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Some applications of the point-open subbase game

D. Guerrero Sánchez1, V.V. Tkachuk2

Abstract. Given a subbase S of a space X, the game PO(S, X) is defined for
two players P and O who respectively pick, at the n-th move, a point xn ∈ X

and a set Un ∈ S such that xn ∈ Un. The game stops after the moves {xn, Un :
n ∈ ω} have been made and the player P wins if

⋃
n∈ω

Un = X; otherwise O is
the winner. Since PO(S, X) is an evident modification of the well-known point-
open game PO(X), the primary line of research is to describe the relationship
between PO(X) and PO(S, X) for a given subbase S. It turns out that, for any
subbase S, the player P has a winning strategy in PO(S, X) if and only if he

has one in PO(X). However, these games are not equivalent for the player O:
there exists even a discrete space X with a subbase S such that neither P nor
O has a winning strategy in the game PO(S,X). Given a compact space X, we
show that the games PO(S,X) and PO(X) are equivalent for any subbase S of
the space X.

Keywords: point-open game; subbase; winning strategy; players; discrete space;
compact space; scattered space; measurable cardinal

Classification: Primary 54A25; Secondary 91A05, 54D30, 54D70

1. Introduction

The game we are going to study here is a slight variation of the well-known
point-open game PO(X) that was defined and studied independently by Galvin [4]
and Telgársky [8]. Given a topological space X , the game PO(X) is played on X
as follows: the n-th move of the first player (from now on denoted by P ) consists
in taking a point xn ∈ X . The second player (called O) answers by choosing an
open set Un ⊂ X with xn ∈ Un. The play is finished after ω-many moves and P
wins if

⋃
n∈ω Un = X . If

⋃
n∈ω Un 6= X , then O wins the play {xn, Un : n ∈ ω}.

The game PO(X) is said to be determined on a space X if one of the players has
a winning strategy.

In the paper [7] Pawlikowski gave a complete description of spaces X of count-
able pseudocharacter in which the game PO(X) is undetermined: this happens if
and only if X is uncountable and has the Rothberger property C′′. In particular,
the game PO(X) is undetermined on an uncountable set X ⊂ R if and only if X
is a C′′-set. It follows from a result of Laver [6] that there exist models of ZFC
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in which every C′′-subset of R is countable so it is consistent with ZFC that the
game PO(X) is determined on every set X ⊂ R.

Telgársky established in [8] that if X is a σ-Čech-complete or pseudocompact
space then PO(X) is determined on X . Later in [9] he gave a ZFC example
of a non-metrizable space X on which PO(X) is undetermined. Daniels and
Gruenhage [2] as well as Baldwin [1] studied the point-open game of uncountable
length.

In this paper we consider a variation PO(S, X) of the game PO(X) where S is
a fixed subbase of the space X . The game PO(S, X) is played exactly as PO(X)
with the only difference that at every move Player O must pick an element of S.
Of course, the first question that must be answered about the game PO(S, X) is
how different it is from PO(X). We will show that, for any subbase S, Player P
has a winning strategy in PO(S, X) if and only if he has one in PO(X). However,
these games are not equivalent for Player O: there exists even a discrete space X
with a subbase S such that neither P nor O has a winning strategy in the game
PO(S, X). We also establish that a discrete space X of a measurable cardinality
is determined: for any subbase S in X , Player O has a winning strategy in the
game PO(S, X).

Given a compact space X and a subbase S in X , we prove that Player O has
a winning strategy in PO(S, X) if and only if X is not scattered; since the same
characterization holds for PO(X), for any subbase S of the space X , the games
PO(S, X) and PO(X) are equivalent for both players.

2. Notation and terminology

All spaces are assumed to be Tychonoff. Given a space X , the symbol τ(X)
denotes the topology of X and τ∗(X) = τ(X)\{∅}. If X is a space and A ⊂ X ,
then τ(A, X) = {U ∈ τ(X) : A ⊂ U}. As usual, R is the set of reals; the set
ω\{0} is denoted by N and I = [0, 1] ⊂ R. The symbol D stands for the two-point
space {0, 1} with the discrete topology.

If P = {xn, Un : n ∈ ω} is a play in the point-open game on a space X , then
〈xn, Un : n ≤ k〉 is called an initial segment (or simply segment) of the play P for
any k ∈ ω.

A strategy of Player P in the point-open game PO(X) on a space X is a
function σ with values in X defined on the initial segments of PO(X) called
σ-admissible; they are inductively defined as follows. The empty segment is
σ-admissible; if n > 0, then a segment 〈x0, U0, . . . , xn, Un〉 is σ-admissible if
〈x0, U0, . . . , xn−1, Un−1〉 is σ-admissible and xn = σ(x0, U0, . . . , xn−1, Un−1). The
definition of a strategy s for Player O is analogous for s-admissible segments
〈x0, U0, . . . , xn−1, Un−1, xn〉. A play P = {xn, Un : n ∈ ω} is called σ-admissible
for a strategy σ of Player P if every initial segment of P is σ-admissible; in this
case we will also say that P applies the strategy σ. An s-admissible play for a
strategy s of Player O is defined analogously. A strategy σ of Player P is winning

on X if P wins in any σ-admissible play. Analogously, a strategy s of Player O is
winning on X if O is the winner in any s-admissible play.
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A game PO(X) or PO(S, X) is undetermined on a space X if neither of the
players P and O has a winning strategy in the respective game on X . If a game is
considered on a space X and A is one of the players, then X is called A-favorable

if A has a winning strategy on X . We say that a space X is crowded if it has
no isolated points. The space X is scattered if every non-empty subspace of X
has an isolated point. The rest of our notation is standard and the unexplained
notions can be found in the book [3].

3. Point-open subbase game

The point-open subbase game requires the player O to pick larger sets than
in the point-open game so it is formally easier to win for the player P . Our
main purpose is to establish that the point-open subbase game is equivalent to
the point-open game for the player P while it might not be equivalent for the
player O even in a discrete space.

The following statement is evident.

3.1 Proposition. For any space X ,

(a) if P has a winning strategy in the game PO(X), then the same strategy is

winning in the game PO(S, X) for any subbase S in the space X ;

(b) if O has a winning strategy in the game PO(S, X) for some subbase S in the

space X , then the same strategy is winning in the game PO(X).

Denote by FO(X) the game in which the first player (called F ) at the n-th move
picks a finite set Fn ⊂ X and the second player (called O) chooses an open set
Un ⊃ Fn. The play is finished after ω-many moves and F wins if

⋃
n∈ω Un = X ;

otherwise O is the winner. The game FO(X) is equivalent to PO(X) for both
players (see Corollary 4.3 and Corollary 4.4 of the paper [8]) so it can be used
instead of PO(X) when it is convenient.

3.2 Proposition. Assume that X is a space and S is a subbase in X . If Player P
has a winning strategy in the game PO(S, X), then Player F has a winning

strategy in the game FO(X).

Proof: Let ρ be a winning strategy of P in PO(S, X). For any finite set F ⊂ X
and U ∈ τ(F, X) fix a finite family A(U, F ) ⊂ S such that for each x ∈ F there
exists a subfamily B ⊂ A(U, F ) with x ∈

⋂
B ⊂ U .

To construct a strategy σ for Player F in the game FO(X) take the point
x0 = ρ(∅) and consider the set F0 = {x0}; letting σ(∅) = F0 we define the
strategy for the first move of F . Given any U0 ∈ τ(F0, X) define σ(F0, U0) to be
the set F1 = {ρ(x0, S) : S ∈ A(U0, F0)}.

Proceeding inductively, assume that n ∈ N and the strategy σ has been defined
for every move i ≤ n in such a way that for any i < n and any σ-admissible initial
segment 〈F0, U0, . . . , Fi, Ui〉 we have the following property:

(1) if a point xj ∈ Fj and a set Sj ∈ A(Uj , Fj) are chosen for every j ≤
n in such a way that the segment 〈xj , Sj : j ≤ i〉 is ρ-admissible, then
ρ(x0, S0, . . . , xi, Si) ∈ Fi+1.
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Given an arbitrary σ-admissible segment 〈F0, U0, . . . , Fn−1, Un−1, Fn〉 take any
Un ∈ τ(Fn, X) and consider the family E = {I : I = 〈x0, S0, . . . , xn, Sn〉 is a
ρ-admissible segment such that xi ∈ Fi and Si ∈ A(Ui, Fi) for every i ≤ n}. It
is clear that E is finite so letting Fn+1 = σ(F0, U0, . . . , Fn, Un) = {ρ(I) : I ∈ E}
we define our strategy σ for the move n + 1 and it is straightforward that the
property (1) holds if we replace n with n + 1. Therefore the construction of our
strategy σ is complete and the condition (1) is satisfied for any n ∈ N.

To see that σ is winning, suppose that {Fi, Ui : i ∈ ω} is a play in which F
applies the strategy σ and there exists a point p ∈ X\

⋃
n∈ω Un. It follows from

p /∈ U0 and the definition of A(U0, F0) that there exists S0 ∈ A(U0, F0) such that
x0 ∈ U0 and p /∈ S0. Proceeding by induction assume that, for some n ∈ ω,
we have a ρ-admissible initial segment 〈x0, S0, . . . , xn, Sn〉 such that xi ∈ Fi ∩ Si

while Si ∈ A(Ui, Fi) and p /∈ Si for every i ≤ n. It follows from (1) that xn+1 =
ρ(x0, S0, . . . , xn, Sn) ∈ Fn+1 ⊂ Un+1 so it follows from p /∈ Un+1 that we can
choose Sn+1 ∈ A(Un+1, Fn+1) such that xn+1 ∈ Sn+1 and p /∈ Sn+1.

Therefore our inductive procedure can be continued to construct a play {xi, Si :
i ∈ ω} in the game PO(S, X) where P applies the strategy ρ and p /∈ Si for every
i ∈ ω. However, this implies that p /∈

⋃
i∈ω Si which is a contradiction with the

fact that ρ is a winning strategy. This shows that
⋃

n∈ω Un = X and hence σ is
also a winning strategy. �

3.3 Theorem. If X is a space and S is a subbase in X , then the games PO(X)
and PO(S, X) are equivalent for P , i.e., Player P has a winning strategy in the

game PO(X) if and only if he has a winning strategy in the game PO(S, X).

Proof: Since the game FO(X) is equivalent to the game PO(X) for both players,
the games PO(X) and PO(S, X) are equivalent for Player P by Proposition 3.1(a)
and Proposition 3.2. �

3.4 Corollary. If PO(X) is undetermined on a space X , then so is PO(S, X)
for any subbase S of the space X .

Proof: It suffices to observe that, for such a space X , Player P does not have
a winning strategy by Theorem 3.3 and Player O has no winning strategy by
Proposition 3.1(b). �

Recall that X is a P -space if every Gδ-subset of X is open.

3.5 Observations. Telgársky constructed in [9] a Lindelöf P -space X on which
PO(X) is undetermined. By Corollary 3.4, on the same space X the game
PO(S, X) is undetermined for any subbase S.

In [7], a complete characterization was given by Pawlikowski for the game
PO(X) to be undetermined on a space X of countable pseudocharacter. In par-
ticular, the game PO(M) is undetermined on a set M ⊂ R if and only if |M | > ω
and M is a C′′-set, i.e., for every sequence {Un : n ∈ ω} of open covers of M ,
there exists a sequence {Un : n ∈ ω} ⊂ τ(X) such that Un ∈ Un for each n ∈ ω
and

⋃
n∈ω Un = M . Therefore the game PO(S, M) is undetermined on a set
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M ⊂ R for every subbase S of M if M is a C′′-set. We will see later that the
above implication cannot be reversed.

Telgársky proved in [8] that for every Lindelöf scattered space X , Player P has
a winning strategy in the game PO(X). He also established in [8] that a compact
space X is scattered if and only if Player O has a winning strategy in PO(X).
As an immediate consequence, the game PO(X) is determined on the class of
compact spaces. We will show that the same is true for the game PO(S, X)
whenever X is compact and S is a subbase in X .

3.6 Theorem. Assume that a space X has a pseudocompact crowded subspace.

Then Player O has a winning strategy in PO(S, X) for any subbase S in the

space X .

Proof: Let Y be a pseudocompact crowded subspace of X ; since Y is also pseu-
docompact and crowded, we can consider that Y is closed in X . We will use the
following trivial observation.

(2) If Z is a space and G is a finite family of closed subsets of Z such that the
interior of

⋃
G is non-empty, then the interior of G is non-empty for some

G ∈ G.

The set Y is infinite being crowded, so for any point x ∈ X we can find a
set U ∈ τ∗(Y ) such that x /∈ U . There exists a finite family F ⊂ S such that
x ∈

⋂
F ⊂ X\U . It follows from U ⊂

⋃
{X\S : S ∈ F} that we can apply (2) to

find a set V ∈ τ∗(Y ) such that V ⊂ (X\S) ∩ U . This proves that

(3) for any point x ∈ X , if U is a non-empty open subset of Y , then we can find
S ∈ S and a non-empty open subset V of Y such that x ∈ S and V ⊂ U\S.

Now it is easy to construct a winning strategy σ for Player O. If P chooses a
point x0 ∈ X , we can apply (3) to find a set S0 ∈ S and U0 ∈ τ∗(Y ) such that
x0 ∈ S0 ⊂ X\U0; let σ(x0) = S0. Proceeding by induction assume that n ∈ ω
and the strategy σ is constructed for the first n moves in such a way that

(4) for any σ-admissible segment 〈x0, S0, . . . , xn, Sn〉 we have defined a family
{U0, . . . , Un} of non-empty open subsets of Y such that Ui ∩Si = ∅ for every
i ≤ n and U i+1 ⊂ Ui if i < n.

If the move of Player P is a point xn+1 ∈ X , then (3) can be applied again
to find a set Sn+1 ∈ S and Un+1 ∈ τ∗(Y ) such that xn+1 ∈ Sn+1, Un+1 ⊂ Un

and Un+1 ∩ Sn+1 = ∅. Letting σ(x0, S0, . . . , xn, Sn, xn+1) = Sn+1 we complete
the definition of the strategy σ and it is immediate that (4) holds for all n ∈ ω.

Finally, assume that {xi, Si : i ∈ ω} is a σ-admissible play. The definition of
σ implies existence of a sequence {Ui : i ∈ ω} ⊂ τ∗(Y ) such that U i+1 ⊂ Ui and
Ui∩Si for every i ∈ ω. It follows from pseudocompactness of Y that

⋂
n∈ω Un 6= ∅.

The property (4) guarantees that (
⋂

n∈ω Un) ∩ (
⋃

n∈ω Sn) = ∅ so
⋃

n∈ω Sn 6= X
and hence σ is a winning strategy. �

3.7 Corollary. If X is a compact space and S is a subbase of X , then the

following conditions are equivalent:
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(a) X is scattered;

(b) Player P has a winning strategy in the game PO(S, X);
(c) Player O has no winning strategy in the game PO(S, X).

Proof: We have already mentioned that the implication (a)=⇒(b) is true for the
game PO(X) (see [8, Corollary 9.5]) so it is true for PO(S, X) by Theorem 3.3.
The implication (b)=⇒(c) is trivial and (c)=⇒(a) is an immediate consequence
of Theorem 3.6. �

It follows from Theorem 2 of the paper [4] and Theorem 3.3 that Player P
has no winning strategy in the game PO(S, X) if X is an uncountable space of
countable pseudocharacter and S is a subbase of X . The same conclusion follows
from the main result of the paper of Pawlikowski [7].

In particular, if X is a discrete uncountable space, then Player P has no winning
strategy in the game PO(S, X) for any subbase S in X ; for such an X , it is easy
to see that Player O always has a winning strategy in the game PO(X). We will
show that this is not the case for the game PO(S, X).

3.8 Theorem. Suppose that X ⊂ I and for any compact K ⊂ I, if K ⊂ X
or K ⊂ I\X , then K is countable. Such X are called Bernstein sets and it is

well known that they exist. Consider the families S0 = {[0, x] ∩ X : x ∈ X} and

S1 = {[x, 1]∩X : x ∈ X}; then S = S0 ∪S1 is a subbase for the discrete topology

on X and neither of the players has a winning strategy in the game PO(S, X).
In particular the discrete space X of cardinality c admits a subbase S such that

the game PO(S, X) is undetermined on X .

Proof: It is trivial that S is a subbase for the discrete topology on X so, from
now on we provide X with the discrete topology. Observe first that Player P
has no winning strategy in the game PO(S, X), due to Theorem 3.3 and the fact
that P has no winning strategy in the game PO(X) by [4, Theorem 2]. Striving
for a contradiction, assume that Player O has a winning strategy σ in the game
PO(S, X). In what follows “initial segment” or simply “segment” will mean
“a σ-admissible segment of a play in PO(S, X).”

Given initial segments I = 〈x0, S0, . . . , xn, Sn〉 and I ′ = 〈y0, T0, . . . , ym, Tm〉 of
a play in PO(S, X), we say that I ′ extends I if I ⊂ I ′. For any initial segment I
of a play in PO(S, X) let E(I) = {J : J ⊃ I is an initial segment}. Let E = E(∅)
be the family of all initial segments of the game PO(S, X). Since the strategy σ
is winning,

(5) if I = 〈x0, S0, . . . , xn, Sn〉 ∈ E , then H(I) = X\
⋃
{Si : i ≤ n} is dense (with

respect to the natural topology) in a non-trivial closed interval.

We claim that

(6) for any initial segment I ∈ E , there exist segments I0, I1 ∈ E(I) such that

H(I0) ∩ H(I1) = ∅ (the bar denotes the closure in I).

To see that the statement (6) is true assume that there exists a segment I =

〈x0, S0, . . . , xn, Sn〉 ∈ E such that H(I0) ∩ H(I1) 6= ∅ for any I0, I1 ∈ E(I). It is
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easy to see that this implies that F =
⋂
{H(J) : J ∈ E(I)} 6= ∅; fix a point r ∈ F .

We have two cases to consider.

Case 1. r ∈ X . Let xn+1 = r and Sn+1 = σ(x0, S0, . . . , xn, Sn, xn+1). We will
inductively extend the segment I0 = 〈x0, S0, . . . , xn+1, Sn+1〉 to a play P in which
O applies the strategy σ. We will only have to choose a point xi and then the
strategy σ will automatically give us the set Si = σ(x0, S0, . . . , xi−1, Si−1, xi) for
any i > n + 1.

If i ≥ n + 1 and we have the segment I = 〈x0, S0, . . . , xi, Si〉, then it follows
from I ∈ E(I0) and the fact that the strategy σ is winning, that the set H(I)

is uncountable; since also r ∈ H(I), we can choose a point xi+1 ∈ H(I) such
that |xi+1 − r| < 2−i. If Si+1 = σ(x0, S0, . . . , xi, Si, xi+1) and Sn+1 both belong
to Sj for some j ∈ D, then it follows from xi+1 ∈ Si+1\Sn+1 that Sn+1 ⊂ Si+1

and r is not the endpoint of the set Si+1; this implies r /∈ H(J) for the segment
J = 〈x0, S0, . . . , xi+1, Si+1〉 which is a contradiction. Therefore, for some element
j ∈ D, we have Sn+1 ∈ Sj and Si+1 ∈ S1−j ; if Sn+1∩Si+1 6= ∅, then Sn+1∪Si+1 =
X which is impossible because the strategy σ is winning so Sn+1 ∩ Si+1 = ∅ for
any i > n.

Finally observe that the sequence {xi : i > n + 1} converges to r and all of its
elements remain on the same side from r; this easily implies that

⋃
i≥n+1

Si = X
which is again a contradiction with the fact that σ is a winning strategy.

Case 2. r /∈ X . Choose a sequence {xi : i ≥ n + 1} ⊂ X which converges
to r with the additional property that both sets {i ≥ n + 1 : xi > r} and
{i ≥ n + 1 : xi < r} are infinite. If {xi, Si : i ∈ ω} is the play where O
applies the strategy σ, then r cannot be the endpoint of any Si. Therefore,
if i > n and r ∈ Si, then r cannot belong to the closure of the set H(I) for
I = 〈x0, S0, . . . , xi, Si〉; this contradiction shows that [xi, 1] ∩ X ⊂ Si ⊂ (r, 1] if
xi > r and [0, xi] ∩ X ⊂ Si ⊂ [0, r) if xi < r. As an immediate consequence,⋃

i∈ω Si = X which is once more a contradiction with the fact that σ is a winning
strategy so the property (6) is proved.

Given any segment I = 〈x0, S0, . . . , xn, Sn〉 ∈ E observe that H(I) is an interval
[a, b] for some a, b ∈ I so we can choose a point xn+1 ∈ H(I) ∩ [a, b] in such a
way that the length each of the intervals [a, xn+1] and [xn+1, b] does not exceed
2

3
(b− a). Repeating such a choice the necessary number of times we can see that

the following stronger version of the property (6) holds:

(7) for any ε > 0 and any initial segment I ∈ E , there exist initial segments

I0, I1 ∈ E(I) such that H(I0) ∩ H(I1) = ∅ and the diameter of the set H(Ij)
is less than ε for every j ∈ D.

Take any point z ∈ X and let I∅ = {z, σ(z)}. Proceeding inductively, assume
that n ∈ ω and we have constructed an initial segment Is for any s ∈

⋃
{D

m :
m ≤ n} in such a way that

(8) for any m ≤ n, the family {H(Is) : s ∈ D
m} is disjoint;

(9) if m ≤ n and s ∈ D
m, then the diameter of H(Is) does not exceed 2−m;
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(10) if s ⊂ t, then It is an extension of Is.

For any s ∈ D
n apply the property (7) to find extensions I ′ and I ′′ of the

segment Is such that diam(H(I ′)) < 2−n−1 and diam(H(I ′)) < 2−n−1 while

H(I ′) ∩ H(I ′′) = ∅ and let Is⌢0 = I ′ and Is⌢1 = I ′′. This gives us the family
{Is : s ∈

⋃
{D

m : m ≤ n + 1}} and it is immediate that (8)–(10) are still fulfilled
if we replace n with n+1. Therefore our inductive procedure can be continued to
construct the family {Is : s ∈ D

<ω} such that the conditions (8)–(10) are satisfied
for all n ∈ ω.

The set Kn =
⋃
{H(Is) : s ∈ D

n} is compact and Kn+1 ⊂ Kn for all n ∈ ω; it
is standard to deduce from (8)–(10) that K =

⋂
{Kn : n ∈ ω} is homeomorphic

to the Cantor set. If x ∈ K, then there is a unique function f ∈ D
ω such that

{x} =
⋂
{H(If |n) : n ∈ ω}. The property (10) shows that there exists a play

P = {xn, Sn : n ∈ ω} in which O applied the strategy σ and If |n is an initial

segment of P for any n ∈ ω. The equality {x} =
⋂
{H(If |n) : n ∈ ω} shows that

X\{x} ⊂
⋃

n∈ω Sn; since the strategy σ is winning, we must have x ∈ X . This
proves that K ⊂ X which is a contradiction. �

3.9 Corollary. There exists a space X ⊂ I such that PO(X) is determined

on X but PO(S, X) is undetermined for some subbase S of X . In particular,

Pawlikowski’s characterization does not hold for the game PO(S, X).

Proof: Let Z ⊂ I be a set such that for any compact K ⊂ I, if K ⊂ Z or
K ⊂ I\Z, then K is countable. Since the Rothberger property C′′ is trivially
preserved by finite unions, both sets Z and I\Z cannot have the property C′′

because I does not have it. So, one of them, let us call it X , is not a C′′-set and
hence Player O has a winning strategy in PO(X) by Pawlikowski’s theorem [7].
Therefore it suffices to show that Player O does not have a winning strategy in
PO(S, X) for some subbase S in the space X .

Let Q0 = {[0, x]∩X : x ∈ X} and Q1 = {[x, 1]∩X : x ∈ X}; by Theorem 3.8,
Player O does not have a winning strategy in the game PO(Q, X) for the family
Q = Q0 ∪Q1. Let S0 = {[0, x)∩X : x ∈ X} and S1 = {(x, 1]∩X : x ∈ X}; since
X is dense in I, the family S = S0∪S1 is easily seen to be a subbase of X . Suppose
that σ is a winning strategy in PO(S, X). If y ∈ X and y ∈ U = [0, x) ∩ X for
some x ∈ X , then let H(U, y) = [0, y] ∩ X . Analogously, if y ∈ U = (x, 1] ∩X for
some x ∈ X , then H(U, y) = [y, 1] ∩ X .

Now, if we consider X to have the discrete topology, then it is easy to define
inductively a strategy s for Player O in the game PO(Q, X) in such a way that
for any s-admissible segment I = 〈x0, U0, . . . , xn−1, Un−1, xn〉 there exists a σ-
admissible segment J = 〈x0, W0, . . . , xn−1, Wn−1, xn〉 for which Ui = H(Wi, xi)
for all i ≤ n − 1 and s(I) = H(σ(J), xn). The strategy s cannot be winning by
Theorem 3.8 and hence there exists a σ-admissible play {xn, Wn : n ∈ ω} such
that

⋃
n∈ω H(Wn, xn) = X . Observing that H(Wn, xn) ⊂ Wn for every n ∈ ω,

we conclude that
⋃

n∈ω Wn = X which is a contradiction. �
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The referee observed that it would be interesting to find out for a space X
of countable pseudocharacter what conditions a subbase S in X must satisfy to
guarantee that the game PO(S, X) is undetermined on X if and only if X is a
C′′-space; this would generalize Pawlikowski’s theorem from [7]. We do not know
the answer to this question. The referee also asked what replaces the Rothberger
property if there are no restrictions on a subbase S. We cannot answer this
question either but it is worth noting that it follows from Theorem 3.8 that for a
discrete space X of cardinality c, the game PO(S, X) is undetermined for some
subbase S in X . Therefore in this case the space X need not even be Lindelöf so
if anything replaces the Rothberger property, it will be something very different.

Recall that a cardinal κ is called measurable if there exists a free σ-complete
ultrafilter on κ.

3.10 Theorem. If κ is a measurable cardinal and X is a discrete space of

cardinality κ, then Player O has a winning strategy in the game PO(S, X) for

any subbase S of the space X .

Proof: Fix a free ultrafilter µ on X which is σ-complete, i.e., closed under
countable intersections and let S be any subbase for the discrete topology on X .
Given any n ∈ ω, if at the n-th move Player P picks a point xn ∈ X , then there
is a finite family Bn ⊂ S such that

⋂
Bn = {xn}. If Bn ⊂ µ then {xn} ∈ µ which

is a contradiction.
Therefore for any n ∈ ω there exists Sn ∈ Bn\µ and hence we can let

σ(x0, S0, . . . , xn−1, Sn−1, xn) = Sn. If {xn, Sn : n ∈ ω} is a play where O ap-
plies σ, then X\Sn ∈ µ for any n ∈ ω. The ultrafilter µ being σ-complete, the set⋂

n∈ω X\Sn = X\
⋃

n∈ω Sn belongs to µ and hence X 6=
⋃

n∈ω Sn which shows
that σ is a winning strategy for Player O. �

In the paper [4] Galvin introduced a game G∗(X) and proved that it is equiv-
alent to PO(X) for both players. In G∗(X), at the n-th move Player P chooses
an open cover Un of the space X and O responds by taking a set Un ∈ Un. As in
PO(X), Player P wins if

⋃
n∈ω Un = X ; otherwise O is the winner. The follow-

ing game CE(S, X) is a modification of G∗(X) such that G∗(X) = CE(S, X) for
S = τ(X). It follows from Theorem 3.8 that the games PO(X) and PO(S, X)
need not be equivalent for Player O so it is not immediately clear whether pass-
ing from G∗(X) to CE(S, X) we must obtain a game equivalent to PO(S, X).
However, we will show that the ideas from [4] still work for our modification and
hence the game CE(S, X) is equivalent to PO(S, X) for both players.

3.11 Definition. Given a space X and a subbase S in X , in the game CE(S, X)
we have Players C and E who at the n-th move take an open cover Un ⊂ S of
the space X and an element Un ∈ Un respectively. The game stops after ω-
many moves are made and the play {Un, Un : n ∈ ω} is a win for Player E if⋃

n∈ω Un = X ; otherwise C is the winner.

3.12 Theorem. Given a space X and a subbase S of X ,
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(a) Player P has a winning strategy in PO(S, X) if and only if E has a winning

strategy in the game CE(S, X);
(b) Player O has a winning strategy in PO(S, X) if and only if C has a winning

strategy in the game CE(S, X).

Proof: (a) If Player P has a winning strategy in PO(S, X), then he has a
winning strategy in PO(X) by Theorem 3.3. By [4, Theorem 1], Player E has a
winning strategy in CE(τ(X), X) which, evidently, implies that he has a winning
strategy in CE(S, X).

Next assume that X is E-favorable and fix a winning strategy s for Player E
in the game CE(S, X); let S(x) = {S ∈ S : x ∈ S} for every x ∈ X . It turns out
that

(11) if I = 〈U0, U0, . . . ,Un, Un〉 is an s-admissible initial segment of CE(S, X)
(which can be empty), then there exists a point p ∈ X such that for every
set S ∈ S(p), there exists a cover U(S) ⊂ S of the space X such that
S = s(I,U(S)).

Indeed, assume that for any x ∈ X there exists a set Sx ∈ S(x) such that
Sx 6= s(I,U) for any cover U ⊂ S of the space X . Then U = {Sx : x ∈ X} ⊂ S
is a cover of X and hence we have a point p ∈ X such that σ(I,U) = Sp; this
contradiction proves that (11) holds.

Apply (11) to find x0 ∈ X such that S(x0) ⊂ {σ(U) : U ⊂ S and
⋃
U = X}

and let σ(∅) = x0. If O plays U0 ∈ S(x0), then choose a cover U0 ⊂ S such
that U0 = s(U0). Suppose that n ∈ ω and we have defined a strategy σ for
the moves from 0 to n in such a way that for any σ-admissible initial segment
〈x0, U0, . . . , xn, Un〉 of the game PO(S, X) we have covers U0, . . . ,Un of the space
X such that the segment 〈U0, U0, . . . ,Un, Un〉 is s-admissible. Apply (11) again
to find xn+1 ∈ X such that S(xn+1) ⊂ {s(U0, U0, . . . ,Un, Un,U) : U ⊂ S and⋃
U = X} and let σ(x0, U0, . . . , xn, Un) = xn+1. If Player O takes a set Un+1 ∋

xn+1, then we can choose a cover Un+1 ⊂ S of the space X such that Un+1 =
s(U0, U0, . . . ,Un, Un,Un+1). This completes the definition of the strategy σ.

To see that σ is winning note that to any σ-admissible play {xn, Un : n ∈ ω}
we have associated an s-admissible play {Un, Un : n ∈ ω} so

⋃
n∈ω Un = X , i.e.,

the strategy σ is winning. Therefore every E-favorable space is P -favorable. This
completes the proof of (a).

(b) If Player O has a winning strategy σ in the game PO(S, X), then let
U0 = {σ(x) : x ∈ X} and s(∅) = U0. If E chooses a set U0 ∈ U0, then there exists
a point x0 ∈ X such that U0 = σ(x0); consider the family U1 = {σ(x0, U0, x) :
x ∈ X} and let s(U0, U0) = U1. Proceeding inductively, assume that n ∈ ω and
the strategy s for Player C is defined for the moves from 0 to n in such a way
that for any s-admissible initial segment 〈U0, U0, . . . ,Un, Un〉 we have defined a
set {x0, . . . , xn} such that the segment 〈x0, U0, . . . , xn, Un〉 is σ-admissible.

Consider the family Un+1 = {σ(x0, U0, . . . , xn, Un, x) : x ∈ X} and let
s(U0, U0, . . . ,Un, Un) = Un+1; if E answers with a set Un+1 ∈ Un+1, then choose
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the point xn+1 ∈ X such that Un+1 = σ(x0, U0, . . . , xn, Un, xn+1). This completes
the construction of the strategy s.

To see that s is winning note that to any s-admissible play {Un, Un : n ∈ ω}
we have associated a σ-admissible play {xn, Un : n ∈ ω} so

⋃
n∈ω Un 6= X , i.e.,

the strategy s is winning. Therefore every O-favorable space is C-favorable.
If s is a winning strategy for Player C, then for any point x0 ∈ X let σ(x0)

be an element U0 ∈ U0 = s(∅) that contains x0. Suppose that n ∈ ω and
we have defined a strategy σ for the moves from 0 to n in such a way that
for any σ-admissible initial segment 〈x0, U0, . . . , xn, Un〉 of the game PO(S, X)
we have constructed open covers U0, . . . ,Un ⊂ S of the space X such that the
segment 〈U0, U0, . . . ,Un, Un〉 is s-admissible. For any point xn+1 ∈ X choose an
element Un+1 ∈ Un+1 = s(U0, U0, . . . ,Un, Un) such that xn+1 ∈ Un+1; letting
σ(x0, U0, . . . , xn, Un, xn+1) = Un+1 we complete the definition of a strategy σ. To
see that σ is winning observe that to any σ-admissible play {xn, Un : n ∈ ω} we
have associated an s-admissible play {Un, Un : n ∈ o} so

⋃
n∈ω Un 6= X , i.e., the

strategy σ is winning. Therefore every C-favorable space is O-favorable. This
completes the proof of (b). �

3.13 Corollary. Given a space X and a subbase S in X , the games CE(S, X)
and Galvin’s game G∗(X) = CE(τ(X), X) are equivalent for Player E, i.e., E
has a winnings strategy in CE(S, X) if and only if he has one in G∗(X).

Proof: It follows from [4, Theorem 1] that Player E has a winning strategy in the
game G∗(X) if and only if P has a winning strategy in PO(X). By Theorem 3.3
the game PO(X) is equivalent to PO(S, X) for Player P . Applying Theorem 3.12
we can see that G∗(X) is equivalent to CE(S, X) for Player E. �

4. Open problems

A proof of a statement about discrete spaces usually involves no topology; it
is all about set theory. Therefore most questions about discrete spaces belong
more to set theory than to topology. In particular, this is the case when we
consider the game PO(S, X) on discrete spaces. The most intriguing fact is that
the point-open subbase game might be useful for a purely set-theoretic task of
characterizing measurable cardinals.

4.1 Question. Suppose that X is a discrete space such that Player O has a

winning strategy in the game PO(S, X) for every subbase S in X . Must the

cardinality of X be measurable?

4.2 Question. Suppose that X is a discrete space of cardinality 2c. Does there

exist a subbase S in X for which Player O has no winning strategy in the game

PO(S, X)?

4.3 Question. Suppose that X is an uncountable discrete space whose cardi-

nality is non-measurable. Does there exist a linear order < on the set X such

that, for the subbase
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S = {{y ∈ X : y ≤ x} : x ∈ X} ∪ {{y ∈ X : x ≤ y} : x ∈ X},

Player O has no winning strategy in the game PO(S, X)?

4.4 Question. Suppose that X is a discrete space of uncountable cardinality

such that Player O has no winning strategy in the game PO(B, X) for some

subbase B in X . Does there exist a linear order < on the set X such that, for the

subbase

S = {{y ∈ X : y ≤ x} : x ∈ X} ∪ {{y ∈ X : x ≤ y} : x ∈ X},

Player O has no winning strategy in the game PO(S, X)?

4.5 Question. Does there exist a pseudocompact space X such that the games

PO(X) and PO(S, X) are not equivalent for Player O for some subbase S in the

space X?

4.6 Question. Does there exist a countably compact space X such that the

games PO(X) and PO(S, X) are not equivalent for Player O for some subbase S
in the space X?

4.7 Question. Given a maximal almost disjoint family N on ω let X = ω ∪N
be the Mrowka space determined by N (see [3, Example 3.6.I(a)]). Does there

exist a subbase S in X such that Player O has no winning strategy in the game

PO(S, X)?

4.8 Question. Suppose that X is an uncountable second countable space such

that every compact subspace of X is countable. Is it true that the game PO(S, X)
is undetermined for some subbase S of the space X?

4.9 Question. Suppose that X is an uncountable space with a countable net-

work such that every compact subspace of X is countable. Is it true that the

game PO(S, X) is undetermined for some subbase S of the space X?

4.10 Question. Suppose that X is an uncountable hereditarily Lindelöf space

such that every compact subspace of X is countable. Is it true that the game

PO(S, X) is undetermined for some subbase S of the space X?
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