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WEAK- AND STRONG-TYPE INEQUALITY FOR THE CONE-LIKE

MAXIMAL OPERATOR IN VARIABLE LEBESGUE SPACES

Kristóf Szarvas, Ferenc Weisz, Budapest

(Received April 15, 2015)

Abstract. The classical Hardy-Littlewood maximal operator is bounded not only on
the classical Lebesgue spaces Lp(R

d) (in the case p > 1), but (in the case when 1/p(·)

is log-Hölder continuous and p− = inf{p(x) : x ∈ R
d} > 1) on the variable Lebesgue

spaces Lp(·)(R
d), too. Furthermore, the classical Hardy-Littlewood maximal operator is of

weak-type (1, 1). In the present note we generalize Besicovitch’s covering theorem for the

so-called γ-rectangles. We introduce a general maximal operator Mγ,δ
s and with the help

of generalized Φ-functions, the strong- and weak-type inequalities will be proved for this
maximal operator. Namely, if the exponent function 1/p(·) is log-Hölder continuous and

p− > s, where 1 6 s 6 ∞ is arbitrary (or p− > s), then the maximal operator Mγ,δ
s is

bounded on the space Lp(·)(R
d) (or the maximal operator is of weak-type (p(·), p(·))).

Keywords: variable Lebesgue space; maximal operator; γ-rectangle; Besicovitch’s cover-
ing theorem; weak-type inequality; strong-type inequality

MSC 2010 : 42B25, 42B35, 52C17

1. Introduction

Maximal operators are playing a central role in approximation theory and in

Fourier analysis (see Stein and Weiss [18], Stein [17], Weisz [20], [22]). The clas-

sical Hardy-Littlewood maximal operator is defined by

Mf(x) := sup

{

1

|Q|

∫

Q

|f | dλ : x ∈ Q

}

, x ∈ R
d,

where f is a locally integrable function and the supremum is taken over all cubes

Q ⊂ R
d with sides parallel to the axis. It is well known that the classical Hardy-

This research was supported by the Hungarian Scientific Research Funds (OTKA)
No. K115804.
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Littlewood maximal operator is bounded on the classical Lp spaces for any p > 1

and it is of weak type (1, 1), i.e.,

sup
τ>0

‖τχ{Mf>τ}‖1 6 C‖f‖1, f ∈ L1(R
d).

If we take the supremum over rectangles I = I1× . . .× Id with δ
−1 6 |Ii|/|Ij | 6 δ,

i, j = 1, . . . , d, where δ > 1, then the previous result remains true (see e.g. Weisz [22]).

The set Rd
δ := {x ∈ R

d : δ−1xj 6 xi 6 δxj , i, j = 1, . . . , d} defines a cone in R
d.

Gát in [12] introduced the following cone-like set. Given the functions γi and the

numbers δi > 1, the set Rd
γ,δ := {x ∈ R

d : δ−1
i γi(x1) 6 xi 6 δiγi(x1), i = 1, . . . , d}

is called a cone-like set. The second author in [21] generalized the Hardy-Littlewood

maximal operator for cone-like sets, i.e., he took the supremum over all rectangles

I = I1 × . . .× Id with δ
−1
i γi(|I1|) 6 |Ii| 6 δiγi(|I1|), i = 1, . . . , d. He proved that the

maximal operator Mγ,δ is bounded on the classical Lp spaces in the case p > 1 and

it is of weak type (1, 1).

The topic of variable Lebesgue spaces is a new chapter of mathematics and is

studied intensively nowadays (see Cruz-Uribe, Diening and Fiorenza [4], Cruz-Uribe,

Diening and Hästö [5], Diening et al. [10], Cruz-Uribe, Fiorenza and Neugebauer [9],

Almeida and Drihem [1], Kopaliani [13]). The variable Lp(·)-norm is defined by

‖f‖p(·) := inf

{

λ > 0:

∫

Rd

∣

∣

∣

f(x)

λ

∣

∣

∣

p(x)

dx 6 1

}

,

where p(x) < ∞ for all x ∈ R
d. Variable Lp(·) spaces contain all measurable functions

f for which ‖f‖p(·) < ∞. Variable Lebesgue spaces have a lot of common properties
with the classical Lebesgue spaces (see Kováčik and Rákosník [14], Cruz-Uribe and

Fiorenza [6], Diening et al. [11], Cruz-Uribe, Fiorenza and Neugebauer [8], Cruz-

Uribe et al. [7]). For example if p− := inf{p(x) : x ∈ R
d} > 1, then the classical

Hardy-Littlewood maximal operator is bounded on the variable Lp(·) spaces and if

p− > 1, then it is of weak type (p(·), p(·)) (see Cruz-Uribe and Fiorenza [6], Diening
et al. [11]).

In this paper, we will investigate the operator Mγ,δ for variable Lebesgue spaces.

We will prove that if p− > 1, then the maximal operator Mγ,δ is bounded on the

variable Lp(·) spaces and, in the case p− > 1, we obtain that it is of weak type

(p(·), p(·)), namely,
sup
τ>0

‖τχ{Mγ,δf>τ}‖p(·) 6 C‖f‖p(·)

for all f ∈ Lp(·)(R
d).

In [19] we investigate the θ-summation of the Fourier transform of functions from

the variable Lebesgue spaces over cone-like sets. To this end we need the inequalities
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with respect to the maximal operatorMγ,δ proved in this paper. More exactly, in [19]

we estimate pointwise the maximal operator of the θ-means of the Fourier transforms

by the maximal operator Mγ,δ. This implies the almost everywhere convergence of

the θ-means of f to the function f from the variable Lebesgue spaces. This result is

a generalization of the classical result due to Marcinkiewicz and Zygmund, see [15],

concerning the almost everywhere convergence of the Fejér means of two-dimensional

Fourier series.

2. The variable Lebesgue spaces

A function p(·) belongs to P(Rd) if p : R
d → [1,∞] and p(·) is measurable. Then

we say that p(·) is an exponent function. Let

p− := inf{p(x) : x ∈ R
d} and p+ := sup{p(x) : x ∈ R

d}.

Set

Ω∞ := {x ∈ R
d : p(x) = ∞}.

Let us define the modular

̺KR(f) :=

∫

Rd\Ω∞

|f(x)|p(x) dx+ ‖f‖L∞(Ω∞).

We can define the Lp(·)(R
d) space with the help of this modular. A measurable func-

tion f belongs to the space Lp(·)(R
d) if there exists λ > 0 such that ̺KR(f/λ) < ∞.

This modular generates a norm

‖f‖KR := inf
{

λ > 0: ̺KR

(f

λ

)

6 1
}

.

Equipping the space Lp(·)(R
d) with this norm we get a Banach space. In the case

when p(·) = p is a constant, we get back the usual Lp(R
d) spaces. For some technical

reasons we will consider another modular and another norm, but we will get the same

space with an equivalent norm.

Let p(·) ∈ P(Rd) and let ϕp(·) : R
d × [0,∞] → R be the function

ϕp(·)(x, t) := ϕp(x)(t) :=











tp(x) if p(x) < ∞, t > 0,

0 if p(x) = ∞ and t ∈ [0, 1],

∞ if p(x) = ∞ and t > 1,

x ∈ R
d.

The modular generated by the function ϕp(·) is defined by

̺p(·)(f) :=

∫

Rd

ϕp(·)(x, |f(x)|) dx :=

∫

Rd

ϕp(x)(|f(x)|) dx.
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A measurable function f belongs to the Lp(·)(R
d) space if there exists λ > 0 such that

̺p(·)(f/λ) < ∞. We can see that the modular ̺p(·) is not a norm. The Lp(·)(R
d)-

norm can also be defined by

‖f‖p(·) := inf
{

λ > 0: ̺p(·)

(f

λ

)

6 1
}

.

The norms ‖·‖KR and ‖·‖p(·) are equivalent (see Diening et al. [11], pages 72–73).
We say that r(·) is locally log-Hölder continuous if there exists a constant C0 such

that for all x, y ∈ R
d, 0 < |x− y| < 1/2,

|r(x) − r(y)| 6 C0

− log(|x− y|) ,

where |x| = ‖x‖2, x ∈ R
d. We denote this set by LH0(R

d).

We say that r(·) is log-Hölder continuous at infinity if there exist constants C∞

and r∞ such that for all x ∈ R
d

|r(x) − r∞| 6 C∞

log(e + |x|) .

We write briefly r(·) ∈ LH∞(Rd). Let

LH(Rd) := LH0(R
d) ∩ LH∞(Rd).

It is easy to see that if p(·) ∈ P(Rd), then

̺p(·)(λf) = ̺p(·)(|λ|f) 6 |λ|̺p(·)(f), |λ| 6 1(2.1)

for all measurable functions f . The following result can be found in Diening et

al. [11], page 83. If p(·), q(·), r(·) ∈ P(Rd), p 6 q 6 r almost everywhere, then

(2.2) Lq(·)(R
d) →֒ Lp(·)(R

d) + Lr(·)(R
d).

Moreover, if g ∈ Lq(·)(R
d), then ‖g‖Lp(·)(Rd)+Lr(·)(Rd) 6 2‖g‖q(·).
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3. Besicovitch’s covering theorem for γ-rectangles

Now let us define the function γ ∈ R → R
d. Let γ := (γ1, . . . , γd), where

γ1(x) := x, x > 0, γi : (0,∞) → (0,∞), γi is strictly increasing, continuous and

γi(1) = 1, lim
x→∞

γi(x) = ∞, lim
x→0+

γi(x) = 0, i = 1, . . . , d. Suppose, that there exist

c1,i, c2,i, ξ > 1, for which

c1,iγi(x) 6 γi(ξx) 6 c2,iγi(x), x > 0, i = 1, . . . , d.

Note that, for example, if γ(x) := xn (or γ(x) := n
√
x) for an arbitrary 1 6 n ∈ N,

then the above assumptions are satisfied. We can see easily that

cn1,iγi(x) 6 γi(ξ
nx) 6 cn2,iγi(x), x > 0

for all n ∈ N and

cl2,iγi(x) 6 γi(ξ
lx) 6 cl1,iγi(x), x > 0

for all 0 > l ∈ Z.

Let Iγi ⊂ R, i = 1, . . . , d, be intervals. Denote the Lebesgue measure of Iγi by |Iγi |.
The set Iγ contains all rectangles Iγ = Iγ1 × . . .× Iγd ⊂ R

d for which |Iγi | = γi(|Iγ1 |),
i = 1, . . . , d. Iγ ∈ Iγ is called γ-rectangle. The point x = (x1, . . . , xd) ∈ R

d is

the center of the rectangle I = I1 × . . . × Id, if I = [(x1 − a1, x1 + a1)] × . . . ×
[(xd − ad, xd + ad)], where ai > 0, i = 1, . . . , d. Let us denote by Iγx ∈ Iγ a rectangle

with center x.

Now we will define the enlargement of the γ-rectangles. Let α > 0 and let I be

a γ-rectangle which has a center x and its sides are γi(a), i = 1, . . . , d. Then denote

by αI the rectangle which has the same center x but its sides are αγi(a), i = 1, . . . , d.

Now we will prove two simple lemmas.

Lemma 3.1. Let 1 6 k ∈ N and Iγxj
, j = 1, . . . , k, be γ-rectangles having centers

xj ∈ R
d and sides γi(aj), i = 1, . . . , d, j = 1, . . . , k. Suppose that

xj /∈
k
⋃

l=1,l 6=j

Iγxl
and

k
⋂

j=1

Iγxj
6= ∅.

Then k 6 2d.

P r o o f. Let xj := (xj,1, . . . , xj,d), j = 1, . . . , k. We can suppose that xj 6= 0,

j = 1, . . . , k, and 0 ∈
k
⋂

j=1

Iγxj
. Therefore |xj,i| 6 γi(aj)/2, i = 1, . . . , d, j = 1, . . . , k.

Let l, j ∈ {1, . . . , k} be arbitrary and j 6= l. Since xl /∈ Iγxj
, there exists i0 ∈ {1, . . . , d}
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such that |xl,i0 − xj,i0 | > γi0(aj)/2. We claim that there exists i
′ ∈ {1, . . . , d} such

that xj,i′xl,i′ < 0. For contradiction, suppose that xj,ixl,i > 0, i = 1, . . . , d. We can

suppose that xj,i > 0 and xl,i > 0, i = 1, . . . , d. Since 0 ∈ Iγxj
, we have xl,i0 < 0 or

xl,i0 > xj,i0 + γi0(aj)/2. We have supposed that xl,i > 0, i = 1, . . . , d, thus we get

that xl,i0 > xj,i0 + γi0(aj)/2.

At the same time xj,i0 > 0 and 0 ∈ Iγxl
, thus

1

2
γi0(aj) 6

1

2
γi0(aj) + xj,i0 < xl,i0 6

1

2
γi0(al) ⇒ aj < al ⇒ γi(aj) < γi(al)

for i = 1, . . . , d. Using this and the fact that 0 ∈ Iγxj
∩ Iγxl

, we get

xj,i 6
1

2
γi(aj) <

1

2
γi(al), i = 1, . . . , d ⇒ xj ∈ Iγxl

,

which is a contradiction. Hence k 6 2d. �

Lemma 3.2. Let 1 6 m ∈ N, A ⊂ R
d be a rectangle with sides aj > 0,

j = 1, . . . , d, and Bk ⊂ R
d, k = 1, . . . ,m, be rectangles with sides bk,j > aj ,

j = 1, . . . , d. If A∩Bk 6= ∅, k = 1, . . . ,m, then there exist rectangle Ck, k = 1, . . . ,m,

with sides ck,j = aj and Ck ⊂ (3A ∩Bk).

P r o o f. Since A ∩Bk 6= ∅, there are two cases:
1. Bk ⊂ 3A. Then Bk ∩ 3A = Bk and due to aj 6 bk,j , j = 1, . . . , d, we can draw

a rectangle Ck in the rectangle Bk with sides ck,j := aj , j = 1, . . . , d.

2. Bk 6⊆ 3A. Then take the rectangle Dk := 3A ∩Bk with sides dk,j , j = 1, . . . , d.

A ∩Bk 6= ∅, therefore

dk,j >
3

2
aj −

1

2
aj = aj , j = 1, . . . , d,

so we can draw a rectangle Ck in the rectangle Dk with sides ck,j := aj ,

j = 1, . . . , d, which proves the lemma.

�

Besicovitch’s covering theorem for cubes is the main point of the proof of the

weak-type inequality for the classical Hardy-Littlewood maximal operator in variable

Lp(·)(R
d) spaces. Now we will prove Besicovitch’s covering theorem for γ-rectangles.

The proof of Besicovitch’s covering theorem for cubes can be found in [2] and [3] (see

also [16]). Our proof is similar.
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Theorem 3.1 (Besicovitch’s covering theorem for γ-rectangles). Let A ⊂ R
d be

a bounded set, A := {Iγx ∈ Iγ : x ∈ A}. Then there exists finite or countable set
B ⊂ A such that
(1) A can be covered by the rectangles from B, i.e.,

A ⊂
⋃

I∈B

I.

(2) There exists a constant K > 0 such that

∑

I∈B

χI 6 K.

(3) There exist families ∆1,∆2, ...,∆M ⊂ B such that

A ⊂
M
⋃

k=1

⋃

I∈∆k

I, where Ik,i ∩ Ik,j = ∅, i 6= j, Ik,i, Ik,j ∈ ∆k, k = 1, . . . ,M.

Here M > 0 is independent of the γ-rectangles.

P r o o f. (1) Let Iγx ∈ A be a γ-rectangle having center x and sides γi(ax),

i = 1, . . . , d and

Ω := {ax > 0: Iγx ∈ A, x ∈ A}, M1 := supΩ.

Since A is bounded, we can assume that M1 < ∞. Therefore we can choose a γ-

rectangle Iγx1
∈ A such that ax1 > M1/2. Let I

γ
x1

∈ B. Inductively, if

xj+1 ∈ A \
j
⋃

i=1

Iγxi
and axj+1 >

1

2
M1,

then let Iγxj+1
∈ B. If there is no x ∈ A such that x /∈

k1
⋃

i=1

Iγxi
, then we have covered

the set A. If there exists x ∈ A such that x /∈
k1
⋃

i=1

Iγxi
but for all x ∈ A \

k1
⋃

i=1

Iγxi
,

ax < M1/2, then let

M2 := sup

{

ax > 0: x ∈ A \
k1
⋃

i=1

Iγxi

}

.
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We can choose xk1+1 ∈ A \
k1
⋃

i=1

Iγxi
such that axk1+1

> M2/2. Let I
γ
xk1+1

∈ B.
Inductively again, if

xj+1 ∈ A \
j
⋃

i=1

Iγxi
and axj+1 >

1

2
M2,

then let Iγxj+1
∈ B. Continuing this process we get a strictly increasing sequence (kn),

a strictly decreasing sequence of positive numbers (Mn) with 2Mn+1 6 Mn and

a countable collection of γ-rectangles B. Let

Γ1 := {1, 2, . . . , k1}, Γ2 := {k1 + 1, k1 + 2, . . . , k2},
Γj := {kj−1 + 1, kj−1 + 2, . . . , kj}, . . .

Then the following properties hold:

(a) Mj/2 6 axi
6 Mj, i ∈ Γj, 1 6 j ∈ N,

(b) xj+1 /∈
j
⋃

i=1

Iγxi
, 1 6 j ∈ N,

(c) xi ∈ A \ ⋃

m 6=k

⋃

j∈Γm

Iγxj
, i ∈ Γk.

The statements (a) and (b) follow from the construction. Let us prove (c). Suppose

that m 6= k, j ∈ Γm, i ∈ Γk. If m < k, then for all α ∈ Γm, α < minΓk, thus j < i

and xi /∈ Iγxj
. If k < m, then i < j and by the construction axi

> axj
and xj /∈ Iγxi

,

i.e., there exists i0 ∈ {1, . . . , d} such that |xj,i0 − xi,i0 | > γi0(axi
)/2 > γi0(axj

)/2.

We obtain that xi /∈ Iγxj
.

Due to lim
n→∞

Mn = 0 and to the construction, we have

A ⊂
∞
⋃

i=1

Iγxi
=:

⋃

I∈B

I,

which proves statement (1).

Let us consider the statement (2). Suppose that

x ∈
p
⋂

i=1

Iγxmi
.

We will show that p 6 K for a suitable K > 0. Let us define the set

B := {1 6 j ∈ N : Γj ∩ {mi : i = 1, . . . , p} 6= ∅}.

Suppose that j, l ∈ B, j 6= l, kj ∈ Γj, kl ∈ Γl. Then by proposition (c) xkj
/∈ Iγxkl

and xkl
/∈ Iγxkj

. At the same time, since B ⊂ {mi : i = 1, . . . , p}, we obtain x ∈ Iγxα
,

α ∈ B, therefore by Lemma 3.1, |B| 6 2d.
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Fix 1 6 l ∈ N and let us consider the set

Cl := Γl ∩ {mi : i = 1, . . . , p}.

Since Γl is finite, we can suppose that Cl = {l1, l2, . . . , lq}. Then the γ-rectangles
determined by the set Cl are I

γ
xlk
, k = 1, . . . , q, having center xlk and sides γi(axlk

),

i = 1, . . . , d, k = 1, . . . , q. Let 1 6 s ∈ N such that ξs−1 < 2 6 ξs and c :=

max{c2,i : i = 1, . . . , d}, β := 1/(1 + cs) (< 1/2). The rectangles enlarged by this β

have the property that

βIγxlk
∩ βIγxlj

= ∅, k 6= j = 1, . . . , q.

Indeed, we can suppose that lk < lj. Then by case (b) xlj /∈ Iγxlk
. Therefore there

exists i0 ∈ {1, . . . , d}: |xlk,i0 − xlj ,i0 | > γi0(axlk
)/2. Since lk, lj ∈ Γl, we have

Ml/2 6 axlk
, axlj

6 Ml, thus axlj
6 2axlk

. If there exists z ∈ βIγxlk
∩ βIγxlj

, then

1

2
γi0(axlk

) < |xlk,i0 − xlj ,i0 | 6 |xlk,i0 − zi0 |+ |zi0 − xlj ,i0 |

6
β

2
γi0(axlk

) +
β

2
γi0(axlj

) =
1

1 + cs

(1

2
γi0(axlk

) +
1

2
γi0(axlj

)
)

.

Here γi0(axlj
) 6 γi0(2axlk

) 6 γi0(ξ
saxlk

) 6 cs2,i0γi0(axlk
) 6 csγi0(axlk

), therefore

1

1 + cs

(1

2
γi0(axlk

) +
1

2
γi0(axlj

)
)

6
1

1 + cs

(1

2
γi0(axlk

) +
cs

2
γi0(axlk

)
)

6
1

2
γi0(axlk

),

i.e., γi0(axlk
) < γi0(axlk

), which is a contradiction, so βIγxlk
∩ βIγxlj

= ∅.
Let a := max{axlk

: k = 1, . . . , q} and let us define the rectangle Ix having center
x and sides 2γi(a), i = 1, . . . , d. Then 2γi(a) > 2γi(axlk

), i = 1, . . . , d, k = 1, . . . , q.

We claim that
q
⋃

k=1

βIγxlk
⊂ Ix.

Indeed, suppose that z ∈ βIγxlk
for a suitable k ∈ {1, . . . , q}, i.e., |zi − xlk,i| 6

βγi(axlk
)/2, i = 1, . . . , d. Since lk ∈ Cl ⊂ {mi : i = 1, . . . , p}, thus x ∈ Iγxlk

. Due to

β < 1/2 we get

|zi − xi| 6 |zi − xlk,i|+ |xlk,i − xi| 6
β

2
γi(axlk

) +
1

2
γi(axlk

)

< γi(axlk
) 6

1

2
2γi(a), i = 1, . . . , d,

i.e., z ∈ Ix.
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Since the rectangles βIγxlk
, k = 1, . . . , q, are pairwise disjoint and the rectangle Ix

covers these rectangles, we obtain

q
∑

k=1

|βIγxlk
| 6 |Ix| =

d
∏

i=1

2γi(a) = 2d
d
∏

i=1

γi(a).

Let 0 > r ∈ Z such that ξr 6 1/2 < ξr+1, c := max{c2,i : i = 1, . . . , d}. Then
cr2,i > cr, i = 1, . . . , d, and by axlk

> Ml/2

q
∑

k=1

|βIγxlk
| =

q
∑

k=1

d
∏

i=1

βγi(axlk
) > βd

q
∑

k=1

d
∏

i=1

γi

(1

2
Ml

)

> qβd
d
∏

i=1

γi(ξ
rMl)

> qβd
d
∏

i=1

crγi(Ml) = q(βcr)d
d
∏

i=1

γi(Ml) = q
( cr

1 + cs

)d d
∏

i=1

γi(Ml).

At the same time, since a = max{axlk
: k = 1, . . . , q} 6 Ml we get

2d
d
∏

i=1

γi(a) 6 2d
d
∏

i=1

γi(Ml),

namely,

q
( cr

1 + cs

)d d
∏

i=1

γi(Ml) 6 2d
d
∏

i=1

γi(Ml) ⇔ q 6

(2(1 + cs)

cr

)d

.

Here the constants c, s and r are independent of the rectangles, they only depend

on γ. We obtain that

p 6 |B|q 6

(4(1 + cs)

cr

)d

6

⌊(4(1 + cs)

cr

)d⌋

+ 1 =: K,

thus (2) is proved.

Finally let us consider (3). For simplicity, denote Ii := Iγxi
, ai := axi

, 1 6 i ∈ N,

and let the chosen rectangles be B := {Ii : 1 6 i ∈ N} with A ⊂ ⋃

I∈B

I. For

any ε > 0 there are only finitely many rectangles Ii with ai > ε. Suppose that

I1, . . . , IN are rectangles such that a1 > . . . > aN > ε for a suitable 1 6 N ∈ N.

Let I1,1 := I1 and I1,1 ∈ ∆1. If there exists a rectangle Ii such that Ii ∩ I1,1 = ∅,
then let k1,2 := min{i ∈ {1, . . . , N} : Ii ∩ I1,1 = ∅}. Choose this rectangle and let
I1,2 := Ik1,2 and I1,2 ∈ ∆1. Inductively, suppose that we have chosen the rectangles

I1,1, . . . , I1,j and collected them the set ∆1. If there exists a rectangle Ii such that

Ii ∩
( j
⋃

l=1

I1,l

)

= ∅, then let k1,j+1 := min
{

i ∈ {1, . . . , N} : Ii ∩
( j
⋃

l=1

I1,l

)

= ∅
}

and
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let I1,j+1 := Ik1,j+1 and I1,j+1 ∈ ∆1. If for any rectangle Ii, Ii ∩
( j
⋃

l=1

I1,l

)

6= ∅,
i = 1, . . . , N , then let k2,1 := min{i ∈ {1, . . . , N} : Ii /∈ ∆1} and let I2,1 := Ik2,1

and I2,1 ∈ ∆2. (If the set {i ∈ {1, . . . , N} : Ii /∈ ∆1} is empty, then instead of ε
choose ε/2. Then there are only finitely many rectangles Ii with ε/2 6 ai < ε.)

Continuing this process we obtain families of pairwise disjoint rectangles ∆1,∆2, . . .

We claim that there is M > 0 such that

A ⊂
M
⋃

k=1

⋃

I∈∆k

I, where M =
⌊(12(1 + cs)

cr

)d⌋

+ 1.

⌊(12(1 + cs)/cr)d⌋ + 1 is enough for sure, but it is possible that a lower number

is good as well. If M is such that there exists x ∈ A \
( M
⋃

k=1

⋃

I∈∆k

I
)

, then M 6

⌊(12(1 + cs)/cr)d⌋. Since A ⊂
(

⋃

I∈B

I
)

, there is Ij ∈ B such that x ∈ Ij , where

the rectangle Ij has center xj and sides γi(aj), i = 1, . . . , d. Then Ij /∈ ∆k k =

1, . . . ,M , otherwise due to x ∈ Ij ⊂
(

⋃

I∈∆k

I
)

, we get x ∈
( M
⋃

k=1

⋃

I∈∆k

I
)

, which is

a contradiction. At the same time for all k ∈ {1, . . . ,M} there exists jk such that
Ijk ∈ ∆k and Ij ∩ Ijk 6= ∅, or else Ij ∈ ∆k, which is a contradiction, too. Let the

center of Ijk be xjk with sides γi(ajk ), i = 1, . . . , d, k = 1, . . . ,M . Then aj 6 ajk ,

k = 1, . . . ,M , otherwise we would have chosen the rectangle Ij in ∆k instead of Ijk .

By Lemma 3.2, there are rectangles Jk with sides γi(aj), k = 1, . . . ,M, i = 1, . . . , d,

and Jk ⊂ (3Ij∩Ijk ), k = 1, . . . ,M . For all x ∈ R
d:

∑

I∈B

χI(x) 6 (4(1 + cs)/cr)d =: K

and due to Jk ⊂ Ijk ∈ B we obtain the same for the rectangles Jk. Therefore
M
∑

k=1

χJk
6 K χ⋃

M
k=1 Jk

, i.e., χ⋃
M
k=1 Jk

> K−1
M
∑

k=1

χJk
. Using this and the fact that

M
⋃

k=1

Jk ⊂ 3Ij , we obtain

3d|Ij | = |3Ij | >
∣

∣

∣

∣

M
⋃

k=1

Jk

∣

∣

∣

∣

=

∫

χ⋃
M
k=1 Jk

dλ >
1

K

M
∑

k=1

∫

χJk
dλ =

=
1

K

M
∑

k=1

|Jk| =
1

K

M
∑

k=1

|Ij | =
1

K
M |Ij |,

i.e., M 6 3dK = (12(1 + cs)/cr)d, which means M 6 ⌊(12(1 + cs)/cr)d⌋ and the
proof is complete. �
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4. Weak-type inequality for the cone-like maximal operator

Let δ := (δ1, . . . , δd), where δ1 = 1, δi > 1, i = 2, . . . , d, and let us define the set

R
d
γ,δ := {x = (x1, . . . , xd) ∈ R

d : δ−1
i γi(x1) 6 xi 6 δiγi(x1), i = 1, . . . , d}.

With the help of this set we can introduce the Hardy-Littlewood maximal operator

on cone-like sets. Let 1 6 s < ∞, f ∈ Lloc
s (Rd) and define the maximal operator by

Mγ,δ
s f(x) := sup

{(

1

|I|

∫

I

|f |s dλ
)1/s

: x ∈ I, (|I1|, . . . , |Id|) ∈ R
d
γ,δ

}

, x ∈ R
d.

Here I = I1 × . . . × Id ⊂ R
d are rectangles whose sides are parallel to the axes.

If δ = 1, then R
d
γ,δ = graph(γ) and the maximal operator on this set is denoted

by Mγ
s . If we choose s = 1, then we write simply Mγ or Mγ,δ. It is clear that

Mγ,δ
s f = (Mγ,δ(|f |s))1/s. Weisz proved in [21] that

Mγ
s f 6 Mγ,δ

s f 6 CMγ
s f.

The following lemma plays a central role in the proof of the weak-type and strong-

type inequality for the maximal operator Mγ,δ. An analogous version of this lemma

for cubes can be found in Cruz-Uribe and Fiorenza [6], page 95, and in Diening et

al. [11], page 99.

Lemma 4.1. If p(·) : R
d → [0,∞), p+ < ∞, then the following statements are

equivalent:

(1) p(·) ∈ LH0(R
d), i.e., there exists a constant C0 > 0 constant such that

|p(x)− p(y)| < C0

− log(|x − y|) , x, y ∈ R
d, 0 < |x− y| < 1/2.

(2) There exists a constant C > 0 (which depends on d, γ and p(·) but is indepen-
dent of the γ-rectangles) such that

|Iγ |p(x)−p+(Iγ) 6 C and |Iγ |p−(Iγ)−p(x) 6 C, x ∈ Iγ

for all γ-rectangles Iγ .
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P r o o f. We begin the proof with (1) ⇒ (2). We will prove the first inequality

of (2), the second one is similar. First, suppose that the diagonal of Iγ is d(Iγ) :=
( d
∑

i=1

γ2
i (a)

)1/2

< 1/2. Then for such a γ-rectangle Iγ containing x, |x− y| 6 d(Iγ) <

1/2 (y ∈ Iγ). Let f1(x) := min{γi(x) : i = 1, . . . , d}, f2(x) := max{γi(x) : i =

1, . . . , d}, x ∈ (0, 1). Then f1(a) 6 γi(a) 6 f2(a), a ∈ (0, 1), i = 1, . . . , d and

|x− y| 6 d(Iγ) =

( d
∑

i=1

γ2
i (a)

)1/2

6
√
d f2(a).

We claim that there exists 1 6 k ∈ N such that fk
2 (a) 6 Cf1(a), a ∈ (0, 1), where the

constant C is independent of a. Indeed, let a ∈ (0, 1) be arbitrary and 1 6 ki,j ∈ N,

i, j = 1, . . . , d, i 6= j be exponents such that c
ki,j−1
1,i < c2,j 6 c

ki,j

1,i , i, j = 1, . . . , d,

i 6= j and k := max{ki,j : i, j = 1, . . . , d, i 6= j}, C := max{c2,i : i = 1, . . . , d}. Let
0 > l ∈ Z be such that ξl−1 < a 6 ξl. Then by l < 0 we obtain

γk
i (a) 6 γ

ki,j

i (a) 6 γ
ki,j

i (ξl) 6 c
lki,j

1,i γ
ki,j

i (1) =
(

c
ki,j

1,i

)l
6 cl2,j 6 γj(ξ

l)

= γj(ξξ
l−1) 6 c2,jγj(ξ

l−1) 6 c2,jγj(a) 6 Cγj(a).

We obtain that for any i, j = 1, . . . , d, i 6= j: γk
i (a) 6 Cγj(a), i.e., f

k
2 (a) 6 Cf1(a).

Using this we get

|x− y| 6
√
df2(a) 6

√
dC1/kf

1/k
1 (a) ⇔ f1(a) >

( |x− y|√
dC1/k

)k

,

and

|Iγ | =
d
∏

i=1

γi(a) > fd
1 (a) >

( |x− y|√
dC1/k

)kd

.

Since p(x)− p+(I
γ) 6 0, we get

|Iγ |p(x)−p+(Iγ) 6

( |x− y|√
dC1/k

)kd(p(x)−p+(Iγ))

.

In our hypothesis p(·) ∈ LH0(R
d), i.e., p(·) is necessarily continuous. We may assume

that Iγ is closed, therefore there exists y ∈ Iγ such that p+(I
γ) = p(y) and

p(x)− p+(I
γ) = p(x)− p(y) = −|p(x)− p(y)| > − C0

− log (|x− y|) .
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Since (|x− y|/(
√
dC1/k))kd < 1, we obtain

( |x− y|√
dC1/k

)kd(p(x)−p+(Iγ))

6

( |x− y|√
dC1/k

)−kdC0/−log(|x−y|)

(4.1)

= exp
( kdC0

log(|x− y|) log
( |x− y|√

dC1/k

))

= exp
(

kdC0 − kdC0 log(
√
dC1/k)

1

log(|x− y|)
)

.

Since 0 < |x− y| < 1/2, we have log(|x− y|) < 0 and

0 >
1

log(|x− y|) >
1

log
(

1
2

) , |x− y| ∈
(

0,
1

2

)

.

By kdC0 log(
√
dC1/k)/ log(|x− y|) < 0, we can estimate (4.1) by

exp
(

kdC0 − kdC0 log(
√
dC1/k)

1

log
(

1
2

)

)

=: C(d, p(·), γ),

which proves the claim (1) ⇒ (2) in the case d(Iγ) < 1/2. We can split the case

d(Iγ) > 1/2 into three cases:

(a) f1(a) > 1/(2
√
d),

(b) f1(a) < 1/(2
√
d) 6 f2(a),

(c) f2(a) < 1/(2
√
d).

First, let us consider the case (a). Then γi(a) > 1/(2
√
d), i = 1, . . . , d, and |Iγ | >

1/(2
√
d)d. By p(x) − p+(I

γ) 6 0, we get

|Iγ |p(x)−p+(Iγ) 6 (2
√
d)−d(p(x)−p+(Iγ)) 6 (2

√
d)d(p+−p−) =: C(d, p(·), γ).

Let us consider the case (b). Suppose that l ∈ {1, . . . , d} such that f2(a) = γl(a),

i.e., the lth side of the γ-rectangle Iγ is the longest side. Then 1/(2
√
d) 6 γl(a),

therefore a > γ−1
l (1/(2

√
d)). Then

|Iγ | =
d
∏

i=1

γi(a) >

d
∏

i=1

γi

(

γ−1
l

( 1

2
√
d

))

=
1

2
√
d

∏

i6=l

γi

(

γ−1
l

( 1

2
√
d

))

.

Since p(x)− p+(I
γ) 6 0, 2

√
d > 1 and

∏

i6=l

γi(γ
−1
l (1/(2

√
d))) < 1, we obtain

|Iγ |p(x)−p+(Iγ) 6

(

2
√
d

∏

i6=l γi
(

γ−1
l (1/(2

√
d))

)

)p+(Iγ)−p(x)

6

(

2
√
d

∏

i6=l γi
(

γ−1
l (1/(2

√
d))

)

)p+−p−

6 max
l=1,...,d

{(

2
√
d

∏

i6=l γi
(

γ−1
l (1/(2

√
d))

)

)p+−p−
}

=: C(d, p(·), γ).
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Finally, in the case (c), the diagonal of the γ-rectangle Iγ , d(Iγ) < 1/2, so we have

finished the induction (1) ⇒ (2).
The other way can be proved analogously as in Cruz-Uribe and Fiorenza [6],

page 96. �

The following results can be found in Diening et al. [11], pages 102–105, for cubes.

We can prove them analogously for γ-rectangles by the help of Lemma 4.1. For the

sake of completeness, Lemmas 4.2–4.5 are presented here, though they are used only

for the proof of Theorem 4.1 (see Diening et al. [11], page 115).

Lemma 4.2. Let p(·) ∈ P(Rd), 1/p(·) ∈ LH(Rd). Then there exists β ∈ (0, 1)

such that

ϕp(x)[β(λ|Iγ |−1)1/p−(Iγ)] 6 λ|Iγ |−1, x ∈ Iγ

for every λ ∈ [0, 1] and γ-rectangle Iγ .

Lemma 4.3. Let p(·) ∈ P(Rd), 1/p(·) ∈ LH0(R
d) and let q : R

d × R
d → R such

that
1

q(x, y)
:= max

{ 1

p(x)
− 1

p(y)
, 0
}

,
1

q(·, ·) ∈ LH0(R
d × R

d).

Then for any η ∈ (0, 1) there exists µ ∈ (0, 1) such that

ϕp(x)

(

µ
1

|Iγ |

∫

Iγ

|f(y)| dy
)

6
1

|Iγ |

∫

Iγ

ϕp(y)(|f(y)|) dy

+
1

|Iγ |

∫

Iγ

ϕq(x,y)(η)χ{0<|f(y)|61}(y) dy,

for every γ-rectangle Iγ , x ∈ Iγ and f ∈ Lp(·)(R
d)+L∞(Rd), ‖f‖Lp(·)(Rd)+L∞(Rd) 6 1.

Lemma 4.4. Let p(·) ∈ P(Rd), 1/p(·) ∈ LH(Rd). Then for anym > 0 there exists

β ∈ (0, 1) depending only on m, p(·), γ and d but independent of the γ-rectangles,

such that

ϕp(x)

(

β
1

|Iγ |

∫

Iγ

|f(y)| dy
)

6
1

|Iγ |

∫

Iγ

ϕp(y)(|f(y)|) dy

+
1

2

(

1

|Iγ |

∫

Iγ

[ 1

(e + |x|)m +
1

(e + |y|)m
]

χ{0<|f(y)|61}(y) dy

)p−

and

ϕp(x)

(

β
1

|Iγ |

∫

Iγ

|f(y)| dy
)

6
1

|Iγ |

∫

Iγ

ϕp(y)(|f(y)|) dy

+
1

2

1

|Iγ |

∫

Iγ

[ 1

(e + |x|)m +
1

(e + |y|)m
]

χ{0<|f(y)|61}(y) dy
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for every γ-rectangle Iγ ⊂ R
d, all x ∈ Iγ and all f ∈ Lp(·)(R

d) + L∞(Rd),

‖f‖Lp(·)(Rd)+L∞(Rd) 6 1.

If we integrate the second estimate over a γ-rectangle Iγ , then we get the following

corollary.

Lemma 4.5. Let p(·) ∈ P(Rd), 1/p(·) ∈ LH(Rd). Then for any m > 0 there

exists β ∈ (0, 1) such that

∫

Iγ

ϕp(x)

(

β
1

|Iγ |

∫

Iγ

|f(y)| dy
)

dx 6

∫

Iγ

ϕp(y)(|f(y)|) dy +

∫

Iγ

1

(e + |y|)m dy,

∫

Iγ

ϕp(x)

(

β
1

|Iγ |

∫

Iγ

|f(y)| dy
)

dx 6

∫

Iγ

ϕp(y)(|f(y)|) dy + |{y ∈ Iγ : 0 < |f(y)| 6 1}|

for every γ-rectangle Iγ ⊂R
d and all f ∈Lp(·)(R

d)+L∞(Rd), ‖f‖Lp(·)(Rd)+L∞(Rd) 6 1.

Let 1 6 N ∈ N. A family H of measurable sets U ⊂ R
d is locally N -finite, if

∑

U∈H

χU (x) 6 N

for almost every x ∈ R
d. Note that a family H of sets U ⊂ R

d is locally 1-finite if

and only if the sets U ∈ H are pairwise disjoint. Now let us introduce the set of
exponent functions

Aγ := {p(·) ∈ P(Rd) : there exists K > 0 for all families Iγ of pairwise disjoint

γ-rectangles such that for all f ∈ Lp(·)(R
d), ‖TIγf‖p(·) 6 K‖f‖p(·)},

where

TIγf =
∑

Iγ∈Iγ

1

|Iγ |

∫

Iγ

|f(y)| dy · χIγ =:
∑

Iγ∈Iγ

AIγ (f) · χIγ .

The following theorem can be found in Diening et al. [11], page 115, for cubes.

Using Lemmas 4.2–4.5 we can prove Theorem 4.1 in the same way for γ-rectangles.

Theorem 4.1. Let p(·) ∈ P(Rd), 1/p(·) ∈ LH(Rd). Then p(·) ∈ Aγ and

‖TIγf‖p(·) 6 CN‖f‖p(·)

for any locally N -finite family Iγ of γ-rectangles and all f ∈ Lp(·)(R
d).

The following theorem states that in the case p(·) ∈ Aγ , the maximal operator

Mγ,δ is of weak type (p(·), p(·)).
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Theorem 4.2. Let p(·) ∈ Aγ . Then

sup
τ>0

‖τχ{Mγ,δf>τ}‖p(·) 6 C‖f‖p(·)

for all f ∈ Lp(·)(R
d).

P r o o f. SinceMγ,δf 6 CMγf , f ∈ Lp(·)(R
d), it is enough to prove the inequality

for the maximal operator Mγ . Let Iγx be γ-rectangles with sides |Iγx,i| = γi(|Iγx,1|),
i = 1, . . . , d, and let x be the center of Iγx . Let

Mγ
c f(x) := sup

{

1

|Iγx |

∫

Iγ
x

|f(y)| dy : x ∈ Iγx

}

, x ∈ R
d

be the centered maximal operator, where the supremum is taken over all γ-rectangles

having center x.

Suppose that x ∈ Iγz , where Iγz is a γ-rectangle with center z and sides γi(a),

i = 1, . . . , d. Let 1 6 l ∈ N be an exponent for which ξl−1 < 2 6 ξl and let

a∗ := max{γ−1
i (ξlγi(a)) : i = 1, . . . , d}. Consider the γ-rectangle (Iγx )∗ having center

x and sides γi(a
∗), i = 1, . . . , d. Then γi(a

∗) > ξlγi(a) > 2γi(a), i = 1, . . . , d. We

claim that Iγz ⊂ (Iγx )
∗. Indeed, suppose that y ∈ Iγz , i.e., |zi − yi| 6 γi(a)/2,

i = 1, . . . , d. By the definition of a∗ and due to x ∈ Iγz

|xi − yi| 6 |xi − zi|+ |zi − yi| 6
1

2
2γi(a) 6

1

2
γi(a

∗),

thus y ∈ (Iγx )
∗. Let 1 6 ri ∈ N, i = 1, . . . , d be exponents for which cri−1

1,i < ξl 6 cri1,i,

r := max{ri : i = 1, . . . , d}. Then

ξlγi(a) 6 cri1,iγi(a) 6 γi(ξ
ria) ⇒ γ−1

i (ξlγi(a)) 6 ξria 6 ξra, i = 1, . . . , d.

We get that a∗ 6 ξra, therefore γi(a
∗) 6 γi(ξ

ra) 6 cr2,iγi(a), i = 1, . . . , d. Thus

|(Iγx )∗|
|Iγz |

=

∏d
i=1 γi(a

∗)
∏d

i=1 γi(a)
6

∏d
i=1 c

r
2,iγi(a)

∏d
i=1 γi(a)

=

d
∏

i=1

cr2,i =: C.

Here the constant C is independent of the rectangles, it depends only on d and γ.

Therefore we get

1

|Iγz |

∫

Iγ
z

|f | dλ 6
1

|Iγz |

∫

(Iγ
x )∗

|f | dλ =
|(Iγx )∗|
|Iγz |

1

|(Iγx )∗|

∫

(Iγ
x )∗

|f | dλ 6 CMγ
c f(x).
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Taking the supremum over all γ-rectangles containing x, we obtain

Mγ
c f 6 Mγf 6 CMγ

c f, f ∈ Lloc
1 (Rd),

so it is enough to prove the theorem for the maximal operator Mγ
c .

Let f ∈ Lp(·)(R
d), ‖f‖p(·) 6 1 and let τ > 0 be arbitrary. Denote Ωτ :=

{Mγ
c f > τ}. Then Ωτ is an open set. Let K ⊂ Ωτ , K compact. Then for all

x ∈ K, there exists γ-rectangle Iγx with center x, such that

AIγ
x
f :=

1

|Iγx |

∫

Iγ
x

|f | dλ > τ.

Using Theorem 3.1, from the set {Iγx : x ∈ K} we can choose families∆1,∆2, . . . ,∆M

such that K ⊂
M
⋃

k=1

⋃

I∈∆k

I and Ik,i ∩ Ik,j = ∅, i 6= j, Ik,i, Ik,j ∈ ∆k, k = 1, . . . ,M .

Then for almost every x ∈ R
d

τχK(x) 6

M
∑

k=1

∑

Iγ
x∈∆k

τχIγ
x
(x) <

M
∑

k=1

∑

Iγ
x∈∆k

AIγ
x
fχIγ

x
(x) =

M
∑

k=1

T∆k
f(x).

That is,

‖τχK‖p(·) 6
∥

∥

∥

∥

M
∑

k=1

T∆k
f

∥

∥

∥

∥

p(·)

6

M
∑

k=1

‖T∆k
f‖p(·).

Since p(·) ∈ Aγ , there exists a constant C > 0 for which ‖T∆k
f‖p(·) 6 C‖f‖p(·), i.e.,

‖τχK‖p(·) 6
M
∑

k=1

C‖f‖p(·) = CM‖f‖p(·).

Let Kj ⊂ Ωτ , Kj compact, Kj ⊂ Kj+1, j ∈ N, such that
⋃

j∈N

Kj = Ωτ . Then due to

the monotone convergence theorem

‖τχ{Mγ
c f>τ}‖p(·) = ‖τχΩτ

‖p(·) = lim
j→∞

‖τχKj
‖p(·) 6 CM‖f‖p(·),

which proves the theorem. �

Since p(·) ∈ P(Rd) and 1/p(·) ∈ LH(Rd) implies p(·) ∈ Aγ (see Theorem 4.1), we

can formulate the next theorem.
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Theorem 4.3. Let p(·) ∈ P(Rd), 1/p(·) ∈ LH(Rd). Then

sup
τ>0

‖τχ{Mγ,δf>τ}‖p(·) 6 C‖f‖p(·)

for all f ∈ Lp(·)(R
d).

We get easily the weak-type inequality for the maximal operator Mγ,δ
s .

Theorem 4.4. Let p(·) ∈ P(Rd), 1/p(·) ∈ LH(Rd). If p− > s, then

sup
τ>0

‖τχ{Mγ,δ
s f>τ}‖p(·) 6 C‖f‖p(·)

for all f ∈ Lp(·)(R
d).

P r o o f. First of all, if p(·) ∈ P(Rd), 1/p(·) ∈ LH(Rd), then for any s > 0 such

that sp− > 1, we get

(4.2) ‖|f |s‖p(·) = ‖f‖ssp(·)

for all f ∈ Lp(·)(R
d). Indeed,

‖f‖ssp(·) =
(

inf
{

λ > 0: ̺sp(·)

(f

λ

)

6 1
})s

= inf
{

λs > 0: ̺p(·)

( |f |s
λs

)

6 1
}

= ‖|f |s‖p(·).

The more general version of (4.2) can be found in Diening et all [11], page 74. Let

f ∈ Lp(·)(R
d) and τ > 0 be arbitrary. Then due to p− > s, we get that (p(·)/s)− > 1

and

‖τχ{Mγ,δ
s f>τ}‖p(·) = ‖(τsχ{Mγ,δ(|f |s)>τs})

1/s‖p(·) = ‖τsχ{Mγ,δ(|f |s)>τs}‖1/sp(·)/s

6 C‖|f |s‖1/sp(·)/s = C‖f‖p(·),

which proves the theorem. �
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5. Strong-type inequality for the cone-like maximal operator

The proof of the next lemma for γ-rectangles is analogous to that of Lemma 4.3.6.

in Diening et al. [11], page 110, for cubes.

Lemma 5.1. Let p(·) ∈ P(Rd), 1/p(·) ∈ LH(Rd). Then for any m > 0 there

exists β ∈ (0, 1) such that

ϕp(x)(βM
γf(x)) 6 Mγ(ϕp(·)(f))(x) +Mγ(e + |·|−m)(x), x ∈ R

d

for all f ∈ Lp(·)(R
d) + L∞(Rd), ‖f‖Lp(·)(Rd)+L∞(Rd) 6 1.

Now we are ready to prove the strong-type inequality of the maximal operator

Mγ,δ on the variable Lp(·)(R
d) spaces.

Theorem 5.1. Let p(·) ∈ P(Rd), 1/p(·) ∈ LH(Rd). If p− > 1, then

‖Mγ,δf‖p(·) 6 C‖f‖p(·)

for all f ∈ Lp(·)(R
d).

P r o o f. It is enough to prove the theorem for the maximal operator Mγ due

to Mγ,δf 6 CMγf for all f ∈ Lp(·)(R
d). Let q(·) := p(·)/p−. Since 1/p(·) ∈

LH(Rd), thus 1/q(·) = p−/p(·) ∈ LH(Rd). It is true that q− = (p(·)/p−)− = 1. Let

f ∈ Lp(·)(R
d) be arbitrary with ‖f‖p(·) 6 1/2. We can see easily that ϕq(x)(rt) 6

rϕq(x)(t) for all t > 0 and r ∈ [0, 1]. Since q(·) 6 p(·) 6 ∞, we get (see (2.2)):

f ∈ Lq(·)(Rd)+L∞(Rd) and ‖f‖Lq(·)(Rd)+L∞(Rd) 6 2‖f‖p(·) 6 1.

Consequently, we can apply Lemma 5.1 to obtain

ϕq(x)

(β

2
Mγf(x)

)

6
1

2
ϕq(x)(βM

γf(x)) 6
1

2
Mγ(ϕq(·)(f))(x) +

1

2
h(x), x ∈ R

d,

where h(x) := Mγ ((e + |·|−m)) (x). Let m > d. It is clear that ϕp(x)(t) =

(ϕq(x)(t))
p− , t > 0, x ∈ R

d, thus by Jensen’s inequality

ϕp(x)

(β

2
Mγf(x)

)

6

(1

2
Mγ(ϕq(·)(f))(x) +

1

2
h(x)

)p−

6
1

2
[Mγ(ϕq(·)(f))(x)]

p− +
1

2
(h(x))p− .
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If we integrate both sides of this inequality over Rd, we get

̺p(·)

(β

2
Mγf

)

=

∫

Rd

ϕp(x)

(β

2
Mγf(x)

)

dx

6
1

2

∫

Rd

[Mγ(ϕq(·)(f))(x)]
p− dx+

1

2

∫

Rd

(h(x))p− dx

=
1

2
‖Mγ(ϕq(·)(f))‖p−

p−
+

1

2
‖h‖p−

p−
.

If ‖f‖p(·) 6 1, then ̺p(·)(f) 6 1, and therefore

‖ϕq(·)(f)‖p−

p−
=

∫

Rd

ϕq(x)(|f(x)|)p− dx =

∫

Rd

ϕp(x)(|f(x)|) dx = ̺p(·)(f) 6 1.

Since p− > 1, the maximal operator Mγ is bounded on the space Lp−
(Rd), i.e.,

‖Mγ(ϕq(·)(f))‖p−
6 C1‖ϕq(·)(f)‖p−

6 C1.

At the same time since, mp− > d, we have (e+ |·|)−mp− ∈ L1(R
d), i.e., (e+ |·|)−m ∈

Lp−
(Rd), thus

‖h‖p−

p−
= ‖Mγ((e + |·|)−m)‖p−

p−
6 C2‖(e + |·|)−m‖p−

p−
= C3 < ∞.

We see that there exists a constant C (we can assume that C > 1) such that

̺p(·) (β/2M
γf) 6 C, so by inequality (2.1)

̺p(·)

( β

2C
Mγf

)

6
1

C
̺p(·)

(β

2
Mγf

)

6 1 ⇒ ‖Mγf‖p(·) 6
2C

β
.

Consequently, ‖Mγf‖p(·) 6 K for ‖f‖p(·) 6 1/2. The proof is completed by the

scaling argument. �

Using the fact that Mγ,δ
s f = (Mγ,δ(|f |s))1/s, we get the following theorem.

Theorem 5.2. Let p(·) ∈ P(Rd), 1/p(·) ∈ LH(Rd). If p− > s, then

‖Mγ,δ
s f‖p(·) 6 C‖f‖p(·)

for all f ∈ Lp(·)(R
d).

P r o o f. It is enough to prove the theorem only for the maximal operator Mγ
s .

Let f ∈ Lp(·)(R
d) be arbitrary. Then due to p− > s, (p(·)/s)− > 1. Using (4.2) we

get

‖Mγ
s f‖p(·) = ‖Mγ(|f |s)1/s‖p(·) = ‖Mγ(|f |s)‖1/sp(·)/s 6 C‖|f |s‖1/sp(·)/s = C‖f‖p(·),

which proves the theorem. �
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