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Abstract. A classification of dihedral folding tessellations of the sphere whose prototiles
are a kite and an equilateral or isosceles triangle was obtained in recent four papers by
Avelino and Santos (2012, 2013, 2014 and 2015). In this paper we extend this classification,
presenting all dihedral folding tessellations of the sphere by kites and scalene triangles in
which the shorter side of the kite is equal to the longest side of the triangle. Within two
possible cases of adjacency, only one will be addressed. The combinatorial structure of each
tiling is also analysed.
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1. Introduction

By a folding tessellation or folding tiling (f-tiling, for short) of the sphere S2 we

mean an edge-to-edge pattern of spherical geodesic polygons that fills the whole

sphere with no gaps and no overlaps, and such that the “underlying graph” has even

valency at any vertex and the sums of alternate angles around each vertex are π.

Folding tilings are strongly related to the theory of isometric foldings on Rieman-

nian manifolds. In fact, the set of singularities of any isometric folding corresponds

to a folding tiling. See [13] for the foundations of this subject.

The study of this special class of tessellations was initiated in [5] with a com-

plete classification of all spherical monohedral folding tilings. Ten years later, Ueno

and Agaoka in [14] established a complete classification of all triangular spherical

monohedral tilings (without any restriction on angles).
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through projects UID/MAT/00013/2013 and UID/Multi/04621/2013.
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Dawson has also been interested in special classes of spherical tilings, see [10], [11],

[12], for instance.

A complete classification of all spherical f-tilings by rhombi and triangles was

obtained in 2005, see [9]. A detailed study of triangular spherical folding tilings

by equilateral and isosceles triangles is presented in [8]. Spherical f-tilings by two

noncongruent classes of isosceles triangles have been recently obtained, see [6], [7].

Concerning dihedral folding tilings by kites and an equilateral or isosceles triangle,

the classification was obtained recently, see [1], [2], [3], [4]. In this paper we initiate

the classification of dihedral folding tilings of the sphere by kites and scalene triangles:

we shall obtain all the dihedral f-tilings of the sphere by kites and scalene triangles

in which the shorter side of the kite is equal to the longest side of the triangle. Our

aim is to obtain a complete classification of spherical f-tilings by any kite and any

triangle.

We recall that a spherical kite K (Figure 1-I) is a spherical quadrangle with two

congruent pairs of adjacent sides, which are distinct from each other. Let us denote

by (α1, α2, α1, α3), α2 > α3, the internal angles of K in cyclic order. The side

lengths are denoted by a and b, with b > a. From now on T denotes a spherical

scalene triangle with internal angles β > γ > δ and side lengths c > d > e, see

Figure 1-II.

I II

a

bb

a

K

α3

α1
α1

α2

c

T

e

δ

β

γ

d

Figure 1. A spherical kite K and a spherical scalene triangle T .

Taking into account the area of the prototiles K and T , we have

2α1 + α2 + α3 > 2π and β + γ + δ > π.

As α2 > α3, we also have

α1 + α2 > π.

After certain initial assumptions are made, it is usually possible to deduce se-

quentially the nature and orientation of most of the other tiles. Eventually, either
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a complete tiling or an impossible configuration proving that the hypothetical tiling

fails to exist is reached. In the diagrams that follow, the order in which these deduc-

tions can be made is indicated by the numbering of the tiles. For j > 2, the location

of tile j can be deduced directly from the configurations of tiles (1, 2, . . . , j − 1) and

from the hypothesis that the configuration is a part of a complete tiling, except where

otherwise indicated.

We begin by pointing out that any f-tiling using K and T has at least two cells

congruent to K and T , such that they are in adjacent positions and in one and only

one of the situations illustrated in Figure 2.

α2

α1

α1

α3

β

δ

γ

I II

TK

α2

α1

α1

α3

β

γ

δ

TK

Figure 2. Distinct cases of adjacency.

Using spherical trigonometric formulas and a = c, we obtain

(1.1)
cosβ + cos γ cos δ

sin γ sin δ
=

cos(α3/2) + cosα1 cos(α2/2)

sinα1 sin(α2/2)
.

In this paper, the case of adjacency I will be addressed.

2. Case of Adjacency I

Suppose that any f-tiling using K and T has at least two cells congruent to K

and T , such that they are in adjacent positions as illustrated in Figure 2-I.

Concerning the internal angles of the kite K, we have necessarily one of the fol-

lowing situations:

α1 > α2 > α3 or α2 > α1, α2 > α3

(the latter includes the cases α2 > α1 > α3 and α2 > α3 > α1).

The following propositions address these distinct cases.
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Proposition A. If α1 > α2 > α3, then there is an f-tiling using K and T if and

only if

α1 + δ = π, β =
π

2
, α2 + 2γ = π, α1 + α3 = π and δ =

π

k
, k > 3,

or

α1 + δ = π, β =
π

2
, α2 + 2γ = π and α3 =

π

k
, k > 3.

In the first situation, for each k > 3, there exists a unique f-tiling, sayMk, with

γ = arcsin(cos(π/k)/ cos(π/2k)). A planar representation of Mk is illustrated in

Figure 9. For 3D representations ofM3 andM4 see Figure 10.

In the second situation, the angles γ and δ satisfy cos δ = cos(π/2k) sin γ and, for

each k > 3, there exists a continuous family of f-tilings, say Sk
δ , with δ ∈

(

δkmin, δ
k
max

)

,

where

δkmin = arccos
(

cos2
π

2k

)

and δkmax = arctan
1

cos(π/2k)
.

Equivalently, we have that γ ∈ (δkmax, (k − 1)π/2k). A planar representation of Sk
δ

is illustrated in Figure 12. For 3D representations of S3
δ , S

4
δ and S5

δ see Figure 14.

P r o o f. Suppose that any f-tiling usingK and T has at least two cells congruent

to K and T , such that they are in adjacent positions as illustrated in Figure 2-I and

α1 > α2 > α3 (α1 > π/2).

With the labeling of Figure 3-I, we have

θ1 = β or θ1 = δ.

I

α2

α1

α1

α3

β

δ

γ

θ1

1 2

II

α2

α1

α1

α3

β

δ

γ

1 2

θ1=β

γ

δ

3

?

Figure 3. Local configurations.

A.1. Suppose first that θ1 = β. Then, we have necessarily α1+β < π, as the case

α1 + β = π leads to an incompatibility between sides (see Figure 3-II).

Assuming α1 + β < π, we have necessarily α1 + β + kα3 = π for some k > 1. As

before, we are led to an incompatibility between sides; see Figure 4-I.
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β

γ

β

γ

δ

1

2

4

3

θ2 δ

5

α2

α1

α1
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β

δ

γ
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θ1=β

γ
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3

?

.
.
.

α3

Figure 4. Local configurations.

A.2. Suppose now that θ1 = δ (Figure 3-I). Then we must have α1 + δ = π or

α1 + δ < π.

A.2.1. If α1 + δ = π (Figure 4-II), then, taking into account the edge lengths, we

reach a vertex surrounded by the cyclic sequence of angles (α1, α1, δ, δ). With the

labeling of this figure, we have

θ2 = β or θ2 = γ.

A.2.1.1. If θ2 = β, then α2 + β = π or α2 + β < π.

A.2.1.1.1. First, suppose that α2 + β = π. In this case we also have γ + δ = π

(forced by the side lengths). Now, in an adjacent vertex surrounded by (β, β, γ, . . .)

we obtain β + γ 6 π which is impossible (note that β > δ).

A.2.1.1.2. Assuming α2 + β < π (Figure 5-I), we observe that the vertex sur-

rounded by (β, β, γ, . . .) must have valency four, otherwise β+ γ+ kα3 = π for some

k > 1. But, in this case, an incompatibility between sides occurs. And so β+ γ = π.

On the other hand, as α2 + β < π, we get γ > α2, which determines tiles 7 and 8

(Figure 5-II). However, we reach a contradiction since 2β + δ > β + γ + δ > π (see

side lengths).

A.2.1.2. We assume now that θ2 = γ (Figure 4-II). Then we get β+β 6 π. If the

equality is not satisfied, then β+β+kα3 = π for some k > 1. But this situation leads

to an incongruence among sides. Therefore, β + β = π, i.e., β = π/2 (Figure 6-I).

A.2.1.2.1. Suppose that α2 + γ = π. Then, we obtain the local configuration

illustrated in Figure 6-II, where α1+kα3 = π for some k > 1. In Figure 7, the planar

configuration for k > 1 is represented. However, we have no way to avoid a vertex

surrounded by three consecutive angles α1, which is impossible since α1 > π/2. And

so α1 + α3 = π, i.e., α3 = δ. This information enables us to extend in a unique way
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Figure 5. Local configurations.
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α3

9

I
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Figure 6. Local configurations.

the last configuration illustrated in Figure 6-II to get a closed one, where

α1 > α2 > β > γ > α3 = δ,

with α1 + δ = π, β =
π

2
, α2 + γ = π and α1 + α3 = π.

As 0 < δ < γ < π/2, by (1.1) we have

cos(π/2) + cos γ cos δ

sin γ sin δ
=

cos(δ/2) + cos(π − δ) cos((π − γ)/2)

sin(π − δ) sin((π − γ)/2)

⇔
cos γ cos δ

2 sin(γ/2)
= cos

δ

2
− cos δ sin

γ

2

⇔ cos δ
(

cos γ + 2 sin2
γ

2

)

= 2 sin
γ

2
cos

δ

2

⇔ cos δ − 2 sin
γ

2
cos

δ

2
= 0,
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α2

10

11

.
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Figure 7. Local configurations.

which means that

γ = γ(δ) = 2 arcsin
cos δ

2 cos δ/2
.

In Figure 8, the graph of this function for 0 6 δ 6 π/2 is outlined.

δ

π

2

π

3

π

4

π

4

π

2

γ

γ+δ= 1

2
π

γ<δ

γ>δ

γ=γ(δ)

γ=δ

Figure 8. The function γ = γ(δ) = 2 arcsin(cos δ/(2 cos(δ/2))).

Analysing the graph of the function γ = γ(δ), we conclude that there is no feasible

region, since γ + δ > π/2 and γ > δ. And so, in this case, the closed planar

representation does not correspond to a spherical f-tiling.

A.2.1.2.2. Suppose now that α2 + γ < π. With the labeling of Figure 6-I, we

have necessarily

θ3 = α1 or θ3 = δ.

A.2.1.2.2.1. Assuming θ3 = α1, we obtain α1 + tα3 = π for some t > 1. We shall

distinguish two distinct cases: t = 1 and t > 1.

A.2.1.2.2.1.1. For t = 1, the local configuration extends in a unique way to get

the configuration illustrated in Figure 9 (observe that after tile 14 is placed, we get

897



2γ + α2 6 π, and so 2γ + α2 + kα3 = π, k > 0; however, if k > 0, we obtain an

impossible configuration by analysis of the side lengths).

α2

α1

α1

α3

α3 α1

α1 α2

θ1=δ

β β

β

β

γ

γ

δ

1

2

4

3

5
δ

6

γ

δ
α2

α3 α1

θ3=α1

78

α3

α2 α1

α1

α1

α1 α3

α2

9

10

α3

α2
α1

α1

α1

α1 α2

α1

α1 α3

α2 α3

1112

β

β

γ

δ

γ

δ

13

14

δ
δ

β

β

θ2=γ

15

16

γ

δ

δ

γ

γ

γ

β

β

17

18

γ
γ

β
β

δ γ

β

β

δ

δ

δ

δ

γ
γ

β
β

20

19

21

22

24

23

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 9. Planar representation.

In short, we have a planar representation in which the sums of alternate angles

are

α1 + δ = π, β =
π

2
, α2 + 2γ = π, α1 + α3 = π and δ =

π

k
, k > 3.

As 0 < π/k = δ < γ < π/2, k > 3, using spherical trigonometry, we obtain

cos γ cos(π/k)

sin γ sin(π/k)
=

cos(π/2k)− cos(π/k) sin γ

sin(π/k) cos γ

⇔ cos
π

k

(

sin γ +
cos2 γ

sin γ

)

= cos
π

2k
.

And so

γ = arcsin
( cos(π/k)

cos(π/2k)

)

, k > 3.

For k = 3, 4, 5 we obtain γ ≈ 35.26◦, γ ≈ 49.94◦ and γ ≈ 58.28◦, respectively.

Observe that, if k > 6, then γ > π/3 > α2 (in fact, γ is increasing with k, and tends

to π/2).
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Figure 10. 3D representations ofM3 andM
4, respectively.

We shall denote such family of f-tilings byMk, k > 3. In Figure 10, 3D represen-

tations ofM3 andM4 are illustrated (x = 0 is a line of symmetry).

A.2.1.2.2.1.2. If t > 2, we get the local configuration presented in Figure 11,

which leads to a contradiction as we get three consecutive angles α1 surrounding

α2

α1

α1

α3

α3 α1

α1
α2

θ1=δ

β

γ

β

γ

δ

1

2

4

3 5

θ2=
γ

β
δ

6

β

γ

δα1

α3

9
α1

α2

α3

α3

α1

α1

α2

10

11.
.
.

θ3=α1

7

α3

α3

α3

α1

8

.
.
.

δδ

ββ β
β

12
13

14

15

α1

α1

α2

α1α3

16

α1

α3

17

α1

α2

α1

γ γ
α2

δ

γ

α1

α3

α3

α1

α2

?

. . .

v

Figure 11. Local configuration.

a vertex. Observe that, as seen in the previous case, the situation 2γ + α2 6 π

implies 2γ + α2 = π, by analysis of the side lengths, which determines tile 15. On

the other hand, after tile 17 is placed, we obtain 2α2 + γ + . . . = π. Analysing the
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side lengths, the remaining angles in this sum of alternate angles can only be α2’s

(or nothing). However, this leads to an incongruence at vertex v since α1 + α1 > π.

A.2.1.2.2.2. Suppose now that θ3 = δ (Figure 6-I). It is a straightforward exercise

to show that the local configuration extends in a unique way to get the configuration

illustrated in Figure 12, where

α1 + δ = π, β =
π

2
, α2 + 2γ = π and α3 =

π

k
for some k > 3.

α2

α1

α1

α3

α3 α1

α1 α2

θ1=δ

β

β

γ

γ

δ

1

2

4

3 5

θ2=
γ

6

β

β

γ

δ

δ

q3=δ γ

β

7
γ

β

δ

8

γ
γ

β

β

δ

δ
9

10

11

α1α2

α3

α1

α1

α2

α1 α3

12

α2

α3α1

α1

13

14

α1

α3

α2

α1

.

.

1516
γ

ββ

γ δδ

17

α1
α2

α3

α1

β

γ

δ18

β

δ

γ

19

α2

α1

20

α3

α1

21

22

γ
γ

δ

β
β δ

γ

γ

δ

β
β 23

24

.

.

.

.

δ

Figure 12. Planar representation.

Using (1.1), we obtain cos δ = cos(π/2k) sin γ, i.e.,

(2.1) γ = arcsin
cos δ

cos(π/2k)
, k > 3.

The above condition implies δ > π/2k. In Figure 13, the graph of this function for

π/2k 6 δ 6 π/2 is outlined.
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δ

π

2

π

4

π

2

γ

γ=δ

γ+δ= π

2

γ<δ

γ>δ

γ=γ(δ)

π

4 δk
max

π

2k

γk
max

= k−1

2k
π

δk
min

γk

min

Figure 13. The function γ = γ(δ) = arcsin(cos δ/ cos(π/2k)), k > 3.

For any δ ∈ (π/2k, π/2), i.e., for any γ ∈ (0, π/2), we may obtain an f-tiling whose

planar representation is illustrated in Figure 12. However, it is not always within

the scope of this paper. Using (2.1), we have

α2 > α3 ⇔ π − 2γ >
π

k
⇔ γ <

(k − 1)π

2k
= γk

max ⇔ δ > arccos
(

cos2
π

2k

)

= δkmin.

Moreover,

δ < γ ⇔ δ < arctan
1

cos(π/2k)
= δkmax ⇔ γ > arctan

1

cos(π/2k)
= γk

min.

The cases α2 = α3 and δ = γ were studied in previous papers.

The values of δkmax = γk
min for k = 3, 4 and 20 are 49.1◦, 47.3◦ and 45.1◦, respec-

tively. The values of δkmin for k = 3, 4 and 20 are 41.4◦, 31.4◦ and 6.3◦, respectively.

We shall denote such family of f-tilings by Sk
δ , k > 3. Figure 14 illustrates S3

δ , S
4
δ

and S5
δ (the reflection through the line x = 0 is a symmetry of Sk

δ ).

Figure 14. 3D representations of S3δ , S
4

δ and S
5

δ , respectively.
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A.2.2. Suppose now that α1 + δ < π (Figure 3-I). Taking into account the edge

lengths, we get the local configuration illustrated in Figure 15-I, where

θ2 = β or θ2 = γ.

A.2.2.1. If θ2 = β, we shall obtain α2 + β < π. Note that if α2 + β = π, then we

also have γ + δ = π, by analysis of the side lengths. That is impossible (since β > γ

and α2 > δ).

I

α2

α1

α1

α3

β

δ

γ

1 2

II

θ1=δ

β

γ

3

θ2

δ

α2

α1

α1

α3

β

δ

γ

1 2

θ1=δ

β

γ

3

δ

4 θ2=β

γ

4

α3

. ..

?

Figure 15. Local configurations.

With the labeling of Figure 15-II, the vertex surrounded by (β, β, γ, . . .) must

satisfy β + γ = π, otherwise β + γ + kα3 = π for some k > 1, which leads to an

incompatibility between sides.

Now, as α2 + β < π and β + γ = π, we have γ > α2. Such information allows us

to extend the previous configuration to the one illustrated in Figure 16. We achieve

a vertex surrounded by (β, β, β, . . .), which is a contradiction since 2β > β + γ = π.

A.2.2.2. If θ2 = γ, then 2β 6 π. Taking into account the edge lengths, we get

β = π/2, leading us to the planar configuration illustrated in Figure 17-I. We shall

distinguish

α2 + γ = π and α2 + γ < π.

A.2.2.2.1. First suppose that α2+γ = π, α1 > α2 > β = π/2 > γ > δ. This situ-

ation is presented in Figure 17-II. Considering the edge lengths, we get α1 + kα3 = π

for some k > 1 (note that δ cannot be part of this sum of alternate angles). On the

other hand, we must have α1 + tδ = π for some t > 2, and consequently 3γ = π as

illustrated in Figure 18. Now, one has α1 > α2 = 2π/3, and so δ 6 π/(3t) 6 π/6.

This implies β + γ + δ 6 π/2 + π/3 + π/6 = π, which is impossible.

A.2.2.2.2. We assume now that α2 + γ < π. We shall distinguish two distinct

situations, namely

α2 > γ and α2 < γ.
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β

δ

γ
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β

γ

3

δ
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β
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β
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β

γ

β
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δ
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β

δ

β

γ
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β

δ

γ

β
γ

δ
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δ

γ
β
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δ
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Figure 16. Local configuration.

I
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α1

α1

α3

β

δ

γ

1 2

II

θ1=δ

β

γ

3

δ

4θ2=γ

β
β

δ

γ

5
a2

a1

a1

a3

1

α1α3

6

α2α1 θ2=γ

4

2 3

5

β
γ

θ1
=

δ
δ

γ
γ

δ δ

β

β βα3

α1

7

Figure 17. Local configurations.

A.2.2.2.2.1. First suppose that α2 > γ. According to the labeling of Figure 19-I,

the angle x in tile 6 must satisfy

x = α3 or x = α2 or x = γ or x = δ.

A.2.2.2.2.1.1. If x = α3, there exists ̺ ∈ {α1, α2, γ, δ} such that the sum of

alternate angles not containing x (i.e., containing y) is α1 + γ + ̺ > β + γ + δ > π,

which is not possible.

A.2.2.2.2.1.2. If x = α2, we get the local configuration illustrated in Figure 19-II.

It gives rise to a vertex surrounded by the cyclic sequence (α1, α1, δ, δ, . . .). Now, if

α1 + 2δ 6 π, then π + π > (2α2 + γ) + (α1 + 2δ) = (α1 + α2) + (α2 + γ + 2δ) > 2π,

which is a contradiction. And so α1 + δ + kα3 = π, k > 1. Taking into account the
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Figure 19. Local configurations.

side lengths, we must have one more angle α1 around such a vertex, leading us to

2α1 6 π, which is impossible.

A.2.2.2.2.1.3. Suppose now that x = γ. Then we have y = α2 or y = γ.

The first situation is similar to the previous case where x = α2, and also leads to

a contradiction. Therefore, y = γ, i.e, γ + α2 + γ 6 π. Now, this sum of alternate

angles cannot contain the angle δ as γ + α2 + γ + δ > 2(γ + δ) > π. On the other

hand, if α3 is part of this sum of alternate angles, then α1 appears in the sum of
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alternate angles containing y (by an analysis of the edge lengths), which is also not

allowed. And so γ + α2 + γ = π.

On the other hand, we must have α1 + δ + . . . = π (Figure 19-I). If two angles

δ are part of this sum (i.e., α1 + 2δ 6 π), then 2π > (γ + α2 + γ) + (α1 + 2δ) =

(α1 + α2) + (2γ + 2δ) > 2π, which is a contradiction. And so α1 + δ + kα3 = π for

some k > 1, as illustrated in Figure 20-I. However, we get a vertex surrounded by

three consecutive angles α1, which is impossible.
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Figure 20. Local configurations.

A.2.2.2.2.1.4. Finally, we assume that x = δ (Figure 19-I). In this case we get

α2 + γ + δ + kα3 = π, k > 0.

Note that if k > 1, taking into account the edge lengths, the cyclic sequence

of angles surrounding such a vertex is (α1, δ, δ, α2, γ, γ, α1, α3, . . .), as indicated in

Figure 20-II. Adding all these angles, we obtain 2α1+2γ+2δ+α2 +α3 > 2π, which

is impossible.

Therefore, k = 0, i.e., α2 + γ + δ = π, α1 > β = π/2 > α2 > γ > δ. We will also

distinguish two situations: y = δ and y = α2 (Figure 19-I).

A.2.2.2.2.1.4.1. If y = δ, then we obtain α1 + γ + tα3 = π for some t > 0, as

illustrated in Figure 21-I. Supposing that α1 + γ = π (i.e., t = 0), the union of the

tiles 1, 2 and 7 is a spherical quadrilateral of area β + β+α3 + (α1 + δ) > 2π, which

means that α1 + δ + α3 > π. And so, at vertices v1 and v2, we have α1 + nδ = π

for some n > 2. Now, it follows that γ = nδ and we extend in a unique way the

local configuration to obtain the one represented in Figure 21-II. From this we obtain

3γ 6 π, leading us to the conclusion that β + γ + δ 6 π/2 + π/3 + π/(3n) 6 π, since

n > 2. This is a contradiction.

If α1 + γ + tα3 = π, with t > 1, then α1 > β = π/2 > α2 > γ > δ > α3, and we

get the local configuration illustrated in Figure 22, where 3γ = π.
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Figure 22. Local configuration.

Now, one gets α1 + α1 + α2 + α3 < 2π/3 + 2π/3 + α2 + δ < 4π/3 + 2π/3 = 2π,

which is impossible.

A.2.2.2.2.1.4.2. If y = α2, we also have α1 + γ 6 π and α1 + nδ = π for

some n > 2, as illustrated in Figure 23-I. As α2 > γ, the tile labeled by 15 is also

completely determined. This information allows us to conclude that γ = π/3 (see

the vertex surrounded by six angles γ).
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Now, if α1 + γ = π, then γ = nδ. This implies β + γ + δ 6 π, which is impos-

sible. Therefore, α1 + γ + tα3 = π, with t > 1, and we get the local configuration

illustrated in Figure 23-II. However, there is no way to avoid a vertex surrounded by

(α1, α3, α1, . . .), which is impossible.
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Figure 23. Local configurations.

A.2.2.2.2.2. Now we shall suppose that γ > α2. Recall that we also have

α1 + δ < π and α2 + γ < π.

With the labeling of Figure 24-I, we begin by assuming that tile 6 is a spherical kite.

In this situation, taking into account the edge lengths, we must have α1+δ+kα3 = π
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Figure 24. Local configurations.

907



for some k > 1 (vertex v1). On the other hand, as γ > α2, we have α1 + γ > π,

leading us to the conclusion that γ + α2 + γ 6 π as indicated in Figure 24-II. Now,

if α1 + 2δ 6 π, then 2π > (2γ + α2) + (α1 + 2δ) = (α1 + α2) + (2γ + 2δ) > 2π,

which is a contradiction. And so we also have α1 + δ + kα3 = π around vertex v2.

However, taking into account the edge lengths, we will obtain (at least) three angles

α1 surrounding v2, leading to a contradiction (α1 + α1 > π).

Suppose now that tile 6 is a spherical triangle. Then, it is a straightforward

exercise to see that it is uniquely positioned as indicated in Figure 25-I. We also

obtain α1 + 2δ 6 π and 2γ < π. Now, if 3γ 6 π or 2γ + α2 6 π, then similarly to

previous cases we get a contradiction (note that we are assuming γ > α2). And so

2γ + δ + tα3 = π, t > 0. Taking into account the side lengths, we must have t = 0,

i.e., 2γ + δ = π. The planar configuration extends now to get the one illustrated

in Figure 25-II (observe that tile 14 is uniquely determined, since γ 6= α2). It gives

rise to a vertex surrounded by the cyclic sequence of angles (α2, γ, γ, δ, δ, δ, δ, . . . , α2),

accordingly to the side lengths. A new vertex (say v) surrounded by (α1, γ, γ, . . .)

appears, which is impossible, since α1 + γ > α1 + α2 > π. �
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Figure 25. Local configurations.

Proposition B. If α2 > α1, α2 > α3, then there is no f-tiling using K and T .

P r o o f. Suppose that any f-tiling usingK and T has at least two cells congruent

to K and T , such that they are in adjacent positions as illustrated in Figure 2-I and

α2 > α1, α2 > α3, α2 > π/2.
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With the labeling of Figure 26-I, we have necessarily

θ1 = β or θ1 = γ.

B.1. Assume first that θ1 = β. Then, we must have α2 + β = π or α2 + β < π.
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II
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Figure 26. Local configurations.

B.1.1. If α2 + β = π, then we also have γ + δ = π by analysis of the side lengths.

But this is not possible since β > γ and α2 > δ.

B.1.2. If α2 + β < π, then α2 + β + kα3 = π for some k > 1. However, we get an

incompatibility between sides (Figure 26-II).

B.2. Suppose now that θ1 = γ (Figure 27-I). Then one gets α2 + γ < π or

α2 + γ = π.
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Figure 27. Local configurations.

B.2.1. Suppose first that α2+γ < π. If β > α2, then we have no way of positioning

the angle β in tile 4, and so β < α2. This information implies that α2 + γ+ kα3 = π

for some k > 1, as illustrated in Figure 27-II. Concerning the other sum of alternate

angles around such a vertex, we have α1 + γ + α1 + (k− 1)α3 = π, leading us to the
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conclusion that α1 < π/2. Now, with respect to the internal angles of K, one gets

2α1 + (α2 + α3) < π + π = 2π, which is impossible.

B.2.2. Supposing α2 + γ = π, α2 > α1 > γ > δ, with the labeling of Figure 28-I,

we must have

θ2 = β or θ2 = δ.

B.2.2.1. Assume first that θ2 = β. The case α1+β = π leads to an incompatibility

between sides, while the case α1 + β < π implies α1 + β + kα3 = π for some k > 1,

as α1 > γ. However, again we get an incompatibility as illustrated in Figure 28-II.
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Figure 28. Local configurations.

B.2.2.2. Suppose now that θ2 = δ. In this situation we obtain the local con-

figuration presented in Figure 29-I (observe that we must have β = π/2, otherwise

we get an incompatibility between sides). It follows immediately that γ + δ > π/2.

Taking into account the area of the spherical kite K, we also observe that

(2.2) α1 >
π

2
or α2 + α3 > π.

Now, with the labeling of Figure 29-I one has

θ3 = α2 or θ3 = γ or θ3 = α1 or θ3 = δ.

B.2.2.2.1. Assuming that θ3 = α2, according to the edge lengths we have α2 +

δ + α3 6 π, as indicated in Figure 29-II. And so, by (2.2), we get α1 > π/2. On

the other hand, using again the edge lengths, we have no way to avoid at least two

angles α1 surrounding such a vertex, which is a contradiction.
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Figure 29. Local configurations.

B.2.2.2.2. Suppose that θ3 = γ (Figure 30-I). After the tile labeled by 8 is

placed, we conclude that α1 + γ + δ 6 π. Therefore, α1 < π/2. Now, by (2.2), one

gets α2 + α3 > π. And so

α2 > α3 > γ > δ and α2 > β =
π

2
> α1 > γ > δ.

It follows that α1+γ+δ+̺ > 2γ+2δ > π for all ̺ ∈ {α1, α2, α3, β, γ, δ}. In order

to verify the angle folding relation, we must have α1 + γ + δ = π, which determines

tile 9. We also get α2 + kδ = π for some k > 2.
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Figure 30. Local configurations.
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With the labeling of Figure 30-I, if θ4 = α1, then 2α1 < π = α1 + γ+ δ < 2α1 + δ.

And so we necessarily have θ4 = α3, as illustrated in Figure 30-II.

Now, α1 + α3 + δ > α1 + γ + δ = π implies that α1 + α3 = π. This additional

information allows us to write

α2 > α3 > β =
π

2
> α1 > γ > δ.

As a result, we can determine tile 14 (and the remaining ones). It follows that

2γ + α1 > π > 2γ + δ, and so 3γ = π. As γ = kδ for some k > 2, it follows that

β + γ + δ = π/2 + π/3 + π/(3k) 6 π/2 + π/3 + π/6 = π, which is impossible.

B.2.2.2.3. Suppose now that θ3 = α1. With the labeling of Figure 31, we have

θ4 = α3 or θ4 = α1.
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Figure 31. Local configuration.

B.2.2.2.3.1. If θ4 = α3, then, in order to fulfill the angle folding relation, we

have α1 + δ + α3 6 π. As α2 + γ = π, then α2 + α1 + (γ + δ) + α3 6 2π, which

implies α1 > γ+ δ > π/2 (since α2+α1 +α1 +α3 > 2π). Now, one has θ5 = α1, and

θ6 = α1 or θ7 = α1, leading to a vertex with a sum of alternate angles containing

two angles α1, which is impossible.

B.2.2.2.3.2. If θ4 = α1 (see Figure 32), then, in order to verify the angle folding

relation, we have α1+δ+α1 6 π. As α2+γ = π, we have α2+α1+α1+(γ+δ) 6 2π,

which implies α3 > γ + δ > π/2. Now, one has α2 > α3 > β = π/2 > α1 > γ > δ,

which determines tile 10 and also implies α3 + α1 = π and α1 + δ + α1 = π.

This configuration gives rise to a vertex surrounded by the cyclic sequence of angles

(α3, α1, δ, δ, δ, . . .), with α3+kδ = π, k > 2. We immediately conclude that this leads

to an incompatibility (by considering the edge lengths).
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Figure 32. Local configuration.

B.2.2.2.4. Finally we will assume that θ3 = δ. By the analysis of the previous

cases we also assume θ′3 = δ (Figure 33). This allows us to get γ = π/3; and, in short,

we have α2 = 2π/3 > β = π/2 > γ = π/3 > δ > π/6, α2 > α1 > γ and α2 > α3.
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Figure 33. Local configuration.
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With the labeling used in Figure 33, and in order to fulfill the angle folding relation,

at vertices v and v′, we have

α1 + k1δ + k2α3 = π for some k1 > 2 and k2 > 0.

Now, if k2 > 0, then α1 + 2δ + α3 6 π. On the other hand, we have α2 + γ = π

leading to α2+α1+(γ+2δ)+α3 6 2π. And so α1 > γ+2δ > π/3+2π/6 = 2π/3 = α2,

which is a contradiction. Thus, we conclude that k2 = 0. As α1 > π/3 and δ > π/6,

we also obtain

k1 = 2 or k1 = 3.

B.2.2.2.4.1. We shall assume first that k1 = 2, i.e., α1 + 2δ = π. With this

assumption we easily get the local configuration presented in Figure 34, where

θ4 = α1 or θ4 = α3.
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Figure 34. Local configuration.
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B.2.2.2.4.1.1. If θ4 = α1, then α1 6 π/2, and so α2 + α3 > π (by (2.2)). This

means that α3 > π/3 > δ. Now, 2α1 + δ > α1 + 2δ = π, leading us to the conclusion

that α1 = π/2 (in order to fulfill the angle folding relation). On the other hand,

if 2α3 + δ = π, one gets an incompatibility between sides. Therefore, we also have

α3 = π/2. But is easy to verify that equation (1.1) is not satisfied for α2 = 2π/3,

α1 = π/2, α3 = π/2, β = π/2, γ = π/3 and δ = π/4.

B.2.2.2.4.1.2. Suppose now that θ4 = α3. In this situation, we get α1 + α3 6 π.

We shall see that it must be α1 + α3 = π. In fact,

(i) if α1 6 π/2, α1 > γ = π/3, then α2 + α3 > π, i.e., α3 > π/3; now, as the sum

of alternate angles α1 +α3 + δ = π leads to an incompatibility between sides, we get

α1 + α3 = π;

(ii) if α1 > π/2, then α1+nα3 = π for some n > 1. The case n > 1 is illustrated in

Figure 35 and also leads to a contradiction (α2+γ = π = γ+γ); and so α1+α3 = π.
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Figure 35. Local configuration.
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In short, we have α2 + γ = π, 3γ = π, 2β = π, α1 + 2δ = π and α1 + α3 = π

(as the sums of alternate angles around vertices). Using now (1.1) for α2 = 2π/3,

α1 = π − 2δ, α3 = 2δ, β = π/2 and γ = π/3, one gets δ = π/5 = 36◦. We denote this

f-tiling byM. In Figure 36, the corresponding 3D representation is illustrated.

Figure 36. 3D representation ofM.

B.2.2.2.4.2. We suppose finally that k1 = 3, i.e., α1 + 3δ = π. With this

assumption, we easily extend the previous local configuration (Figure 33) to the one

presented in Figure 37 (from tile 15 to tile 36; note that, analogously to the previous

case, we must have α1 + α3 = π). One gets a vertex surrounded by (at least) eight

angles δ. As π/6 < δ < π/4, in order to fulfill the angle folding relation, we must

have 5δ = π (by taking into account the edge lengths). And so,

α2 =
2π

3
> α3 =

3π

5
> β =

π

2
> α1 =

2π

5
> γ =

π

3
> δ =

π

5
.

From here it is a straightforward exercise to show that this configuration extends in

a unique way to obtain a closed one (with 100 tiles). However, such complete planar

representation does not correspond to any f-tiling since the relation (1.1) fails. �

3. Combinatorial structure

Concerning the combinatorial structure of the f-tilings Mk, k > 3, the group

of symmetries that fix (0, 0, 1) is the kth dihedral group Dk, generated by Rz
2π/k

(a rotation through an angle 2π/k around the z axis) and ̺yz (the reflection on the

coordinate plane yz). In fact, neither the reflections on the vertical great circles

bisecting triangles nor the rotations of the form Rz
(2n+1)π/k (n ∈ Z) are symmetries

ofMk. The map a = Rz
π/k̺

xy = ̺xyRz
π/k is a symmetry ofM

k that maps (0, 0, 1)
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Figure 37. Local configuration.

into (0, 0,−1) allowing us to get all the symmetries that map (0, 0, 1) into (0, 0,−1).

Now, one has

a2k−1̺yz = Rz
(2k−1)π/k̺

xy̺yz = Rz
(2k−1)π/kR

y
π
= Ry

π
Rz

π/k = ̺yz̺xyRz
π/k = ̺yza.

On the other hand, a has order 2k and ̺yz /∈ 〈a〉. It follows that a and ̺yz generate

G(Mk) (the group of all symmetries ofMk). And so it is isomorphic to D2k. Finally,

Mk has three transitivity classes of tiles, which means thatMk is 3-isohedral.

Concerning the combinatorial structure of the f-tilings Sk
δ , k > 3, we have that

any symmetry of Sk
δ fixes (1, 0, 0) or maps (1, 0, 0) into (−1, 0, 0). The symmetries
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that fix (1, 0, 0) are generated by the rotation Rx
π/k and the reflection ̺xy, giving

rise to the dihedral group D2k. The symmetries that map (1, 0, 0) into (−1, 0, 0) are

obtained by composing each one of these elements with ̺yz. Since ̺yz commutes

with Rx
π/k and ̺xy, we conclude that G(Sk

δ ) is isomorphic to C2 × D2k. It follows

immediately that Sk
δ is 2-isohedral.

It is now obvious that the group of all symmetries of M is isomorphic to D6.

Moreover,M has three transitivity classes of tiles and so it is 3-isohedral.
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