Commentationes Mathematicae Universitatis Carolinas

Enrique Castañeda-Alvarado; Ivon Vidal-Escobar
 Property of being semi-Kelley for the cartesian products and hyperspaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 58 (2017), No. 3, 359-369

Persistent URL: http://dml.cz/dmlcz/146909

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Property of being semi-Kelley for the cartesian products and hyperspaces

Enrique Castañeda-Alvarado, Ivon Vidal-Escobar

Abstract

In this paper we construct a Kelley continuum X such that $X \times$ $[0,1]$ is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69-99. In addition, we show that the hyperspace $C(X)$ is not semiKelley. Further we show that small Whitney levels in $C(X)$ are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro, 2013.

Keywords: continuum; property of Kelley; semi-Kelley; cartesian products; hyperspaces; Whitney levels

Classification: Primary 54F15, 54B20, 54G20

1. Introduction

A continuum is a nonempty compact connected metric space. A map is a continuous function. Given a continuum X with metric $d, p \in X$ and $A \subset X$, we put $B(p, \varepsilon)=\{x \in X: d(p, x)<\varepsilon\}$ and $N(A, \varepsilon)=\bigcup\{B(a, \varepsilon): a \in A\}$.

Given a continuum X and $p, q \in X$, we say that a subcontinuum A of X is irreducible between p and q provided that $p, q \in A$, and not proper subcontinuum of A contains p and q.

Given a continuum X, we let 2^{X} denote the hyperspace of all nonempty closed subsets of X equipped with the Hausdorff metric. Furthermore, we denote by $C(X)$ the hyperspace of all subcontinua of X, i.e., of all connected elements of 2^{X}. Let X and Y be continua and let $f: X \rightarrow Y$ be a map, the induced map $C(f): C(X) \rightarrow C(Y)$ is given by $C(f)(A)=f(A)$, for each $A \in C(X)$.

A map $\mu: C(X) \rightarrow[0, \infty)$ is called a Whitney map for $C(X)$ provided that:
(1) $\mu(\{x\})=0$ for each $x \in X$,
(2) $\mu(A)<\mu(B)$ for every $A, B \in C(X)$ such that $A \varsubsetneqq B$.

This paper was partially supported by the project Teoría de Continuos e Hiperespacios (0221413)" of CONACYT, 2014; and the project "Teoría de Continuos, Hiperespacios y Sistemas Dinámicos II" (IN101216) of PAPIIT, DGAPA, UNAM and by COMECYT by agreement to implement the Séptimo Taller de Investigación de Continuos e Hiperespacios.

If μ is a Whitney map for $C(X)$ and $t \in[0, \mu(X)]$, then $\mu^{-1}(t)$ is called a Whitney level. It is known that each Whitney level is a continuum [6, p. 1032]. A topological property P is said to be a Whitney property provided that whenever a continuum X has property P, so does $\mu^{-1}(t)$ for each Whitney map μ for $C(X)$ and each t with $0<t<\mu(X)$.

A continuum X is said to be Kelley provided that for each point $x \in X$, for each subcontinuum K of X containing x and for each sequence of points $\left\{x_{n}\right\}_{n=1}^{\infty}$ of X converging to x there exists a sequence of subcontinua $\left\{K_{n}\right\}_{n=1}^{\infty}$ of X such that for each $n \in \mathbb{N}, x_{n} \in K_{n}$ and $\lim _{n \rightarrow \infty} K_{n}=K$. This property introduced by J. L. Kelley in [8, p. 26], is an important tool in investigation of various properties of continua and hyperspaces (see [5]).

Let K be a subcontinuum of a continuum X. A continuum $M \subset K$ is called maximal limit continuum in K provided that there exists a sequence of subcontinua $\left\{M_{n}\right\}_{n=1}^{\infty}$ of X converging to M such that for each convergent sequence of subcontinua $\left\{M_{n}^{\prime}\right\}_{n=1}^{\infty}$ of X with $M_{n} \subset M_{n}^{\prime}$ for each $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} M_{n}^{\prime}=M^{\prime} \subset K$ we have that $M^{\prime}=M$.

A continuum X is said to be semi-Kelley provided that for each subcontinuum K and for every two maximal limit continua M and L in K either $M \subset L$ or $L \subset M$. The property of semi-Kelley is a weaker form of the property of Kelley, this property has been introduced and studied in [3] by J.J. Charatonik and W.J. Charatonik (see [2], [1]).

In particular in [3, Theorem 4.1, p. 80] J.J. Charatonik and W.J. Charatonik proved that, if the cartesian product of two nondegenerate continua is semi-Kelley then each factor is Kelley (so, semi-Kelley). Also they constructed a Kelley continuum X, [3, Example 4.3, p. 81], such that $X \times X$ and 2^{X} are not semi-Kelly. In connection with this, in [3] they extend Kato's question [7, Problem 3.4, p. 1148] to the following.
Question ([3, Question 4.4, p. 82]). Is it true that if a continuum X is Kelley, then the cartesian product $X \times[0,1]$ is semi-Kelley?

In this paper, we answer this question in negative form. The continuum X of the Example 2.1 is Kelley, however $X \times[0,1]$ is not semi-Kelley.

With respect to hyperspaces in [3, Theorem 4.5 and Theorem 4.7, p. 83-84] they proved that, if the hyperspace $C(X)$ (or 2^{X}) is semi-Kelley then X is Kelley. In this paper, the continuum X of the Example 2.1 is Kelley but the hyperspace $C(X)$ is not semi-Kelley.
A. Illanes posed the following problem, see Problem 5.5 in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro, 2013.

Problem Is the property of being semi-Kelley a Whitney property?
In this paper, we prove that if X is as in the Example 2.1, for each Whitney map μ for $C(X)$ there exists a number $0<t_{0}<\mu(X)$ such that for each $t \in\left(0, t_{0}\right)$ the Whitney level $\mu^{-1}(t)$ is not semi-Kelley, therefore being semi-Kelley is not a Whitney property.

2. The example

Given Y the example defined by J.J. Charatonik and W.J. Charatonik in [4], the continuum X of the Example 2.1 is homeomorphic to the union of two copies of Y with a common point.

Example 2.1. In the polar coordinates (r, φ) in the plane, we consider the following circles

$$
R=\{(r, \varphi): r=1\} \text { and } S=\{(r, \varphi): r=3\}
$$

for each $n \in \mathbb{N}$,

$$
R_{n}=\left\{(r, \varphi): r=1+\frac{1}{2 n \pi}\right\} \text { and } S_{n}=\left\{(r, \varphi): r=3-\frac{1}{2 n \pi}\right\}
$$

four spirals

$$
\begin{aligned}
& \Sigma_{R}=\left\{(r, \varphi): r=1+\frac{1}{\varphi} \text { and } \varphi \in[2 \pi, \infty)\right\} \\
& \Sigma_{S}=\left\{(r, \varphi): r=3-\frac{1}{\varphi} \text { and } \varphi \in[2 \pi, \infty)\right\} \\
& \Sigma_{1}=\left\{(r, \varphi): r=1-\frac{1}{\varphi} \text { and } \varphi \in[2 \pi, \infty)\right\} \\
& \Sigma_{2}=\left\{(r, \varphi): r=3+\frac{1}{\varphi} \text { and } \varphi \in[2 \pi, \infty)\right\}
\end{aligned}
$$

and an arc

$$
\Lambda=\left\{(r, \varphi): r=\frac{1-2 \pi}{2 \pi^{2}} \varphi+3-\frac{1}{2 \pi} \text { and } \varphi \in[0,2 \pi]\right\} .
$$

Define the following continua

$$
X_{1}=R \cup\left(\bigcup_{n \in \mathbb{N}} R_{n}\right) \cup \Sigma_{R} \cup \Sigma_{1},
$$

see Figure 1,

$$
X_{2}=S \cup\left(\bigcup_{n \in \mathbb{N}} S_{n}\right) \cup \Sigma_{S} \cup \Sigma_{2}
$$

see Figure 2, and finally define the continuum $X=X_{1} \cup X_{2} \cup \Lambda$, see Figure 3.
Furthermore, for each $n \in \mathbb{N}$ define $p_{n}=\left(1+\frac{1}{2 n \pi}, 0\right), p_{n}^{\prime}=\left(1-\frac{1}{2 n \pi}, 0\right)$, $q_{n}=\left(3-\frac{1}{2 n \pi} 0\right)$ and $q_{n}^{\prime}=\left(3+\frac{1}{2 n \pi}, 0\right)$, also define $p=(1,0), q=(3,0)$. Observe that, for each $n \in \mathbb{N}, R_{n} \cap \Sigma_{R}=\left\{p_{n}\right\}, S_{n} \cap \Sigma_{S}=\left\{q_{n}\right\}$, moreover $\lim _{n \rightarrow \infty} p_{n}=$ $p=\lim _{n \rightarrow \infty} p_{n}^{\prime}$ and $\lim _{n \rightarrow \infty} q_{n}=q=\lim _{n \rightarrow \infty} q_{n}^{\prime}$.

Additionally, for each $n \in \mathbb{N}$, define the following subcontinua of X

$$
\Lambda_{R}^{n}=\left\{(r, \varphi): r=1+\frac{1}{\varphi} \text { and } \varphi \in[2 n \pi, 2(n+1) \pi]\right\}
$$

Figure 1. X_{1}

Figure 2. X_{2}

$$
\begin{aligned}
& \left.\Lambda_{S}^{n}=\left\{(r, \varphi): r=3-\frac{1}{\varphi} \text { and } \varphi \in[2 n \pi, 2(n+1) \pi)\right]\right\}, \\
& \Lambda_{1}^{n}=\left\{(r, \varphi): r=1-\frac{1}{\varphi} \text { and } \varphi \in[2 n \pi, 2(n+1) \pi]\right\}, \\
& \left.\Lambda_{2}^{n}=\left\{(r, \varphi): r=3+\frac{1}{\varphi} \text { and } \varphi \in[2 n \pi, 2(n+1) \pi)\right]\right\}
\end{aligned}
$$

Notice that $\Lambda_{R}^{n}, \Lambda_{S}^{n}, \Lambda_{1}^{n}$ and Λ_{2}^{n} are arcs with end points $p_{n}, p_{n+1} ; q_{n}, q_{n+1}$; $p_{n}^{\prime}, p_{n+1}^{\prime}$ and $q_{n}^{\prime}, q_{n+1}^{\prime}$, respectively. Moreover $\lim _{n \rightarrow \infty} \Lambda_{R}^{n}=R=\lim _{n \rightarrow \infty} \Lambda_{1}^{n}$ and $\lim _{n \rightarrow \infty} \Lambda_{S}^{n}=S=\lim _{n \rightarrow \infty} \Lambda_{2}^{n}$.

Additionally, denote by $\varrho_{1}: X \rightarrow R, \varrho_{2}: X \rightarrow S$ the projections defined by $\varrho_{1}((r, \varphi))=(1, \varphi)$ and $\varrho_{2}((r, \varphi))=(3, \varphi)$.

Figure 3. X

Theorem 2.2. The continuum X of the Example 2.1 has the following properties:
(1) X is Kelley,
(2) $X \times[0,1]$ is not semi-Kelley,
(3) the hyperspace $C(X)$ is not semi-Kelley,
(4) for each Whitney map $\mu: C(X) \rightarrow[0, \infty)$ there exists a number $0<t_{0}<$ $\mu(X)$ such that for each $t \in\left(0, t_{0}\right)$ the Whitney level $\mu^{-1}(t)$ is not semi-Kelley.

Proof: (1) To show that X is Kelley we consider a point $x \in X$, a sequence of points $\left\{x_{n}\right\}_{n=1}^{\infty}$ of X converging to x and a continuum $K \subset X$ containing the point x. We have to show that there exists a sequence of continua $\left\{K_{n}\right\}_{n=1}^{\infty}$ such that for each $n \in \mathbb{N}, x_{n} \in K_{n}$ and $\lim _{n \rightarrow \infty} K_{n}=K$.

If $x \in X \backslash(R \cup S)$, then X is locally connected at x, thus there exists $m \in \mathbb{N}$ such that x_{n} belongs to the arc component of X containing x for every $n \geq m$. We may take K_{n} as the union of K and the smallest arc in X joining x_{n} and x if $n \geq m$, and $K_{n}=\left\{x_{n}\right\}$ if $n<m$.

Now, if $x \in R \cup S$, without lost of generality suppose that $x \in S$, thus there exists $m \in \mathbb{N}$ such that for every $n \geq m, x_{n}$ belong to X_{2}. We have two cases:
Case 1. $K \nsubseteq S$. For each $n \in \mathbb{N}$, let P_{n} be the smallest arc that is irreducible between x and $\varrho_{2}\left(x_{n}\right)$. Note that $\lim _{n \rightarrow \infty}\left(\operatorname{diam}\left(P_{n}\right)\right)=0$ and $\lim _{n \rightarrow \infty}\left(K \cup P_{n}\right)=$ K. Then it is enough to define K_{n} as the component of $\varrho_{2}^{-1}\left(K \cup P_{n}\right)$ containing x_{n}.

Case 2. $S \subset K$. Then for each $n \geq m$ there is a spiral Σ_{S}^{n} having x_{n} as its end point and approaching S. Indeed, if $x_{n} \in \Sigma_{S}$ then Σ_{S}^{n} can be chosen as a subspiral of Σ_{S}; if $x_{n} \in \Sigma_{2}$ then Σ_{S}^{n} is a subspiral of Σ_{2}; and if $x_{n} \in S_{k}$ for some $k \in \mathbb{N}$, then Σ_{S}^{n} is the union of an arc joining x_{n} to q_{k} and a subspiral of Σ_{S} with end point q_{k}. Finally put $K_{n}=K \cup \Sigma_{S}^{n}$ if $n \geq m$ and $K_{n}=\left\{x_{n}\right\}$ if $n<m$. Since the spirals Σ_{S}^{n} converges to S, we have that $\lim _{n \rightarrow \infty} K_{n}=K$.

Thus we have X is Kelley. By [3, Statement 3.17, p.79], we have that X is semi- Kelley.
(2) We consider $X \times[0,1]$ with cylindrical coordinates (r, φ, z).

To show that $X \times[0,1]$ is not semi-Kelley, define the following subcontinua of $X \times[0,1]$,

$$
M=\{(1,2 \pi z, z): z \in[0,1]\} \subset R \times[0,1]
$$

Thus M is an arc from $(p, 0)$ to $(p, 1)$. Furthermore, for each $n \in \mathbb{N}$, define

$$
\begin{gathered}
A_{n}=\left\{(r, \varphi, z): r=1+\frac{1}{\varphi}, \varphi=2(n+z) \pi, \text { and } z \in[0,1]\right\} \subset \Lambda_{R}^{n} \times[0,1], \\
B_{n}=\left\{(r, \varphi, z): r=1+\frac{1}{2 n \pi}, \varphi=2 \pi z, \text { and } z \in[0,1]\right\} \subset R_{n} \times[0,1] .
\end{gathered}
$$

Notice that A_{n} and B_{n} are arcs with end points $\left(p_{n}, 0\right),\left(p_{n+1}, 1\right)$ and $\left(p_{n}, 0\right)$, $\left(p_{n}, 1\right)$, respectively. Additionally, observe that $A_{n} \cap B_{n}=\left\{\left(p_{n}, 0\right)\right\}$ and $A_{n} \cap$ $B_{n+1}=\left\{\left(p_{n+1}, 1\right)\right\}$. Similarly, define an arc from $(q, 0)$ to $(q, 1)$ by

$$
L=\{(3,2 \pi z, z): z \in[0,1]\} \subset S \times[0,1]
$$

And for each $n \in \mathbb{N}$, define

$$
\begin{gathered}
D_{n}=\left\{(r,-\varphi, z): r=3-\frac{1}{\varphi}, \varphi=2(n+z) \pi, \text { and } z \in[0,1]\right\} \subset \Lambda_{S}^{n} \times[0,1], \\
E_{n}=\left\{(r,-\varphi, z): r=3-\frac{1}{2 n \pi}, \varphi=2 \pi z, \text { and } z \in[0,1]\right\} \subset S_{n} \times[0,1]
\end{gathered}
$$

In this case D_{n} and E_{n} are arcs with end points $\left(q_{n}, 0\right),\left(q_{n+1}, 1\right)$ and $\left(q_{n}, 0\right),\left(q_{n}, 1\right)$ respectively. Furthermore, $D_{n} \cap E_{n}=\left\{\left(q_{n}, 0\right)\right\}$ and $D_{n} \cap E_{n+1}=\left\{\left(q_{n+1}, 1\right)\right\}$. Also define

$$
\begin{aligned}
K_{M} & =M \cup\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) \cup\left(\bigcup_{n \in \mathbb{N}} B_{n}\right), \\
K_{L} & =L \cup\left(\bigcup_{n \in \mathbb{N}} D_{n}\right) \cup\left(\bigcup_{n \in \mathbb{N}} E_{n}\right)
\end{aligned}
$$

Notice that K_{M} and K_{L} are homeomorphic to a sinoidal curve.
Furthermore, define $\Lambda_{0}=\Lambda \times\{0\} \subset \Lambda \times[0,1]$. Thus Λ_{0} is an arc with end points $\left(q_{1}, 0\right)$ and $\left(p_{1}, 0\right)$. Finally, define the continuum

$$
K=K_{L} \cup K_{M} \cup \Lambda_{0}
$$

Notice that K is homeomorphic to the union of two sinoidal curves with a common point (see Figure 4) and by construction $K \subset X \times[0,1]$.

We will show that M and L are maximal limit continua in K.

Figure 4. K

In order to show that M and L are maximal limit continua in K, for each $n \in \mathbb{N}$, define

$$
\begin{aligned}
M_{n} & =\left(\varrho_{1} \times i d\right)^{-1}(M) \cap\left(\Lambda_{1}^{n} \times[0,1]\right), \\
L_{n} & =\left(\varrho_{2} \times i d\right)^{-1}(L) \cap\left(\Lambda_{2}^{n} \times[0,1]\right) .
\end{aligned}
$$

It is clear that $\lim _{n \rightarrow \infty} M_{n}=M$ and $\lim _{n \rightarrow \infty} L_{n}=L$. Suppose that there exists a convergent sequence of subcontinua $\left\{M_{n}^{\prime}\right\}_{n=1}^{\infty}$ of $X \times[0,1]$ such that $M_{n} \subset M_{n}^{\prime}, \lim _{n \rightarrow \infty} M_{n}^{\prime}=M^{\prime} \subset K$, and $M \neq M^{\prime}$.

As $M^{\prime} \neq M$ and $M \subset M^{\prime} \subset K$ the set $P=\left\{r \in \mathbb{N}:\left(p_{r}, 0\right) \in M^{\prime}\right\}$ is nonempty, define $r_{0}=\min P$.

Let $0<\varepsilon<1$, as $\left(\varrho_{1} \times i d\right)(K)=M$, then $\left(\varrho_{1} \times i d\right)\left(M^{\prime}\right)=M$, it follows that $M^{\prime} \subset\left(\varrho_{1} \times i d\right)^{-1}(N(M, \varepsilon))$, therefore there exists $n_{0} \in \mathbb{N}$ such that $M_{n}^{\prime} \subset$ $\left(\varrho_{1} \times i d\right)^{-1}(N(M, \varepsilon))$ for every $n>n_{0}$.

Notice that the component of $\left(\varrho_{1} \times i d\right)^{-1}(N(\varepsilon, M))$ that contains M_{n} is a subset of $\left(\Lambda_{1}^{n-1} \cup \Lambda_{1}^{n} \cup \Lambda_{1}^{n+1} \times[0,1]\right)$ so $M_{n}^{\prime} \subset\left(\Sigma_{1} \times[0,1]\right)$.

Hence, if d denotes the metric in $X \times[0,1]$ and H denotes the Hausdorff metric in $C(X \times[0,1])$, we have that $H\left(M^{\prime}, M_{n}^{\prime}\right) \geq d\left((p, 0),\left(p_{r_{0}}, 0\right)\right)=\frac{1}{2 r_{0} \pi}$ for each $n \in \mathbb{N}$; it follows that M^{\prime} is not the limit of continua M_{n}^{\prime}, this is a contradiction.

Therefore, M is a maximal limit continuum in K. Similarly L is a maximal limit continuum in K. Notice that $M \cap L=\emptyset$ therefore $X \times[0,1]$ is not semi-Kelley.
(3) To show that the hyperspace $C(X)$ is not semi-Kelley. Let $\mu: C(X) \rightarrow$ $[0, \infty)$ be a Whitney map and define $r=\mu(R), s=\mu(S)$. Suppose that $r \leq s$.

Define

$$
\begin{gathered}
\mathbf{M}=\left\{A \in C(R): A \in \mu^{-1}\left(\frac{r}{2}\right), p \notin \operatorname{Int}_{R}(A)\right\}, \\
\mathbf{C}=\left\{A \in C(X): C\left(\varrho_{1}\right)(A) \in \mathbf{M}\right\}
\end{gathered}
$$

and $t_{0}=\min \{\mu(A): A \in \mathbf{C}\}$ as \mathbf{C} is a nonempty closed subset of $C(X)$ and μ is a map, it follows that t_{0} is well defined and there exists $A_{0} \in \mathbf{C}$ such that $\mu\left(A_{0}\right)=t_{0}$, moreover as $A_{0} \in \mathbf{C}$, then $t_{0}>0$ and as $\mathbf{M} \subset \mathbf{C}$, then $t_{0} \leq \frac{r}{2}<r$; therefore $0<t_{0}<r$.

Let $0<t<t_{0}$, notice that $\mu(R), \mu(S)>t$, and $\mu\left(R_{n}\right), \mu\left(\Lambda_{n}^{R}\right), \mu\left(S_{n}\right), \mu\left(\Lambda_{n}^{S}\right)>t$ for each $n \in \mathbb{N}$, then we can define the following continua:

$$
\begin{aligned}
\mathcal{M} & =\left\{A \in C(R): A \in \mu^{-1}(t), p \notin \operatorname{Int}_{R}(A)\right\} \\
\mathcal{L} & =\left\{A \in C(S): A \in \mu^{-1}(t), q \notin \operatorname{Int}_{S}(A)\right\}
\end{aligned}
$$

Notice that \mathcal{M} and \mathcal{L} are arcs in $C(R)$ and $C(S)$ respectively. Denote the end points of \mathcal{M} and \mathcal{L} by M_{0}, M_{1} and L_{0}, L_{1} respectively. It is easy to see that $p \in M_{0}, p \in M_{1}, q \in L_{0}, q \in L_{1}$. Furthermore, for each $n \in \mathbb{N}$, define

$$
\begin{gathered}
\mathcal{A}_{n}=\left\{A \in C\left(R_{n}\right): A \in \mu^{-1}(t), p_{n} \notin \operatorname{Int}_{R_{n}}(A)\right\}, \\
\mathcal{B}_{n}=\left\{A \in C\left(\Lambda_{n}^{R}\right): A \in \mu^{-1}(t)\right\}
\end{gathered}
$$

Notice that \mathcal{A}_{n} is an arc in $C\left(R_{n}\right)$ and \mathcal{B}_{n} is an arc in $C\left(\Lambda_{n}^{R}\right)$. Moreover $\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{M}=\lim _{n \rightarrow \infty} \mathcal{B}_{n}$. Denote the end points of \mathcal{A}_{n} and \mathcal{B}_{n} by A_{n}^{0}, A_{n}^{1} and B_{n}^{0}, B_{n}^{1}, respectively. It is easy to see that $p_{n} \in A_{n}^{0}, p_{n} \in A_{n}^{1}, p_{n} \in B_{n}^{0}$, $p_{n+1} \in B_{n}^{1}$ and $\mu\left(A_{n}^{0} \cup B_{n}^{0}\right), \mu\left(B_{n}^{1} \cup A_{n+1}^{1}\right)>t$.

Also, for each $n \in \mathbb{N}$, define

$$
\begin{gathered}
\mathcal{C}_{n}=\left\{A \in C\left(A_{n}^{0} \cup B_{n}^{0}\right): A \in \mu^{-1}(t)\right\}, \\
\mathcal{D}_{n}=\left\{A \in C\left(B_{n}^{1} \cup A_{n+1}^{1}\right): A \in \mu^{-1}(t)\right\}
\end{gathered}
$$

Thus \mathcal{C}_{n} and \mathcal{D}_{n} are arcs with end points A_{n}^{0}, B_{n}^{0} and B_{n}^{1}, A_{n+1}^{1}, respectively. Furthermore, $\lim _{n \rightarrow \infty} \mathcal{C}_{n}=\left\{M_{0}\right\}$ and $\lim _{n \rightarrow \infty} \mathcal{D}_{n}=\left\{M_{1}\right\}$. Moreover, observe that $\mathcal{A}_{n} \cap \mathcal{C}_{n}=\left\{A_{n}^{0}\right\}, \mathcal{C}_{n} \cap \mathcal{B}_{n}=\left\{B_{n}^{0}\right\}, \mathcal{B}_{n} \cap \mathcal{D}_{n}=\left\{B_{n}^{1}\right\}, \mathcal{D}_{n} \cap \mathcal{A}_{n+1}=\left\{A_{n+1}^{1}\right\}$.

Similarly, for each $n \in \mathbb{N}$, define

$$
\begin{gathered}
\mathcal{E}_{n}=\left\{A \in C\left(S_{n}\right): A \in \mu^{-1}(t), q_{n} \notin \operatorname{Int}_{S_{n}}(A)\right\}, \\
\mathcal{F}_{n}=\left\{A \in C\left(\Lambda_{n}^{S}\right): A \in \mu^{-1}(t)\right\} .
\end{gathered}
$$

Notice that \mathcal{E}_{n} is an arc in $C\left(S_{n}\right)$ and \mathcal{F}_{n} is an arc in $C\left(\Lambda_{n}^{S}\right)$. Moreover $\lim _{n \rightarrow \infty} \mathcal{E}_{n}$ $=\mathcal{L}=\lim _{n \rightarrow \infty} \mathcal{F}_{n}$. Denote the end points of \mathcal{E}_{n} and \mathcal{F}_{n} by E_{n}^{0}, E_{n}^{1} and F_{n}^{0}, F_{n}^{1}, respectively. It is easy to see that $q_{n} \in E_{n}^{0}, q_{n} \in E_{n}^{1}, q_{n} \in F_{n}^{0}, q_{n+1} \in F_{n}^{1}$ and $\mu\left(E_{n}^{1} \cup F_{n}^{1}\right), \mu\left(F_{n}^{0} \cup E_{n+1}^{0}\right)>t$.

Also, for each $n \in \mathbb{N}$, define

$$
\begin{aligned}
\mathcal{G}_{n} & =\left\{A \in C\left(E_{n}^{1} \cup F_{n}^{1}\right): A \in \mu^{-1}(t)\right\} \\
\mathcal{H}_{n} & =\left\{A \in C\left(F_{n}^{0} \cup E_{n+1}^{0}\right): A \in \mu^{-1}(t)\right\}
\end{aligned}
$$

Thus \mathcal{G}_{n} and \mathcal{H}_{n} are arcs with end points E_{n}^{1}, F_{n}^{1} and F_{n}^{0}, E_{n+1}^{0}, respectively. Furthermore, $\lim _{n \rightarrow \infty} \mathcal{G}_{n}=\left\{L_{1}\right\}$ and $\lim _{n \rightarrow \infty} \mathcal{H}_{n}=\left\{L_{0}\right\}$.

Additionally, observe that $\mathcal{E}_{n} \cap \mathcal{G}_{n}=\left\{E_{n}^{1}\right\}, \mathcal{G}_{n} \cap \mathcal{F}_{n}=\left\{F_{n}^{1}\right\}, \mathcal{F}_{n} \cap \mathcal{H}_{n}=\left\{F_{n}^{0}\right\}$, $\mathcal{H}_{n} \cap \mathcal{E}_{n+1}=\left\{E_{n+1}^{0}\right\}$. Furthermore, define

$$
\mathcal{I}=\left\{A \in C(\Lambda): A \in \mu^{-1}(t)\right\}
$$

In this case, \mathcal{I} is an arc. Denote the end points of \mathcal{I} by I^{0} and I^{1}. It is easy to see that $q_{1} \in I^{0}, p_{1} \in I^{1}$ and $\mu\left(I^{0} \cup E_{1}^{0}\right), \mu\left(I^{1} \cup A_{1}^{1}\right)>t$.

Also define

$$
\begin{aligned}
& \mathcal{I}_{0}=\left\{A \in C\left(I^{0} \cup E_{1}^{0}\right): A \in \mu^{-1}(t)\right\} \\
& \mathcal{I}_{1}=\left\{A \in C\left(I^{1} \cup A_{1}^{1}\right): A \in \mu^{-1}(t)\right\}
\end{aligned}
$$

Notice that \mathcal{I}_{0} and \mathcal{I}_{1} are arcs with end points I^{0}, E_{1}^{0} and I^{1}, A_{1}^{1}, respectively. Moreover, observe that $\mathcal{I}_{0} \cap \mathcal{E}_{1}=\left\{E_{1}^{0}\right\}, \mathcal{I}_{0} \cap \mathcal{I}=\left\{I^{0}\right\}, \mathcal{I} \cap \mathcal{I}_{1}=\left\{I^{1}\right\}, \mathcal{I}_{1} \cap \mathcal{A}_{1}=$ $\left\{A_{1}^{1}\right\}$. Define the following subcontinua of $C(X)$

$$
\begin{aligned}
\mathcal{K}_{M} & =\mathcal{M} \cup\left(\bigcup_{n \in \mathbb{N}} \mathcal{A}_{n}\right) \cup\left(\bigcup_{n \in \mathbb{N}} \mathcal{B}_{n}\right) \cup\left(\bigcup_{n \in \mathbb{N}} \mathcal{C}_{n}\right) \cup\left(\bigcup_{n \in \mathbb{N}} \mathcal{D}_{n}\right), \\
\mathcal{K}_{L} & =\mathcal{L} \cup\left(\bigcup_{n \in \mathbb{N}} \mathcal{E}_{n}\right) \cup\left(\bigcup_{n \in \mathbb{N}} \mathcal{F}_{n}\right) \cup\left(\bigcup_{n \in \mathbb{N}} \mathcal{G}_{n}\right) \cup\left(\bigcup_{n \in \mathbb{N}} \mathcal{H}_{n}\right) .
\end{aligned}
$$

Notice that \mathcal{K}_{M} and \mathcal{K}_{L} are homeomorphic to a sinoidal curve.
Define $\Lambda_{0}=\mathcal{I}_{0} \cup \mathcal{I} \cup \mathcal{I}_{1}$. Thus Λ_{0} is an arc with end points A_{1}^{1} and E_{1}^{0}. Finally, define the continuum

$$
\mathcal{K}=\mathcal{K}_{M} \cup \Lambda_{0} \cup \mathcal{K}_{L}
$$

Notice that \mathcal{K} is homeomorphic to the union of two sinoidal curves with a common point (see Figure 5), by construction $\mathcal{K} \subset \mu^{-1}(t) \subset C(X)$.

Let $0<\varepsilon<\frac{r}{2}$, and $\delta_{1}>0$ given by the uniform continuity of μ for ε and $0<\delta<\delta_{1}$ given by the uniform continuity of $C\left(\varrho_{1}\right)$ for δ_{1}. Denote by H the Hausdorff metric in $C(X)$.

Claim 1. For each $A \in \mathcal{K}$,
(i) $\mu\left(C\left(\varrho_{1}\right)(A)\right) \in\left[0, \frac{r}{2}\right]$,
(ii) for each $B \in C(X)$ such that $H(A, B)<\delta, \mu\left(C\left(\varrho_{1}\right)(B)\right)<r$.
(i) For each $A \in \mathcal{K}$, there exists $D \in \mathbf{C}$ such that $A \subset D$, then $C\left(\varrho_{1}\right)(A) \subseteq$ $C\left(\varrho_{1}\right)(D)$, hence $\mu\left(C\left(\varrho_{1}\right)(A)\right) \leq \mu\left(C\left(\varrho_{1}\right)(D)\right)=\frac{r}{2}$.
(ii) If $H(A, B)<\delta$, then $H\left(C\left(\varrho_{1}\right)(A), C\left(\varrho_{1}\right)(B)\right)<\delta_{1}$, it follows that $\left|\mu\left(C\left(\varrho_{1}\right)(A)\right)-\mu\left(C\left(\varrho_{1}\right)(B)\right)\right|<\varepsilon$, so $\mu\left(C\left(\varrho_{1}\right)(B)\right) \in\left[0, \frac{r}{2}+\varepsilon\right]$, therefore $\mu\left(C\left(\varrho_{1}\right)(B)\right)<r$.

Figure 5. \mathcal{K}

We will show that \mathcal{M} and \mathcal{L} are maximal limit continua in \mathcal{K}. In order to show that \mathcal{M} and \mathcal{L} are maximal limit continua in \mathcal{K}, for each $n \in \mathbb{N}$, define

$$
\begin{aligned}
\mathcal{M}_{n} & =\left\{A \in C\left(\Lambda_{1}^{n}\right): A \in \mu^{-1}(t)\right\} \\
\mathcal{L}_{n} & =\left\{A \in C\left(\Lambda_{2}^{n}\right): A \in \mu^{-1}(t)\right\} .
\end{aligned}
$$

Notice that \mathcal{M}_{n} is an arc in $C\left(\Lambda_{1}^{n}\right)$ and \mathcal{L}_{n} is an arc in $C\left(\Lambda_{2}^{n}\right)$. Denote the end points of \mathcal{M}_{n} and \mathcal{L}_{n} by M_{n}^{0}, M_{n}^{1} and L_{n}^{0}, L_{n}^{1}, respectively. It is easy to see that $p_{n}^{\prime} \in M_{n}^{0}, p_{n+1}^{\prime} \in M_{n}^{1}, q_{n}^{\prime} \in L_{n}^{0}, q_{n+1}^{\prime} \in L_{n}^{1}$.

It is clear that $\lim _{n \rightarrow \infty} \mathcal{M}_{n}=\mathcal{M}$ and $\lim _{n \rightarrow \infty} \mathcal{L}_{n}=\mathcal{L}$. Suppose that, there exists a sequence of subcontinua $\left\{\mathcal{M}_{n}^{\prime}\right\}_{n=1}^{\infty}$ of $C(X)$ with $\mathcal{M}_{n} \subset \mathcal{M}_{n}^{\prime}$, $\lim _{n \rightarrow \infty} \mathcal{M}_{n}^{\prime}=\mathcal{M}^{\prime} \subset \mathcal{K}$ and $\mathcal{M} \neq \mathcal{M}^{\prime}$.

As $\mathcal{M}^{\prime} \subset N(\mathcal{K}, \delta)$ and $\lim _{n \rightarrow \infty} \mathcal{M}_{n}^{\prime}=\mathcal{M}^{\prime}$, there exists $n_{0} \in \mathbb{N}$ such that for every $n>n_{0}, \mathcal{M}_{n}^{\prime} \subset N(\mathcal{K}, \delta)$. Notice that for each $B \in \mathcal{M}_{n}^{\prime}$, there exists $A \in \mathcal{K}$ such that $H(A, B)<\delta$, by Claim $1, \mu\left(C\left(\varrho_{1}\right)(B)\right)<r$, so $C\left(\varrho_{1}\right)(B) \varsubsetneqq R$. It follows that $\mathcal{M}_{n}^{\prime} \subset C\left(\Lambda_{1}^{n-1} \cup \Lambda_{1}^{n} \cup \Lambda_{1}^{n+1}\right) \subset C\left(\Sigma_{1}\right)$, therefore $\mathcal{M}_{n}^{\prime} \in C\left(C\left(\Sigma_{1}\right)\right)$.

Moreover as $\mathcal{M}^{\prime} \neq \mathcal{M}$ and $\mathcal{M}^{\prime} \subset \mathcal{K}$ the set $P=\left\{m \in \mathbb{N}: A_{m}^{0} \in \mathcal{M}^{\prime}\right\}$ is nonempty, define $m_{0}=\min P$. Hence, if d denotes the metric in X and \mathbf{H} denotes the Hausdorff metric in $C(C(X))$, for each $n>n_{0}, \mathbf{H}\left(\mathcal{M}^{\prime}, \mathcal{M}_{n}^{\prime}\right) \geq H\left(A_{m_{0}}^{0}, M_{n}^{0}\right) \geq$ $d\left(p_{m_{0}}, p_{n}^{\prime}\right)>d\left(p_{m_{0}}, p\right)=\frac{1}{2 m_{0} \pi}$, this contradicts that $\lim _{n \rightarrow \infty} \mathcal{M}_{n}^{\prime}=\mathcal{M}^{\prime}$.

Therefore, \mathcal{M} is maximal limit continuum in \mathcal{K}. Similarly \mathcal{L} is maximal limit continuum in \mathcal{K}. Since $\mathcal{M} \cap \mathcal{L}=\emptyset, C(X)$ is not semi-Kelley. Similarly if we suppose that $s \leq r, C(X)$ is not semi-Kelley.
(4) Let t_{0} as in (3) and $0<t<t_{0}$ we consider the continua defined in (3). Since $\mu^{-1}(t) \subset C(X)$ in particular we can take the sequence of subcontinua $\left\{\mathcal{M}_{n}^{\prime}\right\}_{n=1}^{\infty}$
of $\mu^{-1}(t)$, and conclude that \mathcal{M} is maximal limit continuum in \mathcal{K}; similarly \mathcal{L} is maximal limit continuum in \mathcal{K}.

As $\mathcal{M}, \mathcal{L}, \mathcal{K} \subset \mu^{-1}(t)$ and $\mathcal{M} \cap \mathcal{L}=\emptyset$, it follows that $\mu^{-1}(t)$ is not semiKelley.

To finish this paper we propose the following problems.
Problem 5. Does there exist a hereditarily unicoherent continuum X such that $X \times[0,1]$ or $C(X)$ is not semi-Kelley?

Problem 6. Classify the continua for which being semi-Kelley is a Whitney property.

Problem 7 (A. Illanes). Is the property of being semi-Kelley a Whitney reversible property?

Acknowledgment. The authors wish to thank the participants in Séptimo Taller de Investigación de Continuos e Hiperespacios, celebrated in Queretaro City during the Summer of 2013, for useful discussions. Particularly, M. Bernal Romero, M. Chacón-Tirado, L. E. García Hernández, M. Flores González, C. Islas Moreno E. Márquez Rodríguez, J. A. Martínez Cortez and C. Solís Said.

References

[1] Calderón-Camacho I.D., Castañeda-Alvarado E., Islas-Moreno C., Maya-Escudero D., RuizMontañez F.J., Being semi-Kelley does not imply semi-smoothness, Questions Answers Gen. Topology 32 (2014), 73-77.
[2] Charatonik J.J., Semi-Kelley continua and smoothness, Questions Answers Gen. Topology 21 (2003), 103-108.
[3] Charatonik J.J., Charatonik W.J., A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69-99.
[4] Charatonik J.J., Charatonik W.J., Property of Kelley for the cartesian product and hyperspaces, Proc. Amer. Math. Soc. 136 (2008), 341-346.
[5] Charatonik W.J., On the property of Kelley in hyperspaces, Topology Proc. International Conference, Leningrand 1982, Lectures Notes in Math., 1060, Springer, Berlin, 1984, pp. 710.
[6] Eberhat C., Nadler S.B., Jr., The dimension of certain hyperspaces, Bull. Pol. Acad. Sci., 19 (1971), 1027-1034.
[7] Kato H., A note on continuus mappings and the property of J.L. Kelley, Proc. Amer. Math. Soc. 112 (1991), 1143-1148.
[8] Kelley J.L., Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
Universidad Autónoma del Estado de México, Facultad de Ciencias, Instituto Literario 100. Col. Centro, C.P. 50000, Toluca, Estado de México, MÉxico

E-mail: eca@uaemex.mx
ivon@matem.unam.mx

