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Abstract. Euler’s pentagonal number theorem was a spectacular achievement at the
time of its discovery, and is still considered to be a beautiful result in number theory
and combinatorics. In this paper, we obtain three new finite generalizations of Euler’s
pentagonal number theorem.
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1. Introduction

One of Euler’s most profound discoveries, the pentagonal number theorem, see [1],

Corollary 1.7, page 11, is stated as follows:

(1.1)

∞
∏

k=1

(1− qk) =

∞
∑

k=−∞

(−1)kqk(3k+1)/2.

For some connections between the pentagonal number theorem and the theory of

partitions, one refers to [1], page 10, and [2].

Throughout this paper, we assume |q| < 1 and use the following q-series notation:

(a; q)0 = 1, (a; q)n =

n−1
∏

k=0

(1− aqk), (a; q)∞ =

∞
∏

k=0

(1− aqk),

and
[

n

m

]

=

[

n

m

]

q

=







(q; q)n
(q; q)m(q; q)n−m

if 0 6 m 6 n,

0, otherwise.
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Some finite forms of Euler’s pentagonal number theorem have been already studied

by several authors. Shanks in [7] proved that

(1.2)

n
∑

k=0

(−1)k
(q; q)n
(q; q)k

q(
k+1

2 )+nk =

n
∑

k=−n

(−1)kqk(3k+1)/2,

which was a truncated version of (1.1). Note that (1.2) reduces to (1.1) when n → ∞.

Berkovich and Garvan in [3] have found some finite generalizations of Euler’s

pentagonal number theorem. For example, they showed that

(1.3)

∞
∑

j=−∞

(−1)j
[

2L− j

L+ j

]

qj(3j+1)/2 = 1.

By using a well-known cubic summation formula, Warnaar in [8] obtained another

finite generalization of Euler’s pentagonal number theorem:

(1.4)

∞
∑

j=−∞

(−1)j
[

2L− j + 1

L+ j

]

qj(3j−1)/2 = 1.

Note that

lim
L→∞

[

2L− j

L+ j

]

= lim
L→∞

[

2L− j + 1

L+ j

]

=
1

(q; q)∞
.

Then both (1.3) and (1.4) reduce to (1.1) when L → ∞.

The first aim of the paper is to show the following finite form of (1.1):

Theorem 1.1. Let n be any non-negative integer. Then

(1.5)

⌊n/2⌋
∑

k=0

(−1)k
[

n− k

k

]

q(
k+1

2 ) =

⌊n/3⌋
∑

k=−⌊(n+1)/3⌋

(−1)kqk(3k+1)/2,

where ⌊x⌋ denotes the greatest integer less than or equal to a real number x.

Observe that

lim
n→∞

[

n− k

k

]

= lim
n→∞

(q; q)n−k

(q; q)k(q; q)n−2k
=

1

(q; q)k
.

By Tannery’s theorem, see [4], page 136, letting n → ∞ in (1.5) reduces it to

(1.6)
∞
∑

k=0

(−1)kq(
k+1

2 )

(q; q)k
=

∞
∑

k=−∞

(−1)kqk(3k+1)/2.
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By [1], (2.2.6), we have

(1.7)

∞
∑

k=0

(−1)kq(
k+1

2 )

(q; q)k
= (q; q)∞,

which is a special case of the q-binomial theorem, see [1], Theorem 2.1, page 17.

Combining (1.6) and (1.7), we are led to (1.1).

The second result consists of the following two finite generalizations of (1.1):

Theorem 1.2. Suppose m is a positive integer. Then

1− q3m

1 + qm

⌊m/2⌋
∑

k=−m

(−1)k
[

2m− k

m+ k

]

qk(3k−1)/2

1− q2m−k
= 1,(1.8)

(1− q3m−1)

⌊(m−1)/2⌋
∑

k=−m

(−1)k
[

2m− k − 1

m+ k

]

qk(3k+1)/2

1− q2m−k−1
= 1.(1.9)

Note that |q| < 1 and

lim
m→∞

[

2m− k

m+ k

]

= lim
m→∞

[

2m− k − 1

m+ k

]

=
1

(q; q)∞
.

By Tannery’s theorem, see [4], page 136, we conclude that both (1.8) and (1.9) reduce

to (1.1) when m → ∞.

2. Proof of Theorems 1.1 and 1.2

In order to prove the main results, we need some lemmas.

Lemma 2.1 ([1], page 35). Let 0 6 m 6 n be integers. Then

[

n

m

]

=

[

n− 1

m− 1

]

+ qm
[

n− 1

m

]

,

[

n

m

]

=

[

n− 1

m

]

+ qn−m

[

n− 1

m− 1

]

.

The next two lemmas play important roles in our proof of Theorem 1.1 and 1.2.

We shall prove these two lemmas together with Theorem 1.1.
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Lemma 2.2. Suppose n is a non-negative integer. Then

(2.1)

⌊n/2⌋
∑

k=0

(−1)k
[

n− k

k

]

q(
k

2) =











(−1)mqm(3m−1)/2 if n = 3m,

(−1)mqm(3m+1)/2 if n = 3m+ 1,

0 if n = 3m− 1.

Ekhad and Zeilberger in [5] proved (2.1) by Zeilberger’s algorithm, see [6]. War-

naar in [8] gave another proof of (2.1) using a well-known cubic summation formula.

We will present an essentially different proof by establishing relationships with other

two results and using mathematical induction.

Lemma 2.3. For any non-negative integer n, we have

(1− qn)

⌊n/2⌋
∑

k=0

(−1)k
[

n− k

k

]

q(
k

2)

1− qn−k
(2.2)

=











(−1)m(1 + qm)qm(3m−1)/2 if n = 3m,

(−1)mqm(3m+1)/2 if n = 3m+ 1,

(−1)mqm(3m−1)/2 if n = 3m− 1.

P r o o f of Theorem 1.1, Lemma 2.2 and Lemma 2.3. Denote the left-hand sides

of (2.1), (2.2) and (1.5) by Un, Vn and Wn, respectively. We shall prove (2.1), (2.2)

and (1.5) by establishing the following relationships:

Wn = Wn−1 − qn−1Un−2,(2.3)

Vn = Un − qn−1Un−2,(2.4)

Vn = Wn −Wn−2.(2.5)

Substituting (2.3) into (2.5) gives

(2.6) Vn = Wn−1 −Wn−2 − qn−1Un−2.

By (2.4) and (2.6), we have

(2.7) Un = Wn−1 −Wn−2.

Replacing n by n− 1 in (2.3), we get

(2.8) Wn−1 −Wn−2 = −qn−2Un−3.
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By (2.7) and (2.8), we get

Un = −qn−2Un−3 for n > 3.

We can deduce (2.1) by induction from the initial values U0 = 1, U1 = 1 and U2 = 0.

Substituting (2.1) into (2.4), we get (2.2) directly.

We will prove (1.5) by using induction on n. It is easy to verify that (1.5) is true

for n = 0, 1, 2. Assume (1.5) is true for N 6 n. By (2.3), we have

(2.9) Wn+1 = Wn − qnUn−1.

If n = 3m, by (2.1) and (2.9), we have Wn+1 = Wn. It follows from the induction

that

Wn+1 = Wn =

⌊n/3⌋
∑

k=−⌊(n+1)/3⌋

(−1)kqk(3k+1)/2 =

⌊(n+1)/3⌋
∑

k=−⌊(n+2)/3⌋

(−1)kqk(3k+1)/2,

which implies that (1.5) is also true for N = n+ 1.

If n = 3m+ 1, it follows from (2.1) and (2.9) that

Wn+1 = Wn + (−1)m+1q(m+1)(3m+2)/2.

So we have

Wn+1 =

⌊n/3⌋
∑

k=−⌊(n+1)/3⌋

(−1)kqk(3k+1)/2 + (−1)m+1q(m+1)(3m+2)/2

=

⌊(n+1)/3⌋
∑

k=−⌊(n+2)/3⌋

(−1)kqk(3k+1)/2,

which proves (1.5) for the case N = n+ 1.

If n = 3m+ 2, using (2.1) and (2.9), we get

Wn+1 = Wn + (−1)m+1q(m+1)(3m+4)/2,

and hence

Wn+1 =

⌊n/3⌋
∑

k=−⌊(n+1)/3⌋

(−1)kqk(3k+1)/2 + (−1)m+1q(m+1)(3m+4)/2

=

⌊n+1/3⌋
∑

k=−⌊(n+2)/3⌋

(−1)kqk(3k+1)/2,

which implies that (1.5) is true for N = n+ 1. This concludes the proof of (1.5).

529



It remains to prove (2.3)–(2.5). From Lemma 2.1, we have
[

n− k

k

]

=

[

n− k − 1

k

]

+ qn−2k

[

n− k − 1

k − 1

]

.

It follows that

Wn =

⌊(n−1)/2⌋
∑

k=0

(−1)k
[

n− k − 1

k

]

q(
k+1

2 ) + qn−1

⌊n/2⌋
∑

k=1

(−1)k
[

n− k − 1

k − 1

]

q(
k−1

2 )

= Wn−1 − qn−1

⌊(n−2)/2⌋
∑

k=0

(−1)k
[

n− k − 2

k

]

q(
k

2)

= Wn−1 − qn−1Un−2.

This concludes the proof of (2.3).

Note that 1− qn = 1− qn−k + qn−k(1 − qk). Then

Vn =

⌊n/2⌋
∑

k=0

(−1)k
[

n− k

k

]

q(
k

2) + qn−1

⌊n/2⌋
∑

k=0

(−1)k
[

n− k

k

]

1− qk

1− qn−k
q(

k−1

2 )

= Un + qn−1

⌊n/2⌋
∑

k=1

(−1)k
[

n− k − 1

k − 1

]

q(
k−1

2 )

= Un − qn−1

⌊(n−2)/2⌋
∑

k=0

(−1)k
[

n− k − 2

k

]

q(
k

2)

= Un − qn−1Un−2,

which is (2.4).

Applying the fact:
1− qn

1− qn−k
=

1− qk

1− qn−k
+ qk,

we get

(2.10)

[

n− k

k

]

1− qn

1− qn−k
=

[

n− k − 1

k − 1

]

+

[

n− k

k

]

qk.

Substituting (2.10) into the left-hand side of (2.2) gives

Vn =

⌊n/2⌋
∑

k=1

(−1)k
[

n− k − 1

k − 1

]

q(
k

2) +

⌊n/2⌋
∑

k=0

(−1)k
[

n− k

k

]

q(
k+1

2 )

= −

⌊(n−2)/2⌋
∑

k=0

(−1)k
[

n− k − 2

k

]

q(
k+1

2 ) +Wn = −Wn−2 +Wn.

This proves (2.5). Now we complete the proof of (2.3)–(2.5). �
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P r o o f of Theorem 1.2. Replacing n by 3m in (2.2) and then letting k → m+ k,

we obtain

(2.11) (1− q3m)

m
∑

k=−m

(−1)k
[

2m− k

m+ k

]

q(
m+k

2 )

1− q2m−k
= (1 + qm)qm(3m−1)/2.

Note that

[

n

m

]

q−1

=
(1− q−1)(1 − q−2) . . . (1− q−n)

(1− q−1) . . . (1− q−m)(1 − q−1) . . . (1− q−(n−m))

=
(1− q)(1 − q2) . . . (1− qn)

(1− q) . . . (1− qm)(1 − q) . . . (1− qn−m)
q(

m+1

2 )+(n−m+1

2 )−(n+1

2 )

=

[

n

m

]

q

qm(m−n).(2.12)

Letting q → q−1 in (2.11) and then using (2.12), we obtain (1.8).

Similarly, replacing n by 3m− 1 in (2.2) and then letting k → m+k and q → q−1,

we get (1.9). �
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