s component

graphs to obtain a connected graph.

If I is the n×n identity matrix, the characteristic polynomial of a graph G, denoted

by ϕ(G), is the characteristic polynomial det(λI−A) of the n×n adjacency matrix

A(= A(G)). It is independent of the labelling of the vertices of G. The eigenvalues

of the graph are the eigenvalues of A and they form the spectrum of G. Since A

is a real symmetric matrix, its eigenvalues are real numbers and the dimension of

each eigenspace is equal to the algebraic multiplicity of the respective eigenvalue,

that is, the number of times the eigenvalue is repeated as a root of the characteristic

equation ϕ(G) = 0.

A graph is singular if its adjacency matrix A is not invertible and nonsingular

otherwise. The multiplicity of zero as an eigenvalue in the spectrum of the graph G

is called the nullity, denoted by η(G). The nullspace is the eigenspace associated

with the eigenvalue 0. An eigenvector x (6= 0) in the nullspace of A is called a kernel

eigenvector of G and satisfies Ax = 0.

We shall have occasion to use a consequence of Cauchy’s Interlacing theorem for

real symmetric matrices and Schwenk’s Coalescence theorem, stated hereunder as

Theorem 1.1 and Theorem 1.2, respectively.

Theorem 1.1 ([13], page 119). Let u be any vertex of a graphG on n > 2 vertices.

Then

η(G) − 1 6 η(G− u) 6 η(G) + 1.

Theorem 1.2 ([15]). Let H1 = G1 + v1 and H2 = G2 + v2 be two graphs with

root vertices v1 and v2, respectively. The characteristic polynomial of the coalescence

H1 ◦H2 is given by

ϕ(H1 ◦H2) = ϕ(H1)ϕ(G2) + ϕ(G1)ϕ(H2)− λϕ(G1)ϕ(G2).

According to Theorem 1.1, when a vertex is deleted or added to a graph G, the

nullity changes by at most one. We distinguish between a vertex corresponding to

a zero entry in each of the kernel eigenvectors and a vertex corresponding to a nonzero

entry in some kernel eigenvector.
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Definition 1.3 ( [18], [19]). Let x be a kernel eigenvector of a singular graph G,

of order n > 3. A subgraph ofG induced by the vertices corresponding to the nonzero

entries of x is a core with respect to x.

Definition 1.4 ([12], [17], [18]). The set of core vertices of G consists of those

vertices that lie in some core of G. A vertex not lying in any core is said to be

a Fiedler vertex.

Note that the set of core vertices is an invariant of G in [18]. Fiedler vertices are

also referred to as core-forbidden vertices. The following result characterises a core

vertex in a singular graph.

Proposition 1.5 ([16]). A vertex u is a core vertex in a graph G+ u if and only

if η(G+ u) = η(G) + 1.

There are three types of vertices, depending on the change in the multiplicity of

an eigenvalue allowed by the Interlacing theorem. In [11], [23], a vertex is referred

to as downer, neutral or Parter when its deletion decreases, does not change or in-

creases the multiplicity of an eigenvalue, respectively. For the eigenvalue zero, Fiedler

vertices and Parter vertices are sometimes referred to as F-vertices and P-vertices,

respectively, see [1]. Following [6], [12], we call a vertex u a core vertex (CV), a mid-

dle core-forbidden vertex (CFVmid) or an upper core-forbidden vertex (CFVupp) if

the nullity of G− u is η(G)− 1, η(G), or η(G) + 1, respectively.

In this paper we investigate the nullity of a coalescence and derive some concise

formulae. There are areas of graph theory that could benefit directly from the study

of the change in nullity on deleting a cut-vertex. The graphs with a cut-vertex form

a subclass of the class of forbidden subgraphs of Hamiltonian graphs. The line graphs

of a trees can be viewed as the iterative coalescence of complete graphs. The results

we obtain here enable the nullity of such graphs to be deduced by determining the

types of vertices being identified. Coronas and windmills are also subclasses of graphs

with a cut-vertex [8], [20].

A further motivation is the interpretation of the electron energy given by

Schrödinger’s equation in the quantum theory of molecules [10] and its relation

to the nullity of a molecular graph. Collatz and Sinogowitz posed the problem of

characterizing all graphs with nonzero nullity (that is, the class of singular graphs),

see [3]. Most of the work in this regard was done in [18], [19], where certain sub-

graphs that force a graph to be singular were identified. However, the problem is

hard and research is still ongoing.

In chemical graph theory, a molecular graph, which is a π-system of carbon atoms,

is a labelled graph whose vertices correspond to the atoms of the compound and

whose edges correspond to chemical sigma bonds. The recent flurry of research on the
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conductivity of carbon nano molecules used as components in circuits has spurred the

development of the theory to understand the factors that cause a molecule to allow

or bar the flow of electricity. For a molecule in a circuit with two leads connected

to the same atom (referred to as an ipso connection), the concept of the change in

nullity when the connecting vertex is deleted from the underlying graph proved to

be crucial to predicting the conductivity or insulation of the molecule [5], [14], [21].

From Theorem 4.5 of [5], our results in this paper predict that a molecule with ipso

connection at a cut-vertex is an insulator if it is constructed from component graphs

of which at least one has a root vertex which is CFVupp.

Brown et al. [2] proved that a graph G is singular if, and only if, G possesses

a nontrivial zero-sum weighting (which is equivalent to the existence of a kernel

eigenvector) and asked what causes a graph to be singular. Gutman and Sciriha [9]

introduced nut graphs as the graphs of nullity one having a kernel eigenvector with all

its entries being nonzero. In [18], [19], Sciriha determined properties of substructures

responsible for a graph to be singular, establishing that in a graph of nullity η,

there are η induced subgraphs (termed singular configurations) of nullity one from

a prescribed list. In [22], Sharaf and Ali proceeded to determine a sharp lower

bound and a sharp upper bound for the nullity of the coalescence of two graphs.

They showed that the nullity of the coalescence of s component graphs varies by at

most s− 1 from the sum of the nullities of the component graphs. Other results on

the nullity of a graph with a cut-vertex are given in [7].

The rest of this paper is structured as follows. In Sections 2 and 3, we start

from the component graphs with a root vertex of prescribed type and determine the

type of the coalescence vertex as well as the nullity of the coalescence. The inverse

problem is then studied in Section 4. Starting from a given type of a cut-vertex

in the coalescence, we determine the possible types of vertices in the component

graphs. The subgraphs of G that we consider in the sequel are R = G − v, Ui =

(Gi + vi) ∪ (R − Gi), G − Gi, Wi = (Gi + vi) ∪ (G −Gi), Si = Gi ∪ (G − Gi) and

Y =
s
⋃

j=1

(Gj + vj) shown in Figure 1 for the case when i = 1.

2. Determining the type of the coalescence vertex

In this section we determine the type of the coalescence vertex starting from the

type of the root vertex in one or more of the component graphs. We show that

the type of a vertex vi (that is, CV, CFVmid or CFVupp) in Hi = Gi + vi, for

i ∈ {1, 2, . . . , s}, determines the possible type of the cut-vertex v in G or of u in W1

or in S1. Furthermore, we study the change in nullity when the coalescence G of the

component graphs H1, H2, . . . , Hs is perturbed.
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Figure 1. The graphs G, R, U1, W1, G−G1, S1 and Y .

The statements of all the results that follow refer to Figure 1. The following

theorem gives the nullity of U1.

Theorem 2.1. Let G be a graph with a cut-vertex v and let G1, G2, . . . , Gs be

the components of G− v. If vi is a CFVupp in Hi = Gi + vi, then η(Ui) = η(G).

P r o o f. Without loss of generality, let i = 1 so that v1 is a CFVupp in H1

(refer to Figure 1). Since v1 is a CFVupp in H1 = G1 + v1, hence, by definition,

η(G1) = η(H1) + 1.

The nullity of a disconnected graph is equal to the sum of the nullities of its

components. Thus,

(2.1) η(R)− η(U1) = η(G1)− η(H1) = 1.

Let η(G) = η. By Theorem 1.1, η− 1 6 η(R) 6 η+1, and hence η− 2 6 η(U1) 6 η.

We use a result given in [4] for the n-vertex graph G = R+ v. For an orthonormal

set of eigenvectors x(1),x(2), . . . ,x(n−1) corresponding to the n− 1 eigenvalues of R,

if x
(i)
k is the k

th entry of x(i), then

ϕ(G) = ϕ(R)

(

λ−
n−1
∑

i=1

∑

k∈N

(

x
(i)
k

)2

λ− λi

)

,

where N = NG(v) =
s
⋃

i=1

NGi
(vi), NGi

(vi) is the neighbourhood of vi in Gi, and

λ1, λ2, . . . , λn−1 are the eigenvalues of R. Now from (2.1), η(R) > η(U1) > 0, and

thus R is singular. Since the adjacency matrix A(R) of R is diagonalizable, mR(λ)
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is of the form λ(λ− µ2) . . . (λ− µt), where µ1 (= 0), µ2, . . . , µt are the t (t 6 n− 1)

distinct eigenvalues of R.

It follows that ϕ(G) is of the form

ϕ(G) = ϕ(R)

(

λ−
t

∑

i=1

δ2i
λ− µi

)

,

where δi ∈ R. Thus,

(2.2) ϕ(G) =
ϕ(R)

mR(λ)

(

λmR(λ)−
(δ21
λ

+
δ22

λ− µ2
+ . . .+

δ2t
λ− µt

)

mR(λ)
)

.

Note that λη(R) divides ϕ(R), and thus the rational quotient ϕ(R)/mR(λ) has

λη(R)−1 as a factor (because both the numerator and the denominator in the quo-

tient have a common factor of λ). Also, δ21mR(λ)/λ has a nonzero constant term,

and hence the right hand side of equation (2.2) has λη(R)−1 as a factor but it is not

divided by λη(R). Thus, η(G) = η(R)− 1. From (2.1), η(G) = η(U1). �

We shall also use the following result which gives a sufficient condition for the

coalescence vertex to be CFVupp in G. We explore the cases for the coalescence

vertex to be CV or CFVmid in Theorems 2.5 to 2.8.

Theorem 2.2 ([7]). Let G be a graph with a cut-vertex v and let G1, G2, . . . , Gs

be the components of G − v. If there exists a component Gi among G1, G2, . . . , Gs

such that vi is a CFVupp in Hi = Gi + vi, then v is a CFVupp in G.

We now consider the type of a vertex vi other than CFVupp in Hi = Gi + vi.

Lemma 2.3 ([7]). Let G be a graph with a cut-vertex v and let G1, G2, . . . , Gs

be the components of G− v. If v1 is a CV in H1 = G1 + v1, then η(S1) = η(G1) +

η(G−G1) = η(G).

Since the choice of the component graph H1 is arbitrary, we have:

Corollary 2.4. Let G be a graph with a cut-vertex v and let G1, G2, . . . , Gs be

the components of G − v. If there exists i ∈ {1, 2, . . . , s} such that vi is a CV in

Gi + vi, then η(Si) = η(Gi) + η(G −Gi) = η(G) and η(Wi) = η(Si) + 1.

We now present a sufficient condition for the cut-vertex v in G to be a CV.

Theorem 2.5. Let G be a graph with a cut-vertex v, and let G1, G2, . . . , Gs be

the components of G − v. If vi is a CV in each Hi = Gi + vi for i ∈ {1, 2, . . . , s},

then v is a CV in G.
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P r o o f. Let vi be a CV in each Hi for i ∈ {1, 2, . . . , s}. To show that v is

a CV in G, by Proposition 1.5 it is sufficient to show that η(G) =
s
∑

i=1

η(Gi) + 1 =

η(G− v) + 1. We use induction on the number s of components of G− v.

For s = 2, let G1 and G2 be the only two components of G − v such that v1 is

a CV in H1 and v2 is a CV in H2. Then by Lemma 2.3, we have η(G) = η(G1) +

η(G − G1). Now G − G1 = H2, and thus η(G) = η(G1) + η(H2), implying that

η(G) = η(G1) + η(G2) + 1. Since G1 and G2 are the components of G− v, we have

η(G) = η(G− v) + 1. Hence, v is a CV in G.

Assume that the result is true for k < s, that is, if G1, G2, . . . , Gk are the com-

ponents of G such that vi is a CV in each Hi for i ∈ {1, 2, . . . , k}, then η(G) =
k
∑

i=1

η(Gi) + 1. We show that the result follows for the case when G − v has (k + 1)

components G1, G2, . . . , Gk, Gk+1. Let vi be a CV in each Hi for i ∈ {1, 2, . . . , k+1},

and let X = G − Gk+1. Then Sk+1 = X ∪ Gk+1 and by Corollary 2.4, we have

η(G) = η(Sk+1) = η(Gk+1) + η(G − Gk+1) = η(Gk+1) + η(X). Now, by the in-

ductive hypothesis, η(X) =
k
∑

i=1

η(Gi) + 1. Thus η(G) = η(Gk+1) +
k
∑

i=1

η(Gi) + 1 =

k+1
∑

i=1

η(Gi) + 1. Finally, since G− v =
k+1
⋃

i=1

Gi, we conclude that η(G− v) =
k+1
∑

i=1

η(Gi).

Thus, η(G) = η(G− v) + 1. The result follows by induction on s. �

As we shall see below, the occurrence of a CFVmid among the root vertices of

the component graphs is nondeterministic. We discuss the case when the number

of component graphs is two in Theorems 2.6 and 2.7. For any finite number of

component graphs, the instance when the occurrence of a CFVmid among the root

vertices determines the type of coalescence vertex uniquely is given in Theorem 2.8.

Theorem 2.6. Let H1 = G1 + v1 and H2 = G2 + v2 be two graphs with root

vertices v1 and v2, respectively. If v1 is a CV in H1 and v2 is a CFVmid in H2, then

η(G) = η(H1) + η(H2) − 1 and the coalescence vertex v obtained by identifying v1
and v2 is a CFVmid in G = H1 ◦H2.

P r o o f. By Lemma 2.3, η(G) = η(S1) = η(G1) + η(H2). Since v1 is a CV in H1,

so η(G1) = η(H1)−1 and thus η(G) = η(H1)+η(H2)−1. But v2 is a CFVmid in H2,

implying that η(R) = η(S1). Hence η(G) = η(R) and, by definition, the coalescence

vertex v is a CFVmid in G = H1 ◦H2. �

Theorem 2.7. Let H1 = G1 + v1 and H2 = G2 + v2 be two graphs with root

vertices v1 and v2, respectively, and let v be the coalescence vertex in G = H1 ◦H2

obtained by identifying v1 and v2. If both v1 and v2 are CFVmid in H1 and H2,
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respectively, then either v is a CFVmid in G and η(G) = η(H1)+η(H2), or v is a CV

in G and η(G) = η(H1) + η(H2) + 1.

P r o o f. Since v1 is a CFVmid in H1 and v2 is a CFVmid in H2, we have η(G1) =

η(H1) and η(G2) = η(H2). By Theorem 1.2, the characteristic polynomial of the

coalescence G = H1 ◦H2 is given by

ϕ(G) = ϕ(H1)ϕ(G2) + ϕ(G1)ϕ(H2)− λϕ(G1)ϕ(G2).

So we obtain

η(G) > η(H1) + η(H2) = η(G1) + η(G2) = η(R).

Thus, on the deletion of the cut-vertex v in G, the nullity does not increase. Thus

v cannot be a CFVupp. Hence, either v is a CFVmid in G and η(G) = η(H1)+η(H2),

or v is a CV in G and η(G) = η(H1) + η(H2) + 1. �

Figure 2 shows that each of the situations described in Theorem 2.7 can occur for

the coalescence of component graphs with root vertices of the type CFVmid.

v1 v2

H1 H2

v

G = H1 ◦H2

coalescence

(i)

v1 v2

H1 H2

v

G = H1 ◦H2

coalescence

(ii)

Figure 2. Two graphs illustrating Theorem 2.7 when (i) v is a CFVmid in G; and (ii) v is
a CV in G.

Theorem 2.8. For each i ∈ {1, 2, . . . , s}, let Hi = Gi + vi be a graph with root

vertex vi. If no Hi has a CFVupp and exactly one Hi has a CFVmid, then the

coalescence vertex v is a CFVmid in the coalescence G obtained by identifying all the

vertices vi in Hi.

P r o o f. Without loss of generality, let H1 be the only component graph with

a CFVmid root vertex. If no component graph Hi has a CFVupp root vertex, then

the root vertex in each Hi, for i ∈ {2, . . . , s}, is a CV. If we let u be the coalescence

vertex in the graph G−G1 obtained by identifying each root vertex vi, i ∈ {2, . . . , s},

then by Theorem 2.5, u is a CV in G − G1. Since v1 is a CFVmid in H1 and u is

a CV in G − G1, by Theorem 2.6, v is a CFVmid in G, where v is the coalescence

vertex in G = H1 ◦ (G−G1). �
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3. Determining the nullity of a coalescence

At this stage, using results in Section 2, we can determine the nullity of the coa-

lescence from the nullities of the component graphs. For simplicity we start with the

coalescence of exactly two component graphs. This enables us to get the generaliza-

tion to the coalescence of a finite number s > 2 of component graphs, by induction.

In Proposition 3.1 and Theorem 3.2 we consider the case when one or more of the

root vertices in the component graphs are CV.

Proposition 3.1. Let H1 = G1 + v1 and H2 = G2 + v2 be two graphs with root

vertices v1 and v2, respectively. If at least one of the root vertices is a CV in the

respective component graph, then η(G) = η(H1) + η(H2)− 1 where G = H1 ◦H2.

P r o o f. Without loss of generality, we let v1 be a CV in H1. Thus, η(G1) =

η(H1)− 1, and by Lemma 2.3, η(G) = η(G1) + η(G−G1) = η(H1)− 1+ η(G−G1).

But G−G1 = H2 and thus η(G) = η(H1)− 1 + η(H2). �

Now we determine the nullity of G −Gi (for i ∈ {1, 2, . . . , s}) and of G in terms

of the nullities of their subgraphs.

Theorem 3.2. Let G be a graph with a cut-vertex v, and let G1, G2, . . . , Gs be

all the components of G− v. If vi is a CV in each Hi = Gi + vi for i ∈ {1, 2, . . . , s},

then

(i) η(G−Gi) =
∑s

j=1
j 6=i

η(Gj) + 1; and

(ii) η(G) =
s
∑

i=1

η(Hi) + (1− s).

P r o o f. Since vi is a CV in each Hi, for i ∈ {1, 2, . . . , s}, by Theorem 2.5, v is

a CV in G. Thus,

(3.1) η(G) = η(G − v) + 1 =

s
∑

i=1

η(Gi) + 1.

(i) By Corollary 2.4, η(G) = η(Gi) + η(G − Gi) for i ∈ {1, 2, . . . , s}. Thus,

η(G−Gi) =
∑s

j=1
j 6=i

η(Gj) + 1 since η(G) = η(Gi) +
∑s

j=1
j 6=i

η(Gj) + 1.

(ii) Since vi is a CV in eachHi, for i ∈ {1, 2, . . . , s}, by definition, η(Gi) = η(Hi)−1.

Thus, from (3.1),

η(G) = η(H1)− 1 + η(H2)− 1 + . . .+ η(Hs)− 1 + 1

= η(H1) + η(H2) + . . .+ η(Hs) + (1− s)

=
s

∑

i=1

η(Hi) + (1− s).

�
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The case when one or more of the root vertices are CFVupp is treated in Proposi-

tion 3.3 and Theorem 3.4.

Proposition 3.3. Let H1 = G1 + v1 and H2 = G2 + v2 be two graphs with root

vertices v1 and v2, respectively.

(i) If both the root vertices are CFVupp, then η(H1 ◦H2) = η(H1) + η(H2) + 1.

(ii) If v1 is a CFVupp in H1 and v2 is a CFVmid in H2, then η(H1 ◦H2) = η(H1) +

η(H2).

(iii) If v1 is a CFVupp in H1 and v2 is a CV in H2, then η(H1 ◦ H2) = η(H1) +

η(H2)− 1.

P r o o f. In each of the three cases (i), (ii) and (iii), at least one root vertex is

a CFVupp in the respective component graph. Hence by Theorem 2.2, if G = H1◦H2,

we have

(3.2) η(R) = η(G− v) = η(G) + 1.

(i) Assume that both the root vertices are CFVupp. As shown in Figure 1, W1 =

H1∪H2. Hence η(S1) = η(W1)+1 = η(H1)+η(H2)+1 and η(R) = η(S1)+1 =

η(H1) + η(H2) + 2. Thus, from (3.2) we get η(G) + 1 = η(H1) + η(H2) + 2.

Hence, η(G) = η(H1) + η(H2) + 1.

(ii) Assume that v1 is a CFVupp in H1 and v2 is a CFVmid in H2. As shown in

Figure 1, η(S1) = η(W1)+1 = η(H1)+η(H2)+1 because v1 is a CFVupp in H1.

Since v2 is a CFVmid in H2, we have η(R) = η(S1) = η(H1) + η(H2) + 1. Thus,

from (3.2) we get η(G) = η(H1) + η(H2).

(iii) If v1 is a CFVupp inH1 and v2 is a CV inH2, then the result follows immediately

from Proposition 3.1. �

Generalizing the above result to the case when the number of component graphs

is s > 2, we obtain the following.

Theorem 3.4. Let G be a graph with a cut-vertex v, and let G1, G2, . . . , Gs be

the components of G − v. If there exists i ∈ {1, 2, . . . , s} such that vi is a CFVupp

in Hi = Gi + vi, then η(G) =
s
∑

i=1

η(Gi + vi) + (a − b − 1), where a is the number

of component graphs which have the root vertex vi as a CFVupp in Hi, and b is the

number of component graphs which have the root vertex vi as a CV in Hi.

P r o o f. Without loss of generality, let Gi be relabelled so that the first a compo-

nent graphs have vi as a CFVupp, the next b component graphs have vi as a CV, and

the last c component graphs have vi as a CFVmid, where s = a+b+c. Then we have
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η(Gi) = η(Hi)+1 for i ∈ {1, 2, . . . , a}, η(Gi) = η(Hi)−1 for i ∈ {a+1, a+2, . . . , a+b}

and η(Gi) = η(Hi) for i ∈ {a+b+1, a+b+2, . . . , a+b+c = s}. Since there exists vi
which is a CFVupp in at least one Hi, for i ∈ {1, 2, . . . , s}, by Theorem 2.2, v is

a CFVupp in G, and thus η(G) = η(G− v)− 1. Hence

η(G) =

s
∑

i=1

η(Gi)− 1

=

( a
∑

i=1

(η(Hi) + 1) +
a+b
∑

i=a+1

(η(Hi)− 1) +
a+b+c
∑

i=a+b+1

η(Hi)

)

− 1

=

a
∑

i=1

η(Hi) + a+

a+b
∑

i=a+1

η(Hi)− b+

a+b+c
∑

i=a+b+1

η(Hi)− 1

=

s
∑

i=1

η(Hi) + (a− b− 1).

�

The next result follows immediately.

Corollary 3.5. Let G be a graph with a cut-vertex v, and let G1, G2, . . . , Gs be

the components of G−v. If vi is a CFVupp in each Hi = Gi+vi, for i ∈ {1, 2, . . . , s},

then we have η(G) =
s
∑

i=1

η(Hi) + (s− 1).

Theorem 3.2 and Corollary 3.5 give closed formulae for η(G) when, for i ∈

{1, 2, . . . , s}, all the vi are CV and when all the vi are CFVupp, respectively. The

case when all the vi are CFVmid will not be considered here. It is more complex and

to obtain a closed formula, specific conditions on the component graphs forming the

coalescence are required.

4. Determining the type of the root vertex in component graphs

Here we investigate the inverse problem:

Can the type of the cut-vertex v in the coalescence G determine the type of the

root vertex in the component graphs?

For the case when the coalescence vertex is CFVupp in G we give a necessary

and sufficient condition for the type of root vertex in at least one of the component

graphs.

Theorem 4.1. Let G be a graph with a cut-vertex v and let G1, G2, . . . , Gs be

the components of G − v. The coalescence vertex v is a CFVupp in G if and only
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if there exists at least one component Gi in G, for i ∈ {1, 2, . . . , s}, such that vi is

a CFVupp in Hi = Gi + vi.

P r o o f. Sufficiency follows immediately by Theorem 2.2. To prove necessity, let

v be a CFVupp in G. As shown in Figure 1, W1 is a disconnected graph with two

components G−G1 and H1 with root vertices u and v1, respectively. The graph G is

obtained by coalescing the two root vertices of the components of W1. Theorem 2.5,

Theorem 2.6 and Theorem 2.7 rule out cases where none of the two root vertices is

a CFVupp. Thus, either the root vertex v1 is a CFVupp in H1 or the root vertex u is

a CFVupp in G−G1.

If v1 is a CFVupp in H1, then the proof is complete. If, on the other hand, v1 is

not a CFVupp in H1, then u is a CFVupp in G−G1. We repeat the same argument

used above with G−G1 taking the role of G. This iterative argument is repeated as

many times as is necessary until we obtain that:

⊲ either there exists a vertex vj which is a CFVupp in Hj, for some j ∈ {2, . . . , s−2};

⊲ or the root vertex u of G −
s−2
⋃

i=1

Gi = Hs−1 ◦Hs is a CFVupp. In this case, either

vs−1 or vs is a CFVupp in the respective component graph.

The result follows. �

The cases when the coalescence vertex is either a CFVmid or a CV in G are

considered in Theorems 4.2 and 4.3, respectively.

Theorem 4.2. Let G be a graph with a cut-vertex v and let G1, G2, . . . , Gs be the

components of G−v. If v is a CFVmid in G, then no vi is a CFVupp in Hi = Gi+vi,

for i ∈ {1, 2, . . . , s}, and vi is a CFVmid in at least one component graph Hi.

P r o o f. Let v be a CFVmid in G. By Theorem 4.1, no vi can be a CFVupp in Hi,

for i ∈ {1, 2, . . . , s}. Since G is obtained from W1 by identifying the vertex u in

G−G1 with the vertex v1 in H1 (refer to Figure 1), then by Theorems 2.2 and 2.5,

either u is a CFVmid in G−G1 or v1 is a CFVmid in H1.

If v1 is a CFVmid in H1, then the result follows. If, on the other hand, v1 is not

a CFVmid in H1, then u is a CFVmid in G −G1 and we repeat the same argument

used above with G − G1 taking the role of G. This iterative argument is repeated

as many times as is necessary to test if there is a component graph Hj for which vj
is a CFVmid for j ∈ {2, . . . , s − 2}. If there is none, then the coalescence vertex of

Hs−1 ◦Hs is CFVmid. By Theorems 2.2, 2.5 and 4.1, at least one of the root vertices

of Hs−1 or Hs is a CFVmid. �
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Theorem 4.3. Let G be a graph with a cut-vertex v and let G1, G2, . . . , Gs be

the components of G−v. If v is a CV in G, then no vi is a CFVupp in Hi = Gi+vi,

for i ∈ {1, 2, . . . , s}, and

(i) either vi is a CFVmid in at least two component graphs Hi for i ∈ {1, 2, . . . , s};

(ii) or vi is a CV in each of the Hi for i ∈ {1, 2, . . . , s}.

P r o o f. By Theorem 4.1, Theorem 2.2 and Theorem 2.6, u and v1 in W1 can be

of the types given in the following two cases:

(i) both u and v1 are CFVmid in G−G1 and in H1, respectively; or

(ii) both u and v1 are CV in G−G1 and in H1, respectively.

In case (i), by Theorem 4.2, G − G1 has at least one component Gi, for i ∈

{2, . . . , s}, such that vi is a CFVmid in Hi. Thus vi is a CFVmid in at least two

component graphs.

In case (ii), we consider G − G1 and use the same argument used above with

G − G1 taking the role of G. This iterative argument is repeated as follows. If we

let k ∈ {2, . . . , s − 1} be the smallest integer (if it exists) such that vk is not a CV

in the component graph Hk, then vk is a CFVmid. By (i), the coalescence vertex

of the coalescence of the remaining component graphs Hk+1, . . . , Hs must also be

a CFVmid, and by Theorem 4.2, a root vertex of at least one of the component

graphs Hk+1, . . . , Hs is a CFVmid. Thus there are at least two component graphs Hi

having a root vertex vi being a CFVmid. If, on the other hand, there is no k such

that the vertex vk is a CFVmid in Hk, then each vertex vi, for i ∈ {2, . . . , s}, is

a CV in the component graph Hi. Thus vi is a CV in all component graphs Hi, for

i ∈ {1, 2, . . . , s}, completing the proof. �

Since a vertex can be one of three types, namely CV, CFVupp and CFVmid, there

are 3! different ways of choosing the pairs of root vertices when coalescing two com-

ponent graphs. Table 1 summarizes the results obtained above. The third column

Type of v1 Type of v2 Type of v Reason η(H1 ◦H2) Reason
in H1 in H2 in H1 ◦H2

CFVupp CFVupp CFVupp Theorem 2.2 η1 + η2 + 1 Proposition 3.3 (i)
CFVupp CFVmid CFVupp Theorem 2.2 η1 + η2 Proposition 3.3 (ii)
CFVupp CV CFVupp Theorem 2.2 η1 + η2 − 1 Proposition 3.1
CV CV CV Theorem 2.5 η1 + η2 − 1 Proposition 3.1
CV CFVmid CFVmid Theorem 2.6 η1 + η2 − 1 Proposition 3.1
CFVmid CFVmid CV Theorem 2.7 η1 + η2 + 1 Theorem 2.7

or CFVmid or η1 + η2

Table 1. The type of the coalescence vertex v and the nullity η(H1 ◦H2) of the coalescence
of two graphs H1 = G1 + v1 and H2 = G2 + v2 with root vertices v1 and v2,
respectively.
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gives the type of coalescence vertex v in H1 ◦H2 obtained when identifying the root

vertices v1 and v2 in H1 = G1 + v1 and H2 = G2 + v2, respectively. The nullity

η(H1 ◦H2) of the coalescence of H1 and H2 in terms of the nullity η(H1) = η1 and

η(H2) = η2 is given in the fifth column, for the distinct pairs of types of root vertices.

The appropriate link to the respective result in the previous sections is presented for

ease of reference.

Generalizing to cases when the number s of component graphs Hi = Gi + vi is

greater than two and G is obtained by identifying the root vertices vi in each Hi, for

i ∈ {1, 2, . . . , s}, we conclude that

(i) if vi is a CV in each Hi, then the coalescence vertex v is a CV in G;

(ii) if vi is a CFVupp in each Hi, then the coalescence vertex v is a CFVupp in G;

(iii) if vi is a CFVmid in each Hi, then the coalescence vertex v cannot be a CFVupp

in G.

Also,

(iv) if vi is a CFVmid in exactly one Hi and each Hj , for j 6= i, have a CV, then the

coalescence vertex v is a CFVmid in G;

(v) if vi is a CFVupp in at least one Hi, then the coalescence vertex v is a CFVupp

in G.
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