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Abstract. We discuss the invariant subspace problem of polynomially bounded operators
on a Banach space and obtain an invariant subspace theorem for polynomially bounded
operators. At the same time, we state two open problems, which are relative propositions of
this invariant subspace theorem. By means of the two relative propositions (if they are true),
together with the result of this paper and the result of C. Ambrozie and V.Müller (2004) one
can obtain an important conclusion that every polynomially bounded operator on a Banach
space whose spectrum contains the unit circle has a nontrivial invariant closed subspace.
This conclusion can generalize remarkably the famous result that every contraction on
a Hilbert space whose spectrum contains the unit circle has a nontrivial invariant closed
subspace (1988 and 1997).
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1. Introduction and preliminaries

In 1988, Brown, Chevreau and Pearcy in [3] proved that every contraction on

a Hilbert space whose spectrum contains the unit circle has a nontrivial invariant

closed subspace.

By the von Neumann inequality, every contraction on a Hilbert space is a poly-

nomially bounded operator. Conversely, Pisier in [8] showed in 1997 that there are

polynomially bounded operators on a Hilbert space that are not similar to a con-

traction. Thus one tries to generalize the result of Brown, Chevreau and Pearcy,

see [3], to a polynomially bounded operator on a Banach space. To be more specific,

a natural conjecture is as follows:
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Conjecture 1. Every polynomially bounded operator on a Banach space whose

spectrum contains the unit circle has a nontrivial invariant closed subspace.

In 2004, Ambrozie and Müller in [1] showed that every polynomially bounded

operator of class C0. on a Banach space whose spectrum contains the unit circle has

a nontrivial invariant closed subspace.

An operator T on a Banach space X is said to be polynomially bounded if there

is a constant k such that

(1.1) ‖p(T )‖ 6 k‖p‖, p ∈ P,

where P denotes the normed space of all polynomials with the norm

‖p‖ = sup{|p(z)| : z ∈ C, |z| 6 1}.

An operator T on a Banach space X is said to be a polynomially bounded operator

of class C0. if T is polynomially bounded and lim
n→∞

T nx = 0 for all x ∈ X . An

operator T on a Banach space X is said to be a polynomially bounded operator of

class C.0 if T is polynomially bounded and lim
n→∞

T ∗nx∗ = 0 for all x∗ ∈ X∗.

It is well known that there are many polynomially bounded operators of class C.0

that are not polynomially bounded operators of class C0. (for example, the unilateral

right shift operator).

In this paper, based on [1] we prove that every polynomially bounded operator of

class C.0 on a Banach space whose spectrum contains the unit circle has a nontrivial

invariant closed subspace.

We first recall some basic notions and facts from [1] and others. For the notation

and terminology not explained in the text we refer to [1], [9] and so on.

Let D = {z : z ∈ C, |z| < 1} be the open unit disc in the complex plane C. Let
us denote by A(D) the disc algebra consisting of all functions continuous on D and

analytic on D with the norm ‖f‖ = sup{|f(z)| : z ∈ D}. Let T = {z : z ∈ C, |z| = 1}
be the unit circle in the complex plane C. Let C(T) denote the Banach space of all

continuous functions on T with the norm ‖f‖T = sup{|f(z)| : z ∈ C, |z| = 1}. By
the maximum modulus principle, we have

‖f‖ = sup{|f(z)| : z ∈ D} = sup{|f(z)| : z ∈ T} = ‖f‖
T

for each f ∈ A(D), and hence P and A(D) can be regarded as subspaces of C(T).

By the Hahn-Banach theorem, every ϕ ∈ P ∗ can be extended without changing the

norm to a functional on C(T), which is still denoted by the same symbol ϕ. By the
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Riesz theorem, there is a complex-valued regular Borel measure µ on T such that

‖µ‖ = ‖ϕ‖, and

(1.2) ϕ(f) =

∫

T

f dµ, f ∈ A(D).

Let L1(T) be the Banach space of all complex integrable functions on T with norm

‖f‖1 = (2π)−1
∫

π

−π
|f(eit)| dt. For every h ∈ L1(T), define a functional Mh on A(D)

by

Mh(f) =
1

2π

∫

π

−π

f(eit)h(eit) dt, f ∈ A(D).

ThenMh is a bounded linear functional onA(D), and ‖Mh‖ 6 ‖h‖1. By [1], page 337,
if h = 1 then M1(p) = p(0) for every p ∈ P , and so it is easy to see that for every

f ∈ A(D), we have

(1.3) M1(f) = f(0).

From now on, by T we denote a polynomially bounded operator, and k is as

in (1.1). It is well known that for every f ∈ A(D), there is a sequence of polynomials

{pn(z)} such that ‖pn − f‖ → 0, n → ∞. Thus we have

‖pn(T )x− pm(T )x‖ 6 k‖pn − pm‖‖x‖ → 0, n → ∞, m → ∞

for each x ∈ X , which implies {pn(T )x} is a convergent sequence in X . Define an

operator f(T ) : X → X by

(1.4) f(T )x = lim
n→∞

pn(T )x, x ∈ X.

It is easy to see that the definition of f(T ) does not depend on the particular choice

of {pn}, and f(T ) is a linear operator on X . Moreover, we have

‖f(T )x‖ = lim
n→∞

‖pn(T )x‖ 6 lim
n→∞

k‖pn‖ ‖x‖ = k‖f‖ ‖x‖

for every x ∈ X , and so

(1.5) ‖f(T )‖ 6 k‖f‖, f ∈ A(D).

For every x ∈ X , x∗ ∈ X∗, define a functional x⊗ x∗ on P by

(x⊗ x∗)(p) = 〈p(T )x, x∗〉, p ∈ P.

Then x⊗ x∗ is a bounded linear functional on P , and ‖x⊗ x∗‖ 6 k‖x‖‖x∗‖.
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2. Main results

Lemma 1 (parallel with Lemma 7.1 in [1] for the class C0.). Let T be a polyno-

mially bounded operator of class C.0 on a Banach space X . If x ∈ X , x∗ ∈ X∗, then

there is h ∈ L1(T) such that

(x⊗ x∗ −M1)(p) =
1

2π

∫

π

−π

p(eit)h(eit) dt, p ∈ P,

and ‖h‖1 = ‖x⊗ x∗ −M1‖.

P r o o f. Since x⊗x∗−M1 is a bounded linear functional on P , it follows from (1.2)

that there is a Borel measure µ on T such that ‖µ‖ = ‖x⊗ x∗ −M1‖, and

(2.1) (x⊗ x∗ −M1)(f) =

∫

T

f dµ, f ∈ A(D).

Since x ⊗ x∗ ∈ P ∗, it follows that x ⊗ x∗ can be extended without changing the

norm to a functional on C(T), which is still denoted by the same symbol x⊗ x∗. On

the other hand, it follows from (1.4) that for every f ∈ A(D) there exists pn ∈ P

such that ‖pn − f‖ → 0, n → ∞, lim
n→∞

pn(T )x = f(T )x. Therefore we have

(2.2) x⊗ x∗(f) = lim
m→∞

x⊗ x∗(pm) = lim
m→∞

〈pm(T )x, x∗〉 = 〈f(T )x, x∗〉.

Let {fn} be a Montel sequence in A(D), that is, fn ∈ A(D), supn ‖fn‖ < ∞, and
lim
n→∞

fn(z) = 0 for all z ∈ D. We now show that for every ε ∈ (0, 2k) there exists n0

such that |〈fn(T )x, x∗〉| < ε for all n > n0. Assume without loss of generality that

‖fn‖ 6 1, ‖x‖ 6 1, ‖x∗‖ 6 1.

Since T is a polynomially bounded operator of class C.0 on X it follows that

lim
n→∞

T ∗nu∗ = 0 for all u∗ ∈ X∗, so that there exists a positive integer m such that

‖T ∗mx∗‖ < ε/(4k).

Let fn(z) =
∞
∑

j=0

cn,jz
j be the Taylor expansion of fn. By the Cauchy formula and

the Lebesgue domination theorem we have cn,j → 0, n → ∞, for every j. Hence there
exists n0 such that for every n > n0 we have |cn,j| < ε/(2mk), j = 0, 1, 2, . . . ,m.

For every n > n0, write pn(z) =
m−1
∑

j=0

cn,jz
j , then there exists gn ∈ A(D) such that

fn(z) = pn(z) + zngn(z). Consequently ‖pn‖ 6
m−1
∑

j=0

|cn,j | < ε/(2k) and ‖gn‖ =
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‖fn − pn‖. Thus by (1.5) we have

|〈fn(T )x, x∗〉| = |〈x, [fn(T )]∗x∗〉| 6 ‖[fn(T )]∗x∗‖
6 ‖[pn(T )]∗x∗‖+ ‖[gn(T )]∗‖‖T ∗mx∗‖
6 ‖[pn(T )]∗‖+ ‖gn(T )‖‖T ∗mx∗‖ = ‖[pn(T )]‖+ ‖gn(T )‖‖T ∗mx∗‖
6 k‖pn‖+ k‖fn − pn‖

ε

4k

6 k‖pn‖+ k(‖fn‖+ ‖pn‖)
ε

4k
< ε,

from which and (2.2) we obtain

(2.3) (x⊗ x∗)(fn) = 〈fn(T )x, x∗〉 → 0, n → ∞.

On the other hand, it follows from (1.3) and the definition of the Montel sequences

that

M1(fn) = fn(0) → 0, n → ∞.

Thus by (2.1) and (2.3) we have

∫

T

fn dµ = (x⊗ x∗ −M1)(fn) → 0, n → ∞.

Therefore µ is a Henkin measure. By [9], page 189, Remark 9.2.2 (c), µ is absolutely

continuous with respect to the Lebesgue measure on T. It follows from (2.1) and the

Radon-Nikodym theorem that there exists h ∈ L1(T) such that for all p ∈ P we have

(x⊗ x∗ −M1)(p) =

∫

T

p dµ =
1

2π

∫

π

−π

p(eit)h(eit) dt,

and

‖x⊗ x∗ −M1‖ = ‖µ‖ = |µ|(T) = 1

2π

∫

π

−π

|h(eit)| dt = ‖h‖1.

�

Lemma 2. Let T be a polynomially bounded operator of class C.0 on a Banach

space X . Suppose that σ(T ) ⊃ T and that T has no nontrivial invariant closed

subspace. Let h ∈ L1(T) be nonnegative. If w ∈ X , w∗ ∈ X∗, δ > 0, then there

exist vectors u ∈ X , u∗ ∈ X∗ such that

(1) ‖u‖ 6 2
√
2 kb‖h‖1/21 , ‖u∗‖ 6 k‖h‖1/21 ;

(2) ‖w ⊗ u∗‖ < δ;

(3) ‖u ⊗ (u∗ + w∗) − Mh‖ < c3‖h‖1, where b > 0, c3 ∈ (0, 1) are constants in

Theorem 7.2 of [1].
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P r o o f. Assume without loss of generality that ‖h‖1 6= 0. By Theorem 7.2 in [1]

applied to the function ‖h‖−1

1 ‖h and the functional ‖h‖−1/2
1 w∗, there are vectors

v ∈ X and v∗ ∈ X∗ such that ‖v‖ 6 2
√
2 kb, ‖v∗‖ 6 1, and

(2.4) ‖v ⊗ (T ∗nv∗ + ‖h‖−1/2
1 ω∗)−M‖h‖−1

1
h‖ < c3.

Set u = ‖h‖1/21 v, u∗ = ‖h‖1/21 T ∗nv∗. So we have ‖u‖ 6 2
√
2 kb‖h‖1/21 , ‖u∗‖ 6

k‖h‖1/21 , and the estimate

‖w ⊗ u∗‖ = ‖h‖1/21 ‖w ⊗ T ∗nv∗‖ 6 k‖w‖‖T ∗nv∗‖‖h‖1/21 < δ

holds if n is large enough. Moreover, by (2.4) we have

‖u⊗ (u∗ + w∗)−Mh‖ = ‖h‖1 ‖v ⊗ (T ∗nv∗ + ‖h‖−1/2
1 w∗)−M‖h‖−1

1
h‖ < c3‖h‖1.

�

Fix an integer N such that c3 + πN−1 < 1, and a positive constant c such that

1−N−1(1− c3 − πN−1) < c < 1.

Lemma 3. Let T be a polynomially bounded operator of class C.0 on a Banach

space X . Suppose that σ(T ) ⊃ T and that T has no nontrivial invariant closed

subspace. If h ∈ L1(T), x ∈ X , x∗ ∈ X∗, then there exist vectors y ∈ X , y∗ ∈ X∗

such that

(1) ‖y − x‖ 6 2
√
2 kb‖h‖1/21 ;

(2) ‖y∗ − x∗‖ 6 k‖h‖1/21 ;

(3) ‖y ⊗ y∗ − x⊗ x∗ −Mh‖ < c‖h‖1,
where b > 0 and c ∈ (0, 1) are the constants above.

P r o o f. From Lemma 2, we derive Lemma 3 as in Theorem 7.4 of [1]. �

Theorem 1. Let T be a polynomially bounded operator of class C.0 on a Banach

space X . If σ(T ) ⊃ T, then T has a nontrivial invariant closed subspace.

P r o o f. Using Lemma 1 and Lemma 3, one can prove Theorem 1 as in the proof of

Theorem B of [1]. For the convenience of the reader we state the main ideas. Let b > 0

and c ∈ (0, 1) be constants in Lemma 3. Assume that T has no nontrivial invariant

closed subspace. Take x0 = 0, x∗
0 = 0. Then ‖x0⊗x∗

0−M1‖ = 1 = c0. By induction,

assume that we have chosen vectors xn ∈ X , x∗
n ∈ X∗ such that ‖xn⊗x∗

n−M1‖ < cn.

By Lemma 1, there is a vector hn ∈ L1(T) such that ‖hn‖1 = ‖xn ⊗ x∗
n −M1‖ < cn,

and

(2.5) (xn ⊗ x∗
n −M1)(p) =

1

2π

∫

π

−π

p(eit)hn(e
it) dt, p ∈ P.
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By Lemma 3, there are vectors xn+1 ∈ X , x∗
n+1 ∈ X∗ such that

‖xn+1 − xn‖ 6 2
√
2 kb‖hn‖1/21 6 2

√
2 kbcn/2,(2.6)

‖x∗
n+1 − x∗

n‖ 6 k‖hn‖1/21 6 kcn/2,(2.7)

and

‖xn+1 ⊗ x∗
n+1 − xn ⊗ x∗

n −M−hn
‖ 6 c‖hn‖1 6 cn+1.

Thus by (2.5) and the definition of Mhn
we obtain

(2.8) ‖xn+1 ⊗ x∗
n+1 −M1‖

= ‖(xn+1 ⊗ x∗
n+1 − xn ⊗ x∗

n) + (xn ⊗ x∗
n −M1)‖

= ‖xn+1 ⊗ x∗
n+1 − xn ⊗ x∗

n +Mhn
‖ < cn+1 → 0, n → ∞.

Moreover, by (2.6) and (2.7) it follows that {xn} and {x∗
n} are Cauchy sequences

in X and X∗, respectively. Suppose that xn → x, x∗
n → x∗, n → 0, then we have

‖xn ⊗ x∗
n − x⊗ x∗‖

= sup{‖xn ⊗ x∗
n(p)− x⊗ x∗(p)‖; ‖p‖ 6 1}

6 sup{|〈p(T )xn, x
∗
n〉 − 〈p(T )xn, x

∗〉|+ |〈p(T )xn, x
∗〉 − 〈p(T )x, x∗〉|; ‖p‖ 6 1}

6 sup{k‖p‖(‖xn‖‖x∗
n − x∗‖+ ‖xn − x‖‖x∗‖); ‖p‖ 6 1} → 0, n → ∞.

Thus by (2.8) we can obtain x⊗x∗ = M1. This shows that 〈x, x∗〉 = 1, 〈T nx, x∗〉 = 0,

n = 1, 2, . . . Therefore we have x 6= 0, x∗ 6= 0, and T nx ∈ kerx∗, n = 1, 2, . . .

If Tx = 0, then kerT is a nontrivial invariant closed subspace for T . If Tx 6= 0, then

M = span{Tx, T 2x, . . . , T nx, . . .} (⊂ kerx∗) is a nontrivial invariant closed subspace

for T. �

3. Some remarks

Remark 1. If T is a polynomially bounded operator (of class C.0) on a Banach

space such that σ(T ) ⊃ T, then it follows from Theorem A of [1] that T ∗ has

a nontrivial invariant closed subspace (see also [1], page 344), but it is well known

that it is impossible for the conclusion of Theorem 1 to follow from Theorem A of [1]

(see [1], [2], [4], [5], [6], [7] and so on).

In fact, it is well known there are much differences between the properties of

invariant subspaces of an operator A and its adjoint operator A∗. For example, if M

is a nontrivial invariant closed subspace of an operator A, then M⊥ is a nontrivial
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invariant closed subspace of A∗; conversely, if N is a nontrivial invariant closed

subspace of A∗, then ⊥N is an invariant closed subspace of A, but ⊥N may be

trivial (if N is w∗-dense).

In particular, Jiang in [5] gave an example on a Banach space in which the opera-

tor A∗ has a nontrivial invariant closed subspace, but A has no nontrivial invariant

closed subspace.

Remark 2. Let T be a polynomially bounded operator on a Banach space X . Set

M =
{

x ∈ X : lim
n→∞

T nx = 0
}

, N =
{

x∗ ∈ X∗ : lim
n→∞

T ∗nx∗ = 0
}

, then M and ⊥N

are invariant closed subspaces for T . Moreover, if {0} 6= M 6= X , it is clear that T

has a nontrivial invariant closed subspace.

Ambrozie and Müller tried to show in [1] that every polynomially bounded oper-

ator T on a Banach space whose spectrum contains the unit circle has a nontrivial

invariant closed subspace (i.e. Conjecture 1). As pointed in [1], one can reduce

the invariant subspace problem of (general) polynomially bounded operators (whose

spectrum contains the unit circle) in a standard way. To be more specific, to prove

Conjecture 1 it suffices to show the following propositions:

Proposition 1. When M = X , T has a nontrivial invariant closed subspace.

Proposition 2. When N = X∗, T has a nontrivial invariant closed subspace.

Proposition 3. When {0} 6= N 6= X∗, T has a nontrivial invariant closed sub-

space.

Proposition 4. WhenM = {0} and N = {0}, T has a nontrivial invariant closed
subspace.

In [1], Ambrozie and Müller proved Proposition 1 (it is the main result of [1]). In

this paper, we proved Proposition 2. But Proposition 3 and Proposition 4 remain

open so far.

By the way, in Proposition 3 it is clear that ⊥N 6= {0}. To prove Proposition 3
it therefore suffices to prove ⊥N 6= X . On Proposition 4, Ambrozie and Müller [1]

proved that T ∗ has a nontrivial invariant closed subspace when X is a (general) Ba-

nach space (see also [4], Theorem 4.2.9), therefore T has a nontrivial invariant closed

subspace when X is a reflexive Banach space. But we need to prove in Proposition 4

that T has a nontrivial invariant closed subspace when X is a (general) Banach

space.

Acknowledgement. The authors wish to thank Professor M. Liu for helpful
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8



References

[1] C.Ambrozie, V.Müller: Invariant subspaces for polynomially bounded operators.
J. Funct. Anal. 213 (2004), 321–345. zbl MR doi

[2] B.Beauzamy: Introduction to Operator Theory and Invariant Subspaces. North-Holland
Mathematical Library 42, North-Holland, Amsterdam, 1988. zbl MR

[3] S.W.Brown, B.Chevreau, C.Pearcy: On the structure of contraction operators. II.
J. Funct. Anal. 76 (1988), 30–55. zbl MR doi

[4] I. Chalendar, J. R.Partington: Modern Approaches to the Invariant-Subspace Problem.
Cambridge Tracts in Mathematics 188, Cambridge University Press, Cambridge, 2011. zbl MR

[5] J. Jiang: Bounded Operators without Invariant Subspaces on Certain Banach Spaces.
Thesis (Ph.D.), The University of Texas at Austin, ProQuest LLC, Ann Arbor, 2001. MR

[6] K.B. Laursen, M.M.Neumann: An Introduction to Local Spectral Theory. London
Mathematical Society Monographs. New Series 20, Clarendon Press, Oxford, 2000. zbl MR

[7] V.Lomonosov: An extension of Burnside’s theorem to infinite-dimensional spaces. Isr.
J. Math. 75 (1991), 329–339. zbl MR doi

[8] G.Pisier: A polynomially bounded operator on Hilbert space which is not similar to
a contraction. J. Am. Math. Soc. 10 (1997), 351–369. zbl MR doi

[9] W.Rudin: Function Theory in the Unit Ball of Cn. Grundlehren der mathematischen
Wissenschaften 241, Springer, Berlin, 1980. zbl MR doi

Author’s address: J u n f e n g L i u, Faculty of Information Technology, Macau Univer-
sity of Science and Technology, AvenidaWai Long, Taipa, Macau 999078, P.R.China, e-mail:
jfliu997@163.com.

9

https://zbmath.org/?q=an:1056.47006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2078629
http://dx.doi.org/10.1016/j.jfa.2003.12.004
https://zbmath.org/?q=an:0663.47002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0967989
https://zbmath.org/?q=an:0641.47013
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0923043
http://dx.doi.org/10.1016/0022-1236(88)90047-X
https://zbmath.org/?q=an:1231.47005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2841051
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2702823
https://zbmath.org/?q=an:0957.47004
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1747914
https://zbmath.org/?q=an:0777.47005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1164597
http://dx.doi.org/10.1007/BF02776031
https://zbmath.org/?q=an:0869.47014
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1415321
http://dx.doi.org/10.1090/S0894-0347-97-00227-0
https://zbmath.org/?q=an:03779725
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0601594
http://dx.doi.org/10.1007/978-3-540-68276-9

		webmaster@dml.cz
	2020-07-03T22:34:02+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




