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A NOTE ON ANOTHER CONSTRUCTION OF GRAPHS

WITH 4n+ 6 VERTICES AND CYCLIC

AUTOMORPHISM GROUP OF ORDER 4n

Peteris Daugulis

Abstract. The problem of finding minimal vertex number of graphs with a
given automorphism group is addressed in this article for the case of cyclic
groups. This problem was considered earlier by other authors. We give a
construction of an undirected graph having 4n+ 6 vertices and automorphism
group cyclic of order 4n, n ≥ 1. As a special case we get graphs with 2k + 6
vertices and cyclic automorphism groups of order 2k. It can revive interest in
related problems.

1. Introduction

This article addresses a problem in graph representation theory of finite groups
- finding undirected graphs with a given full automorphism group and minimal
number of vertices. All graphs in this article are undirected and simple.

It is known that finite graphs universally represent finite groups: for any finite
group G there is a finite graph Γ such that Aut (Γ) ' G, see Frucht [8]. It was
proved by Babai [2] constructively that for any finite group G (except cyclic groups
of order 3, 4 or 5) there is a graph Γ such that Aut (Γ) ' G and |V (Γ)| ≤ 2|G| (there
are 2 G-orbits having |G| vertices each). For certain group types such as symmetric
groups Σn, dihedral groups D2n and elementary abelian 2-groups (Z/2Z)n graphs
with smaller number of vertices (respectively, n, n and 2n) are obvious.

In the recent decades the problem of finding µ(G) = min
Γ: Aut (Γ)'G

|V (Γ)| for

specific groups G does not seem to have been very popular although minimal
graphs and directed graphs for most finite groups have not been found. See Babai
[3] for an exposition of this area.

There are 10-vertex graphs having automorphism group Z/4Z, this fact is
mentioned in Bouwer and Frucht [5] and Babai [2]. There are 12 such 10-vertex
graph isomorphism types, see [6].
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In this paper we reminisce about the bound µ(G) = min
Γ:Aut (Γ)'G

|V (Γ)| ≤ 2|G|

not being sharp for G ' Z/4nZ, for any natural n ≥ 1. Namely, for any n ≥ 1
there is an undirected graph Γ on 4n+ 6 vertices such that Aut (Γ) ' Z/4nZ. The
number of orbits is 3.

Graphs with abelian automorphism groups have been investigated in Arlinghaus
[1]. In Harary [9] there is a claim (referring to Merriwether) that if G is a cyclic
group of order 2k, k ≥ 2, then the minimal number of graph vertices is 2k + 6. In
this paper we exhibit such graphs with the number of vertices 4n+ 6, n ≥ 1, and
give an explicit construction. The construction works for graphs with any n ≥ 1,
but if n = 2k, k ≥ 3, we get graphs for which the number of vertices is smaller
than the Babai’s bound.

We use standard notations of graph theory, see Diestel [7]. Adjacency of vertices
i and j is denoted by i ∼ j (edge (i, j)). For a graph Γ = (V,E) the subgraph
induced by X ⊆ V is denoted by Γ[X]: Γ[X] = Γ − X. The set {1, 2, . . . , n} is
denoted by Vn. The undirected cycle on n vertices is denoted by Cn. The cycle
notation is used for permutations. Given a function f : A→ B and a subset C ⊆ A
we denote the restriction of f to C by f |C .

2. Main results

2.1. The graph Γn.

Definition 2.1. Let n ≥ 1, n ∈ N, m = 4n. Let V (Γn) = Vm+6 = {1, 2, . . . ,m+6}
and edges be given by the following adjacency description. We define 8 types of
edges.

(1) i ∼ i+ 1 for all i ∈ Vm−1 and 1 ∼ m.
(It implies that Γn[1, 2, . . . ,m] ' Cm.)

(2) m+ 1 ∼ i with i ∈ Vm iff i ≡ 1 or 2(mod 4).

(3) m+ 2 ∼ i with i ∈ Vm iff i ≡ 2 or 3(mod 4).

(4) m+ 3 ∼ i with i ∈ Vm iff i ≡ 3 or 0(mod 4).

(5) m+ 4 ∼ i with i ∈ Vm iff i ≡ 0 or 1(mod 4).

(6) m+ 5 ∼ i with i ∈ Vm iff i ≡ 1(mod 2).

(7) m+ 6 ∼ i with i ∈ Vm iff i ≡ 0(mod 2).

(8) m+ 1 ∼ m+ 5 ∼ m+ 3, m+ 2 ∼ m+ 6 ∼ m+ 4.
Definition 2.2. Denote O1 = {1, 2, . . . ,m}, O2 = {m+ 1,m+ 2,m+ 3,m+ 4},
O3 = {m+ 5,m+ 6}. Note that Oi are the Aut (Γn)-orbits.
2.2. The special case n = 1.

A graph with automorphism group Z/4Z and minimal number of vertices (10) and
edges (18) was exhibited in Bouwer and Frucht [5], p.58. Γ1 (which is not isomorphic
to the Bouwer-Frucht graph) is shown in Fig. 1. It can be thought as embedded in
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the 3D space. It is planar but a plane embedding is not given here. Aut (Γ1) ' Z/4Z
is generated by the vertex permutation g = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10).

Subgraphs Γ1[1, 2, 3, 4, 5, 7, 9] and Γ1[1, 2, 3, 4, 6, 8, 10] which can be thought as
being drawn above and below the orbit {1, 2, 3, 4} are interchanged by g.
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Fig. 1. – Γ1

2.3. Automorphism group of Γn.

Proposition 2.3. Let n ≥ 1, n ∈ N, m = 4n. Let Γn be defined as above. For any
n, Aut (Γn) ' Z/mZ.

Proof. We will show that Aut (Γn) = 〈g〉, where g = (1, 2, . . . ,m)(m + 1,m +
2,m+ 3,m+ 4)(m+ 5,m+ 6).

Inclusion 〈g〉 ≤ Aut (Γn) is proved by showing that g maps an edge of each type
to an edge.

Let us prove the inclusion Aut (Γn) ≤ 〈g〉. Let f ∈ Aut (Γn). We will show that
f = gα for some α. There are two subcases n 6= 2 and n = 2.

For any n ≥ 1 the vertices m + 5 and m + 6 are the only vertices having
eccentricity 3, so they must form an orbit.

Let n 6= 2. Suppose f(1) = k. Since n 6= 2, we have that deg(1) = 5, deg(v) =
m
2 +1 6= 5 for any v ∈ O2, therefore f(1) ∈ O1. Moreover, f stabilizes setwise bothO1

and O2. Consider the f -image of the edge (1,m+5). (f(1), f(m+5)) = (k, f(m+5))
must be an edge, therefore

(1) if k ≡ 1(mod 2), then f(m+ 5) = m+ 5,

(2) if k ≡ 0(mod 2), then f(m+ 5) = m+ 6.

It follows that f |O3 = gk−1.
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Consider the f -image of Γn[1, 2,m+ 1,m+ 5], denote its isomorphism type by
Γ0, see Fig. 5.
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Fig. 5. – Γ0 ' Γn[1, 2,m+ 1,m+ 5]

Vertex 2 must be mapped to a Γn[O1]-neighbour of k. For any k ∈ O1 there are
two triangles containing the vertex k and a vertex adjacent to k in Γn[O1]. Taking
into account that f(m+ 5) ∈ O3 we check that there is only one suitable induced
Γn-subgraph – containing k, another vertex in O1 adjacent to k and a vertex in O3
– which is isomorphic to Γn[1, 2,m+ 1,m+ 5].

It follows that in each case we must have f(2) ≡ k + 1(mod m). By similar
arguments for all j ∈ {1, 2, . . . ,m} it is proved that f(j) ≡ (k − 1) + j(mod m),
thus f |O1 = gk−1.

Finally we describe f |O2 . It can also be found considering Γn-subgraphs iso-
morphic to Γ0, but we will use edge inspection. Consider the f -images of the
edges (1,m+ 1) and (1,m+ 4). Vertex pairs (f(1), f(m+ 1)) = (k, f(m+ 1)) and
(f(1), f(m+ 4)) must be edges, therefore we can deduce images of all O2 vertices.

If n 6= 2 and f(1) = k, then f = gk−1, therefore f ∈ 〈g〉.

In the special case n = 2 we also consider f -images of Γ1[1, 2, 9, 13] and find
suitable Γ1-subgraphs isomorphic to Γ0. It is shown similarly to the above argument
that f can be expressed as a power of g and hence f ∈ 〈g〉. �

2.4. Abelian 2-groups.
It is known that µ(Z/2kZ) = 2k + 6, it was proved in [1]. We note that it can

be proved using the following steps. First notice that Γ with Aut (Γ) ' Z/2kZ
must have a least one orbit of size 2k, thus |V (Γ)| ≥ 2k. Eliminate possibilities
2k ≤ |V (Γ)| < 2k + 6 by considering orbits of size 1, 2 or 4, which can be removed,
or which cause Aut (Γ) to contain a dihedral subgroup D2·2k .

We also give an implication – a bound for µ(G) if G is an abelian 2-group.

Proposition 2.4. Let G be an abelian 2-group: G '
k∏
i=1

(Z/2iZ)ni , ni ∈ N ∩ {0}.

Then µ(G) ≤ 2n1 +
k∑
i=2

ni(2i + 6).

Proof. Denote (Z/2iZ)ni by Gi, G '
k∏
i=1

Gi. We can construct a sequence of

graphs ∆i,n, i ∈ N, n ∈ N, inductively using complements and unions as follows.
For i > 1 define ∆i,1 = Γ2i−2 and define ∆1,1 = K2. Define inductively ∆i,n:
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∆i,n = ∆i,n−1 ∪∆i,1. Since ∆i,n−1 6' ∆i,1 and ∆i,j is connected for all constructed
graphs, we have inductively that Aut (∆i,n) ' Aut (∆i,n−1)× (Z/2Z) ' (Z/2iZ)n.

Define Γ =
k⋃
i=1

∆i,ni . For different values of i the ∆i,ni are nonisomorphic

therefore Aut (Γ) '
k∏
i=1

Gi ' G. Thus µ(G) ≤ |V (Γ)| =
k∑
i=1
|V (∆i,ni)| = 2n1 +

k∑
i=2

ni(2i + 6). �

2.5. Other graphs and developments.
We briefly describe without proofs graphs Γm,n having mn + m vertices and

cyclic automorphism group of order mn, m ≥ 6, n ≥ 2. Existence of such graphs
is mentioned in [9], see also [1]. We use the construction of graphs with 2m
vertices having cyclic automorphism group of order m (m ≥ 6) given in [11]. Let
V (Γm,n) = W ∪W ′, where W = {0, 1, . . . ,mn−1}, W ′ = {0′, 1′, . . . , (m−1)′}. The
edges of Γm,n are defined as follows: 1) Γm,n[W ] and Γm,n[W ′] are natural cycles
of order mn and m, respectively, with edges (i, i + 1), 2) for any vertex i′ ∈ W ′
there are 3mn−1 edges of type (i′, jm+ i(mod mn)), (i′, jm+ i+ 1(mod mn)) and
(i′, jm + i − 2(mod mn)), 0 ≤ i′ ≤ m − 1, 0 ≤ j ≤ mn−1 − 1. It can be checked
that Aut (Γm,n) ' Z/mnZ, there are 2 orbits – W and W ′.

Acknowledgement. Computations were performed using the computational al-
gebra system MAGMA, see Bosma et al. [4], and the program nauty, available at
http://cs.anu.edu.au/~bdm/data/, see McKay and Piperno [10].
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