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Abstract. Let G be a finite group. We prove that if every self-centralizing subgroup
of G is nilpotent or subnormal or a TI-subgroup, then every subgroup of G is nilpotent or
subnormal. Moreover, G has either a normal Sylow p-subgroup or a normal p-complement
for each prime divisor p of |G|.
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1. Introduction

In this paper all groups are considered to be finite. Let G be a group and N a sub-

group of G. If Ng ∩N = 1 or N for each g ∈ G, then N is said to be a TI-subgroup

of G. It is obvious that any normal subgroup of a group is a TI-subgroup but

a TI-subgroup might not be a normal subgroup. The concept of subnormal sub-

group is a natural generalization of the concept of normal subgroup. In [3] Shi and

Zhang produced examples showing that a TI-subgroup might not be a subnormal

subgroup and a subnormal subgroup might also not be a TI-subgroup, and they

obtained a complete classification of groups in which every subgroup is subnormal

or a TI-subgroup. As a generalization of [3], Shi in [2] proved that if every subgroup

of a group G is abelian or subnormal or a TI-subgroup, then every subgroup of G is

abelian or subnormal, and for every prime p dividing |G|, G must have either a nor-

mal Sylow p-subgroup or else a Sylow p-subgroup is abelian and there exists a normal

p-complement.
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Recall that a subgroupH of a groupG is said to be self-centralizing if CG(H) 6 H ,

where CG(H) is the centralizer of H in G. It is clear that any self-normalizing

subgroup of a group G is a self-centralizing subgroup of G. Moreover, if H is a self-

centralizing subgroup of a group G, then for any subgroup K of G satisfying K > H

one has that K is also a self-centralizing subgroup of G. Sun, Lu and Meng in [5]

showed that if every self-centralizing subgroup of a group G is abelian or subnormal

or a TI-subgroup, then every subgroup of G is abelian or subnormal, which extended

the research in [2].

Note that any abelian subgroup of a group must be nilpotent but a nilpotent

subgroup might not be abelian. Motivated by the research presented above, we

will give a complete characterization of the groups in which every self-centralizing

subgroup is nilpotent or subnormal or a TI-subgroup. Our result is as follows.

Theorem 1. Suppose that every self-centralizing subgroup of a group G is nilpo-

tent or subnormal or a TI-subgroup. Then every subgroup of G is nilpotent or

subnormal.

Moreover, we obtain that the groups in Theorem 1 have the following structure.

Theorem 2. Let G be a group in which every self-centralizing subgroup is nilpo-

tent or subnormal or a TI-subgroup. Then G is solvable and for each prime di-

visor p of |G| we have that G has either a normal Sylow p-subgroup or a normal

p-complement.

In [4], Theorem 1.1 we proved that if every subgroup of a group G is nilpotent or

a TI-subgroup, then every subgroup of G is nilpotent or normal. As an extension,

we have the following result.

Theorem 3. Suppose that every self-centralizing subgroup of a group G is nilpo-

tent or a TI-subgroup. Then every self-centralizing subgroup of G is nilpotent or

normal.

Remark 4. In Theorem 3, although we have that every subgroup of G is nilpo-

tent or subnormal by Theorem 1, we cannot get that every subgroup of G is nilpotent

or normal. For example, let G = D24 = 〈a12 = b2 = 1, b−1ab = a−1〉 be a dihedral

group of order 24. It is clear that G only has the following three subgroups which

are not nilpotent: 〈a4, b〉, 〈a2, b〉, G itself. Observe that both 〈a2, b〉 and G are

self-centralizing, and 〈a4, b〉 is not self-centralizing. Moreover, both 〈a2, b〉 and G are

normal in G and both obviously are TI-subgroups of G, and 〈a4, b〉 is subnormal in G.

Then G satisfies the hypothesis of Theorem 3. However, 〈a4, b〉 is not normal in G.
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2. Proof of Theorem 1

Assume that G has subgroups which are neither nilpotent nor subnormal. We can

assume that H is a subgroup of G which is non-nilpotent nor subnormal and for any

subgroup K > H we have that K is subnormal in G. Then H = NG(H). It follows

that CG(H) 6 H and H is a self-centralizing subgroup of G which is non-nilpotent.

By hypothesis, H is a TI-subgroup of G. Since H = NG(H), one has that G is

a Frobenius group with H being its complement.

Assume G = N ⋊H , where N is the Frobenius kernel. Let H0 be any maximal

subgroup of H , where H0 > 1 since H is non-nilpotent. Then N ⋊H0 is maximal

in N ⋊ H = G. Assume that N ⋊ H0 is not normal in G. One has that N ⋊ H0

is not subnormal in G and N ⋊ H0 = NG(N ⋊ H0). It follows that N ⋊ H0 is

a self-centralizing subgroup of G which is non-nilpotent. Then N ⋊ H0 is a non-

normal TI-subgroup of G by hypothesis. However, one has (N ⋊H0)
g ∩ (N ⋊H0) =

(Ng
⋊H0

g)∩(N⋊H0) = (N⋊H0
g)∩(N⋊H0) > N 6= 1 for each g ∈ G\NG(N⋊H0) =

G \ (N ⋊ H0), this is a contradiction. Thus, N ⋊ H0 is normal in G. Note that

H0 = (N ∩H)H0 = (N ⋊H0) ∩H . It follows that H0 is normal in H . And then H

is nilpotent by the arbitrariness of H0, a contradiction.

Hence, every subgroup of G is nilpotent or subnormal. �

3. Proof of Theorem 2

By Theorem 1, every subgroup of G is nilpotent or subnormal. First we show that

such a group G is solvable. Let G be a counterexample of minimal order. Then G

is a non-solvable group in which every proper subgroup is solvable. It follows that

G/Φ(G) is a minimal non-abelian simple group.

(1) Assume that G has maximal subgroups which are non-nilpotent. Let M be

a maximal subgroup of G which is non-nilpotent. By assumption M is subnormal

in G. Then M is normal in G, which implies that M/Φ(G) is normal in G/Φ(G),

a contradiction.

(2) Assume that every maximal subgroup of G is nilpotent. Then G is either

a nilpotent group or a non-nilpotent group in which every proper subgroup is nilpo-

tent. By Schmidt Theorem (see [1], Theorem 9.1.9), one has that G is solvable, also

a contradiction. Hence, the counterexample of minimal order does not exist. One

has that G is solvable.

Next we prove that G must have a normal Sylow subgroup. Let G be a counterex-

ample of minimal order. Since G is solvable, one has that G has a minimal normal

subgroup N which is an elementary abelian subgroup of prime-power order. Assume
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|N | = pm for a prime divisor p of |G| and a positive integer m. By the minimality of

G, one has that G/N has a normal Sylow subgroup. Let QN/N be a normal Sylow

q-subgroup of G/N , where Q ∈ Sylq(G) for a prime divisor q of |G|.

(1) Suppose q = p. Then N 6 Q and Q is a normal Sylow subgroup of G,

a contradiction.

(2) Suppose q 6= p. Then NG(Q)N/N = NG/N (QN/N) = G/N . It follows that

G = NG(Q)N . By the hypothesis, NG(Q) < G. Let R be a maximal subgroup of G

such that R > NG(Q). Then G = RN .

(i) Assume that R is non-nilpotent. Then R is normal in G. By Frattini argument,

one has G = NG(Q)R = R, a contradiction.

(ii) Assume that R is nilpotent. Let Rp be a Sylow p-subgroup of R. Then RpN

is a Sylow p-subgroup of G, since G = RN . Since R is nilpotent, the subgroup Rp

is normal in R and so RpN is normal in RN = G, also a contradiction. Thus, the

counterexample of minimal order does not exist and G must have a normal Sylow

subgroup.

In the following we give the final conclusion. Suppose that not all Sylow subgroups

of G are normal (otherwise there is nothing to be proven). Let P1, P2, . . . , Ps−1

and Ps be all normal Sylow subgroups ofG. SinceG is solvable, there is a subgroupK

of G such that G = (P1 ×P2 × . . .× Ps)⋊K by Schur-Zassenhaus Theorem, see [1],

Theorem 9.1.2. Note that for any prime divisor r of |K| the Sylow r-subgroup of K

which is also a Sylow r-subgroup of G is not normal in G. Assume that K is non-

nilpotent. LetK0 be any non-nilpotent subgroup ofK. Then (P1×P2×. . .×Ps)⋊K0

is a non-nilpotent subgroup of G. By the hypothesis, (P1 × P2 × . . . × Ps) ⋊K0 is

subnormal in G. It follows that K0 is subnormal in K. Then K is a non-nilpotent

group in which every subgroup is nilpotent or subnormal. Arguing as above, K has

a normal Sylow subgroup T . Then K 6 NG(T ). Note that T is not normal in G

by the definition of K and so NG(T ) < G. Let L be a maximal subgroup of G such

that NG(T ) 6 L.

(i) Suppose that L is nilpotent. It follows thatK is nilpotent sinceK 6NG(T )6L,

a contradiction.

(ii) Suppose that L is non-nilpotent. Then L is normal in G. The Frattini ar-

gument gives G = LNG(T ) = L. This is already a contradiction (L is a maximal

subgroup). Thus K is nilpotent. For each prime divisor p of |G|, if p = pi for

1 6 i 6 s, one has that G has a normal Sylow p-subgroup by our assumption. Sup-

pose p | |K|. Let P ∈ Sylp(K). Since K is nilpotent, one has K = P ×K1, where K1

is a normal nilpotent Hall-subgroup of K. Then (P1×P2× . . .×Ps)⋊K1 is a normal

p-complement of P in G. �
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4. Proof of Theorem 3

Assume that G has self-centralizing subgroups which are neither nilpotent nor

normal. Then we can assume that H is a self-centralizing subgroup which is neither

nilpotent nor normal such that for any subgroup M > H one has that M is normal

in G. It is clear that H < G. Let N be a subgroup of G such that H is maximal

in N . Then N is normal in G. By Theorem 1, H is subnormal in G. It follows

that H is normal in N , since it is maximal in N . Since H is not normal in G,

there exists g ∈ G such that Hg 6= H . By hypothesis, H is a TI-subgroup and so

Hg ∩ H = 1. Note that Hg < Ng = N and H is maximal in N . It follows that

N = H ×Hg. Then Hg ∼= N/H is a cyclic group of prime order, which contradicts

that H is non-nilpotent. Thus, every self-centralizing subgroup of G is nilpotent or

normal. �
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