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Abstract. Let a be an ideal of a commutative Noetherian ring R and t be a nonnegative
integer. Let M and N be two finitely generated R-modules. In certain cases, we give some
bounds under inclusion for the annihilators of ExttR(M,N) and Ht

a(M) in terms of minimal
primary decomposition of the zero submodule of M , which are independent of the choice of
minimal primary decomposition. Then, by using those bounds, we compute the annihilators
of local cohomology and Ext modules in certain cases.
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1. Introduction

Throughout the paper, R is a commutative Noetherian ring with nonzero identity.

The ith local cohomology of an R-module M with respect to an ideal a was defined

by Grothendieck as follows:

Hi
a(M) = lim−→

n

ExtiR(R/a
n,M),

see [6], [7], [10] for more details.

In this section, we assume M is a nonzero finitely generated R-module, N is

a Gorenstein R-module, 0 = M1 ∩ . . . ∩Mn is a minimal primary decomposition of

the zero submodule of M with AssR(M/Mi) = {pi} for all 1 6 i 6 n and a is an

ideal of R. We refer the reader to [12], Section 6 for basic properties of primary

decomposition of modules and to [13], [14] for more details about the Gorenstein

modules (see also the paragraph before Lemma 2.4).
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We denote for an R-module M sup{i ∈ N0 : Hi
a(M) 6= 0} by cdR(a,M). Assume

d = dimR(M) < ∞. By Grothendieck’s Vanishing Theorem, cdR(a,M) 6 d. When

cdR(a,M) = d, then we have

(1.1) AnnR(H
d
a(M)) = AnnR

(
M/

⋂

cdR(a,R/pi)=d

Mi

)
.

This equality is proved by Lynch (see [11], Theorem 2.4) whenever R is a com-

plete local ring and M = R. In [5], Theorem 2.6, Bahmanpour et al. proved that

AnnR(H
d
a(M)) = AnnR(M/TR(a,M)) whenever a = m and R is a complete local

ring, where TR(a,M) denotes the largest submodule N of M such that cdR(a, N) <

cdR(a,M). Then Bahmanpour in [4], Theorem 3.2, extended the result of Lynch for

the R-module M . Next, Atazadeh et al. in [2], Proposition 3.8 proved this equality

whenever R is a local ring (not necessarily complete) and finally in [1], Corollary 2.7,

they extended it to the nonlocal case. (Note that TR(a,M) =
⋂

cdR(a,R/pi)=cdR(a,M)

Mi

(see [2], Remark 2.5) also, if (R,m) is a complete local ring and p ∈ AssR(M), then

by the Lichtenbaum-Hartshorne Vanishing Theorem, cdR(a, R/p) = d if and only if

dimR(R/p) = d and
√
a+ p = m.)

In the second section (see Theorem 2.5 and Remark 2.6) for an arbitrary integer t

we give a bound for the annihilator of ExttR(M,N) in terms of minimal primary

decomposition of the zero submodule of M . More precisely, we show that

(1.2) AnnR

(
M/

⋂

pi∈∆(t)

Mi

)
⊆ AnnR(Ext

t
R(M,N)) ⊆ AnnR

(
M/

⋂

pi∈Σ(t)

Mi

)
,

where ∆(t) = {p ∈ AssR(M)∩SuppR(N) : htR(p) 6 t}, Σ(t) = {p ∈ MinAssR(M)∩
SuppR(N) : htR(p) = t} and MinAssR(M) denotes the set of minimal elements

of AssR(M). If t = grade(AnnR(M), N) < ∞, then the above index sets are equal
and we can compute the annihilator of ExttR(M,N). Note that in general, for an ar-

bitrary integer t there is not a subset Σ of AssR(M) such that AnnR(Ext
t
R(M,N)) =

AnnR

(
M/

⋂
pi∈Σ

Mi

)
, see Example 2.7.

In the third section, we consider the annihilators of local cohomology modules.

By using the above bound on the annihilators of Ext modules, when (R,m) is a local

ring, we show in Theorem 3.2 that

(1.3) AnnR

(
M/

⋂

pi∈∆′(t)

Mi

)
⊆ AnnR(H

t
m(M)) ⊆ AnnR

(
M/

⋂

pi∈Σ′(t)

Mi

)
,

where ∆′(t) = {p ∈ AssR(M) : dimR(R/p) > t} and Σ′(t) = {p ∈ MinAssR(M) :

dimR(R/p) = t}. Next, whenever R is not necessarily local, in Theorem 3.4, we give
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a bound for the annihilator of the top local cohomology module H
cdR(a,M)
a (M), which

implies equality (1.1) when d = cdR(a,M). Finally, for each t, in Theorem 3.6, we

provide a bound for the annihilator of Ht
a(M) when M is Cohen-Macaulay, and also

we compute its annihilator at t = grade(a,M). All the given bounds are independent

of the choice of minimal primary decomposition. We adopt the convention that the

intersection of empty family of submodules of an R-module M is M .

2. Bounds for the annihilators of Ext-modules

Assume M , N are finitely generated R-modules such that N is a Gorenstein mod-

ule, and 0 =M1∩. . .∩Mn is a minimal primary decomposition of the zero submodule

ofM with AssR(M/Mi) = {pi} for all 1 6 i 6 n. We refer the reader to [12], Section 6

for basic properties and unexplained terminologies about the primary decomposition

of modules and to [13], [14] for more details about the Gorenstein modules. In this

section (see Theorem 2.5) for each integer t we give a bound for the annihilator

of ExttR(M,N) in terms of minimal primary decomposition of the zero submodule

of M , which is independent of the choice of minimal primary decomposition. As an

application, in the case, where t = grade(AnnR(M), N), we compute the annihilator

of ExttR(M,N). More precisely, for t = grade(AnnR(M), N) we have

AnnR(Ext
t
R(M,N)) = AnnR

(
M/

⋂

pi∈Σ(t)

Mi

)
,

where Σ(t) = {p ∈ MinAssR(M) ∩ SuppR(N) : htR(p) = t}, see Theorem 2.5 and
Remark 2.6. Note that in general, for an arbitrary integer t there is not a subset Σ

of AssR(M) such that AnnR(Ext
t
R(M,N)) = AnnR

(
M/

⋂
pi∈Σ

Mi

)
, see Example 2.7.

These results will be used in the third section to compute the annihilators of local

cohomology modules.

Before proving these results, we need some lemmas.

Lemma 2.1 ([12], Theorem 6.8). LetM be a nonzero finitely generatedR-module.

Let AssR(M) = {p1, . . . , pn}, and 0 =M1 ∩ . . . ∩Mn be a minimal primary decom-

position of the zero submodule of M with AssR(M/Mi) = {pi} for all 1 6 i 6 n.

Assume Φ is a subset of AssR(M) and N =
⋂

pi∈Φ

Mi. Then

AssR(M/N) = Φ and AssR(N) = AssR(M) \ Φ.
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Assume N is a submodule of an R-moduleM . For any multiplicatively closed sub-

set S of R we denote the contraction of S−1N under the canonical mapM → S−1M

by SM (N). Assume Σ ⊆ AssR(M). We say that Σ is an isolated subset of AssR(M)

if it satisfies the following condition: if q ∈ AssR(M) and q ⊆ p for some p ∈ Σ,

then q ∈ Σ.

The following lemma is well-known, but we prove it for the readers’ convenience.

Lemma 2.2 ([3], Theorem 4.10, Exercise 4.23). Let M be a finitely generated

R-module, and N a proper submodule of M . Let N =
n⋂

i=1

Ni be a minimal primary

decomposition of N in M with AssR(M/Ni) = pi for all 1 6 i 6 n. Assume Σ is an

isolated subset of AssR(M/N). Then

⋂

pi∈Σ

Ni = SM (N),

where S = R \ ⋃
p∈Σ

p. In particular,
⋂

pi∈Σ

Ni is independent of the choice of minimal

primary decomposition of N in M .

P r o o f. Assume Σ ⊆ AssR(M/N) is an isolated subset of AssR(M/N) and S =

R \ ⋃
p∈Σ

p. If S−1
(
M/

⋂
pi∈AssR(M/N)\Σ

Ni

)
6= 0, then there exists

q ∈ AssR

(
M/

⋂

pi∈AssR(M/N)\Σ

Ni

)
= AssR(M/N) \ Σ

such that q ∩ S = ∅. Since q ∩ S = ∅, by the Prime Avoidance Theorem, q ⊆ p

for some p ∈ Σ. But Σ is an isolated subset of AssR(M/N) and so q ∈ Σ, which is

a contradiction. Hence, S−1
( ⋂
pi∈AssR(M/N)\Σ

Ni

)
= S−1M . It follows that S−1N =

⋂
pi∈Σ

S−1Ni. Contracting both sides under the canonical mapM → S−1M we obtain

(S−1N)c =
⋂

pi∈Σ

(S−1Ni)
c. Now, assume pi ∈ Σ. It is clear that Ni ⊆ (S−1Ni)

c.

Conversely, if m ∈ (S−1Ni)
c, then m/1 ∼ n/s for some n ∈ Ni and s ∈ S. Hence,

tsm = tn ∈ Ni for some t ∈ S. Since Ni is a pi-primary submodule ofM and ts /∈ pi,

we have m ∈ Ni. Therefore, Ni = (S−1Ni)
c, and hence (S−1N)c =

⋂
pi∈Σ

Ni. This

completes the proof. �

Remark 2.3. Let the situation and notations be as in the above lemma. As-

sume, in addition that Σ = ∅, and we consider the above lemma in this special case
separately. It is clear that Σ is an isolated subset of AssR(M/N) and

⋂
pi∈Σ

Ni = M

because the intersection of the empty family of subsets of a setM isM . On the other
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hand, we have S = R \ ⋃
p∈Σ

p = R. Since 0 ∈ S, we obtain S−1(N) = S−1(M) = 0,

and so the contraction of S−1(N) under the map M → S−1(M) is M . Therefore,

we have SM (N) =M =
⋂

pi∈Σ

Ni in this case.

Let (R,m) be a local ring. A nonzero finitely generated R-module G is said to be

Gorenstein if

depthR(G) = dimR(G) = inj dimR(G) = depthR(R) = dimR(R)

(so R is Cohen-Macaulay) or equivalently, ExtiR(R/m, G) is nonzero only at i =

dimR(G), see [13], Theorem 3.11. More generally, if R is not necessarily local,

a nonzero finitely generatedR-moduleG is said to be Gorenstein ifGp is a Gorenstein

Rp-module for all p ∈ SuppR(G), see [13], Corollary 3.7. When (R,m) is a complete

local ring, then Gorenstein modules under isomorphism are the nonempty finite

direct sums of the canonical module, see [14], Corollary 2.7.

The following property of Gorenstein modules is needed in the proof of the main

theorem of this section.

Lemma 2.4. Let G be a Gorenstein R-module and p a prime ideal of R. Then

p ∈ SuppR(G) if and only if G 6= pG.

P r o o f. Assume p ∈ SuppR(G). Hence, Gp 6= 0 and consequently, Gp 6= pRpGp

by Nakayama’s Lemma. It follows that G 6= pG. Conversely, assume G 6= pG. Thus,

there exists q ∈ SuppR(G) such that Gq 6= pRqGq. Therefore, p ⊆ q, and hence [13],

Corollary 4.14, implies that p ∈ SuppR(G). �

Now we are ready to state and prove the main theorem of this section which

provides bound for the annihilators of Ext modules. Local version of this theorem

(see Remark 2.6 equation (2.1)) will be used to compute the annihilators of local

cohomology modules in the next section.

Theorem 2.5. Let M , N be nonzero finitely generated R-modules and let 0 =

M1∩ . . .∩Mn be a minimal primary decomposition of the zero submodule ofM with

AssR(M/Mi) = {pi} for all 1 6 i 6 n. Let t ∈ N0 and set ∆(t) = {p ∈ AssR(M) :

grade(p, N) 6 t}, Σ(t) = {p ∈ MinAssR(M) : grade(p, N) = t}, St = R \ ⋃
p∈∆(t)

p,

and T t = R \ ⋃
p∈Σ(t)

p. Then

(i)
⋂

pi∈∆(t)

Mi = St
M (0) and

⋂
pi∈Σ(t)

Mi = T t
M (0). In particular,

⋂
pi∈∆(t)

Mi and

⋂
pi∈Σ(t)

Mi are independent of the choice of minimal primary decomposition of

the zero submodule of M .

(ii) St
M (0) is the largest submodule L of M such that ExtiR(L,N) = 0 for all i 6 t.
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(iii) There is the inclusion

AnnR(M/St
M (0)) ⊆ AnnR(Ext

t
R(M,N)).

If, in addition, N is a Gorenstein module, then

AnnR(Ext
t
R(M,N)) ⊆ AnnR(M/T t

M (0)).

(iv) If N is a Gorenstein module such that SuppR(M) ∩ SuppR(N) 6= ∅ and t =
grade(AnnR(M), N), then ∆(t) = Σ(t) and

AnnR(Ext
t
R(M,N)) = AnnR(M/T t

M (0)).

P r o o f. Set S = St
M (0) and T = T t

M (0).

(i) Since ∆(t) and Σ(t) are isolated subsets of AssR(M), (i) is an immediate

consequence of Lemma 2.2.

(ii) By Lemma 2.1, in view of [7], Proposition 1.2.10, we have

grade(AnnR(S), N) = grade
(√

AnnR(S), N
)
= grade

( ⋂

p∈AssR(S)

p, N

)

= min
p∈AssR(S)

grade(p, N) = min
p∈AssR(M)\∆(t)

grade(p, N) > t.

Since grade(AnnR(S), N) > t, we have ExtiR(S,N) = 0 for all i 6 t by [7],

Proposition 1.2.10 (e). Also, we note that if ∆(t) = AssR(M), then S = 0 and

grade(AnnR(S), N) = grade(R,N) = ∞. Now, assume L is a submodule of M such

that ExtiR(L,N) = 0 for all i 6 t. Suppose for the sake of contradiction that L * S.

Then

0 6= L/(L ∩ S) ∼= (L+ S)/S ⊆M/S.

Thus, ∅ 6= AssR(L/(L ∩ S)) ⊆ ∆(t). Hence, there exists p ∈ AssR(L/(L ∩ S)) ⊆
V (AnnR(L)) such that grade(p, N) 6 t. But this is impossible, because by our

assumption, grade(AnnR(L), N) > t; see again [7], Proposition 1.2.10 (e). Hence,

L ⊆ S and the proof of (ii) is completed.

(iii) Since ExttR(S,N) = 0, the exact sequence 0 → S → M → M/S → 0 induces

the epimorphism ExttR(M/S,N) → ExttR(M,N). It follows that

AnnR(M/S) ⊆ AnnR(Ext
t
R(M/S,N)) ⊆ AnnR(Ext

t
R(M,N))

and hence the first inclusion in (iii) holds. To prove the second inclusion in (iii), as-

sume that N is a Gorenstein module. If Σ(t) = ∅, then T = M by Remark 2.3

and there is nothing to prove. Hence, suppose that Σ(t) 6= ∅, pi ∈ Σ(t) and

y ∈ AnnR(Ext
t
R(M,N)). Since grade(pi, N) = t < ∞, we have piN 6= N and so, by

Lemma 2.4, pi ∈ SuppR(N). Hence, Npi
is a Gorenstein Rpi

-module, see [13], Corol-

lary 3.7. Because N is Cohen-Macaulay, we have dimRpi
(Npi

) = grade(pi, N) = t
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and so by [13], Theorem 4.12, we have dimRpi
(Rpi

) = dimRpi
(Npi

) = t. We proved

that Npi
is a Gorenstein Rpi

-module of dimension t, and hence, in view of the faith-

fully flatness of completion, we can deduce that N̂pi
is also a Gorenstein R̂pi

-module

of dimension t. Hence, N̂pi

∼= ωα
R̂pi

for some α ∈ N (see [14], Corollary 2.7),

where ω
R̂pi

denotes the canonical module of R̂pi
. Since R̂pi

is a Cohen-Macaulay

complete local ring of dimension t, by the Local Duality Theorem (see [6], Theo-

rem 11.2.8 and Remarks 10.2.2 (ii)) we have

AnnRpi
(ExttRpi

(Mpi
, Npi

)) = Rpi
∩ Ann

R̂pi

(Extt
R̂pi

(M̂pi
, N̂pi

))

= Rpi
∩ Ann

R̂pi

(Extt
R̂pi

(M̂pi
, ω

R̂pi

))

= Rpi
∩ Ann

R̂pi

(Γ
p̂iRpi

(M̂pi
))

= AnnRpi
(ΓpiRpi

(Mpi
)) = AnnRpi

(Mpi
).

(Note that since pi is a minimal element of AssR(M), it follows that dimRpi
(Mpi

) = 0

and hence, ΓpiRpi
(Mpi

) =Mpi
.)

Now, if 1 6 j 6= i 6 n, then (M/Mj)pi
= 0, because AssR(M/Mj) = {pj} and pi

is a minimal element of AssR(M). Thus, (Mj)pi
=Mpi

for all 1 6 j 6= i 6 n and so( n⋂
j=1

Mj

)
pi

∼= (Mi)pi
. Since Mpi

∼= (M/0)pi

∼=
(
M/

n⋂
j=1

Mj

)
pi

∼= (M/Mi)pi
, we have

y/1 ∈ (AnnR(M/Mi))pi
, and hence y/1 ∼ z/s for some z ∈ AnnR(M/Mi), s ∈ R\pi.

Thus, rsy = rz ∈ AnnR(M/Mi) for some r ∈ R \ pi. Hence, rsyM ⊆ Mi. Since Mi

is a pi-primary submodule of M , it follows from rs /∈ pi that yM ⊆Mi. Because pi

is an arbitrary element of Σ(t), yM ⊆ ⋂
pi∈Σ(t)

Mi, and by part (i), this implies that

yM ⊆ T . Thus, AnnR(Ext
t
R(M,N)) ⊆ AnnR(M/T ).

(iv) Assume N is a Gorenstein module such that SuppR(M) ∩ SuppR(N) 6= ∅.
Thus, N/(AnnR(M))N 6= 0, and so t = grade(AnnR(M), N) < ∞, see [7], Defini-
tion 1.2.6. It is clear that Σ(t) ⊆ ∆(t). To prove the reverse inclusion, let p ∈ ∆(t).

Since AnnR(M) ⊆ p, we obtain grade(AnnR(M), N) 6 grade(p, N) and consequently

grade(AnnR(M), N) = grade(p, N). Now, let q ∈ SuppR(M) be such that q ⊆ p. It

follows from grade(p, N) = t <∞ that p ∈ SuppR(N), and so q ∈ SuppR(N) by [13],

Corollary 4.14. Hence, by [7], Theorem 2.1.3 (b) and [13], Theorem 4.12, we have

t = grade(AnnR(M), N) 6 grade(q, N) = dimRq
(Nq)

= dim(Rp)qRp
(Np)qRp

= dimRp
(Np)− dimRp

(Np/(qRp)Np)

= grade(p, N)− dimRp
(Rp/qRp) = t− dimRp

(Rp/qRp).

Therefore, dimRp
(Rp/qRp) = 0 or equivalently q = p. Hence, p ∈ MinAssR(M) and

consequently ∆(t) ⊆ Σ(t). �
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For an integer t and an R-module M , we denote, respectively, the sets {p ∈
AssR(M) : dimR(R/p) = t} and {p ∈ AssR(M) : dimR(R/p) > t} by AsstR(M)

and Ass>t
R (M). Similarly, MinAsstR(M) and MinAss>t

R (M) are defined as above by

replacing AssR(M) by MinAssR(M). Also, when dimR(M) < ∞, the set of prime
ideals in AssR(M) of the highest possible dimension {p ∈ AssR(M) : dimR(R/p) =

dimR(M)} is denoted by AsshR(M).

Remark 2.6. Let the situation and notations be as in the above theorem. Let N

be a Gorenstein R-module and p a prime ideal of R. Then grade(p, N) = t < ∞ if
and only if N 6= pN or equivalently, p ∈ SuppR(N). Also, if p ∈ SuppR(N), then Np

is a Gorenstein module on the local ring Rp and in view of [13], Theorem 4.12, we

have

grade(p, N) = dimRp
(Np) = dimRp

(Rp) = htR(p).

Hence,
∆(t) = {p ∈ AssR(M) ∩ SuppR(N) : htR(p) 6 t},
Σ(t) = {p ∈ MinAssR(M) ∩ SuppR(N) : htR(p) = t}.

In the remainder of this remark, assume in addition that R is a local ring of dimen-

sion d. Then htR(p) = d − dimR(R/p) and SuppR(N) = Spec(R). Thus, the above

theorem states that

(2.1) AnnR

(
M/

⋂

pi∈Ass>d−t

R
(M)

Mi

)
⊆ AnnR(Ext

t
R(M,N))

⊆ AnnR

(
M/

⋂

MinAssd−t

R
(M)

Mi

)
.

In particular, if M 6= 0, then

grade(AnnR(M), N) = dimR(N)− dimR(N/(AnnR(M))N) = d− dimR(M)

and the equality in Theorem 2.5 (iv) can be rewriten as

(2.2) AnnR(Ext
d−dimR(M)
R (M,N)) = AnnR

(
M/

⋂

pi∈AsshR(M)

Mi

)
.

These results are needed in the proof of the main theorem of the next section (see

Theorem 3.2) which provides some bounds for the annihilators of local cohomology

modules.

We end this section by two examples showing how we can compute the above

bounds for the annihilators of Ext modules. Moreover, these examples show that to

improve the upper bound in (2.1) we cannot replace the index set MinAssd−t
R (M)
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by the larger sets MinAss>d−t
R (M), Assd−t

R (M) or Ass>d−t
R (M) and also to improve

the lower bound in (2.1) we cannot replace the index set Ass>d−t
R (M) by the smaller

set Assd−t
R (M). Also, in general, for an arbitrary integer t there is not a subset Σ

of AssR(M) such that AnnR(Ext
t
R(M,N)) = AnnR

(
M/(

⋂
pi∈Σ

Mi)
)
.

Let U be a subset of an R-module M . We use 〈U〉 to denote the submodule of M
generated by U . If U = {m1, . . . ,mn}, then we show 〈U〉 by 〈m1, . . . ,mn〉.

Example 2.7. Let K be a field and let R = K[[X,Y ]] be the ring of formal

power series over K in indeterminates X , Y .

SetM = R/〈X2, XY 〉, M1 = 〈X〉/〈X2, XY 〉 andM2 = 〈X2, Y 〉/〈X2, XY 〉. Then
0 =M1 ∩M2 is a minimal primary decomposition of the zero submodule of M with

AssR(M/M1) = {p1 = 〈X〉} and AssR(M/M2) = {p2 = 〈X,Y 〉}. So AssR(M) =

{p1, p2} and MinAssR(M) = {p1}. Hence, we have

Ass>2−t
R (M) =





∅ if t = 0,

{p1} if t = 1,

{p1, p2} if t = 2,

and MinAss2−t
R (M) =

{
∅ if t = 0, 2,

{p1} if t = 1.

It follows that

AnnR

(
M/

⋂

pi∈Ass>2−t

R
(M)

Mi

)
=





R if t = 0,

〈X〉 if t = 1,

〈X2, XY 〉 if t = 2,

and

AnnR

(
M/

⋂

pi∈MinAss2−t

R
(M)

Mi

)
=

{
R if t = 0, 2,

〈X〉 if t = 1.

Hence, Remark 2.6 implies that

HomR(M,R) = 0, AnnR(Ext
1
R(M,R)) = 〈X〉

and

〈X2, XY 〉 ⊆ AnnR(Ext
2
R(M,R)) ⊆ R.

Also, since inj dimR(R) = 2, we deduce that ExttR(M,R) = 0 for all t > 2.

Now, we directly compute AnnR(Ext
t
R(M,R)) for all t (especially for t = 2). It is

straightforward to see that

P : 0 −→ R
d2−→ R2 d1−→ R

ε−→M −→ 0

with ε(f) = f + 〈X2, XY 〉, d1(f, g) = X2f + XY g, d2(f) = (Y f,−Xf) for all
f, g ∈ R being a projective resolution ofM . Applying the functor HomR(·, R) to the
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delated projective resolution PM , we obtain the commutative diagram

0 // HomR(R,R)

α∼=

��

d∗

1
// HomR(R

2, R)

β∼=

��

d∗

2
// HomR(R,R)

γ∼=

��

// 0

0 // R
δ1

// R2
δ2

// R // 0,

where α, β, γ are natural isomorphisms, δ1(f) = (X2f,XY f), and δ2(f, g) = Y f−Xg
for all f, g ∈ R. Hence,

Ext1R(M,R) ∼= ker δ2/ im δ1 = 〈(X,Y )〉/〈(X2, XY )〉 ∼= R/〈X〉,
Ext2R(M,R) ∼= R/〈X,Y 〉 and ExttR(M,R) = 0 ∀ t 6= 1, 2.

(Note that by our notation, ker δ2 and im δ1 are cyclic R-modules generated by the

elements (X,Y ) and (X2, XY ) of R2, respectively.) It follows that

AnnR(Ext
1
R(M,R)) = 〈X〉 and AnnR(Ext

2
R(M,R)) = 〈X,Y 〉.

Thus, there is not a subset Σ of AssR(M) such that AnnR(Ext
2
R(M,R)) =

AnnR

(
M/(

⋂
pi∈Σ

Mi)
)
. Moreover, for t = 2, this example shows that in the second

inclusion of (2.1) in Remark 2.6, to obtain a better upper bound (under inclusion)

of AnnR(Ext
t
R(M,R)), we cannot replace the index set MinAssd−t

R (M) by the larger

sets MinAss>d−t
R (M), Assd−t

R (M) or Ass>d−t
R (M).

Example 2.8. Let K be a field and let R = K[[X,Y, Z,W ]] be the ring of

formal power series over K in indeterminates X , Y , Z, W . Then R is a local

ring with maximal ideal m = 〈X,Y, Z,W 〉. Set p1 = 〈X,Y 〉, p2 = 〈Z,W 〉, and
M = R/(p1∩p2). Then depthR(R/p1) = depthR(R/p2) = 2 and hence, Hi

m(R/p1) =

Hi
m(R/p2) = 0 for i = 0, 1. Now, the exact sequence

0 →M → R/p1 ⊕R/p2 → R/m → 0

induces the exact sequence

0 → H0
m(M) → H0

m(R/p1)⊕H0
m(R/p2) → H0

m(R/m) → H1
m(M)

→ H1
m(R/p1)⊕H1

m(R/p2)

of local cohomology modules. It follows that H0
m(M) = 0 and H1

m(M) ∼= R/m.

Since R is a regular ring, it is Gorenstein (see [7], Proposition 3.1.20), and hence, R is

the canonical module of R, see [7], Theorem 3.3.7. Therefore, by the Grothendieck
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duality (see [6], Theorem 11.2.8), we have HomR(Ext
3
R(M,R), E(R/m)) ∼= H1

m(M).

Thus, AnnR(Ext
3
R(M,R)) = m.

On the other hand, ifM1 = p1/(p1∩p2) andM2 = p2/(p1∩p2), then 0 =M1∩M2 is

a minimal primary decomposition of the zero submodule of M . Since Ass1R(M) = ∅,
we have

R = AnnR

(
M/

⋂

pi∈Ass1
R
(M)

Mi

)
* AnnR(Ext

3
R(M,R)).

Therefore, in the first inclusion of (2.1) in Remark 2.6, to obtain a better lower

bound of AnnR(Ext
t
R(M,R)), we cannot replace the index set Ass>d−t

R (M) by the

smaller set Assd−t
R (M).

3. Bounds for the annihilators of local cohomology modules

In this section we investigate the annihilators of local cohomology modules. For

an R-module M , we denote sup{i ∈ N0 : Hi
a(M) 6= 0} by cdR(a,M). Let a be

a proper ideal of R, M a nonzero finitely generated R-module of dimension d, and

0 = M1 ∩ . . . ∩Mn a minimal primary decomposition of the zero submodule of M

with AssR(M/Mi) = {pi} for all 1 6 i 6 n. If cdR(a,M) = d <∞, then

AnnR(H
d
a(M)) = AnnR

(
M/

⋂

cdR(a,R/pi)=d

Mi

)
,

see [1] and Section 1 for more details.

For an arbitrary integer t, when (R,m) is a local ring, we give a bound for

AnnR(H
t
m(M)), see Theorem 3.2. Also, whenever R is not necessarily local, in

Theorem 3.4, we provide a bound for AnnR(H
cdR(a,M)
a (M)) which implies the above

equality when cdR(a,M) = dimR(M). Finally, whenM is Cohen-Macaulay, a bound

of AnnR(H
t
a(M)) is given and at t = grade(a,M), this annihilator is computed in

Theorem 3.6.

Assume (R,m) is a local ring. The m-adic completion R̂ of R is a faithfully flat

R-module (see [12], Theorem 8.14), and so R ⊆ R̂. Applying [12], Theorem 23.2, to

the ring homomorphism ϕ : R → R̂ we obtain the following lemma.

Lemma 3.1 ([12], Theorem 23.2). Let (R,m) be a local ring andM an R-module.

Then:

(i) if p ∈ Spec(R) and P ∈ AssR̂(R̂/pR̂), then R ∩P = p.

(ii)

AssR̂(M ⊗R R̂) =
⋃

p∈AssR(M)

AssR̂(R̂/pR̂).
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This lemma is used in the proof of the following theorem which is the main theorem

of this section.

Theorem 3.2. Let (R,m) be a local ring and t ∈ N0. LetM be a nonzero finitely

generated R-module and 0 =M1∩ . . .∩Mn a minimal primary decomposition of the

zero submodule of M with AssR(M/Mi) = {pi} for all 1 6 i 6 n. Then:

(i)
⋂

pi∈Ass>t

R
(M)

Mi = St
M (0) and

⋂
pi∈MinAsst

R
(M)

Mi = T t
M (0), where St = R \

⋃
p∈Ass>t

R
(M)

p and T t = R \ ⋃
p∈MinAsst

R
(M)

p. In particular,
⋂

pi∈Ass>t

R
(M)

Mi and

⋂
pi∈MinAsst

R
(M)

Mi are independent of the choice of minimal primary decomposi-

tion of the zero submodule of M .

(ii) St
M (0) is the largest submodule N of M such that dimR(N) < t.

(iii) There is the following bound for the annihilator of Ht
m(M)

AnnR(M/St
M (0)) ⊆ AnnR(H

t
m(M)) ⊆ AnnR(M/T t

M (0)).

In particular, for t = dimR(M) there are the equalities St
M (0) = T t

M (0) =⋂
pi∈AsshR(M)

Mi, and

AnnR(H
dimR(M)
m (M)) = AnnR

(
M/

⋂

pi∈AsshR(M)

Mi

)
.

P r o o f. Set S = St
M (0) and T = T t

M (0). It is clear that Ass>t
R (M) and

MinAsstR(M) are isolated subsets of AssR(M) and hence, (i) follows from Lemma 2.2.

To prove (ii), first note that AssR(S) = AssR(M) \ Ass>t
R (M) by Lemma 2.1

and hence, dimR(S) < t. Now, assume that N is a submodule of M such that

dimR(N) < t. Suppose, for the sake of contradiction, that N * S. Then

0 6= N/(N ∩ S) ∼= (N + S)/S ⊆M/S.

Hence,

∅ 6= AssR(N/(N ∩ S)) ⊆ AssR(M/S) = Ass>t
R (M),

which is impossible, because dimR(N/(N ∩ S)) 6 dimR(N) < t. This proves (ii).

Now, we prove (iii). In the case when t = dimR(M), it is clear that

MinAsstR(M) = Ass>t
R (M) = AsshR(M),

and so St
M (0) = T t

M (0) =
⋂

pi∈AsshR(M)

Mi. Therefore, the first part of (iii)

yields the equality AnnR(H
dimR(M)
m (M)) = AnnR

(
M/

⋂
pi∈AsshR(M)

Mi

)
whenever
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t = dimR(M). Also, we saw in (ii) that dimR(S) < t, and so we obtain Ht
m(M) ∼=

Ht
m(M/S). Therefore,

AnnR(M/S) ⊆ AnnR(H
t
m(M/S)) = AnnR(H

t
m(M)).

Thus, to complete the proof of (iii), it only remains to prove that

AnnR(H
t
m(M)) ⊆ AnnR(M/T ).

Set d = dimR(R). First, assume that R is complete. By Cohen’s structure theo-

rem for complete local rings (see [12], Theorem 29.4 (ii)) there is a complete regular

local ring R′ such that R = R′/I for some ideal I of R′. Now, let h = htR′(I)

and x1, . . . , xh be a maximal R
′-sequence in I. Set R′′ = R′/(x1, . . . , xh) and

J = I/(x1, . . . , xh). Then R
′′ is a local Gorenstein ring of dimension d (see [7], Corol-

lary 3.1.15) and R ∼= R′′/J . Now, let n be the maximal ideal of R′′. Then m ∼= n/J .

By the Grothendieck duality for Gorenstein rings (see [6], Theorem 11.2.5), there is

the following isomorphism of R′′-modules:

Ht
n(M) ∼= HomR′′(Extd−t

R′′ (M,R′′), ER′′ (R′′/n)).

Also, by using the Independence Theorem under the ring homomorphism R′′ →
R′′/J ∼= R, we obtain the following isomorphism of R′′-modules:

Ht
n(M) ∼= Ht

n(R′′/J)(M) ∼= Ht
m(M)

(we recall that n/J ∼= m). We refer the reader for more about the Independence

Theorem to Theorem 4.2.1 of [6] or Proposition 2.11 (2) of [10]. Also, we note that

any R-module N has an R′′-module structure given by r′′x = (r′′+J)x = ψ(r′′+J)x

for all r′′ ∈ R′′ and x ∈ N , where ψ denotes the ring isomorphism from R′′/J to R.

Hence, by [6], Remarks 10.2.2 (ii), we have

AnnR′′(Ht
m(M)) = AnnR′′(Ht

n(M)) = AnnR′′(Extd−t
R′′ (M,R′′)).

For each 1 6 i 6 n let Pi be the contraction of pi in R
′′ under the ring homomor-

phism R′′ → R′′/J ∼= R. Then AssR′′(M) = {P1, . . . , Pn} and there is the bijective
correspondence between the sets AssR′′(M) and AssR(M) given by Pi ↔ pi. Also,

0 =M1 ∩ . . .∩Mn is a minimal primary decomposition of the zero submodule of M

as R′′-modules with AssR′′(M/Mi) = {Pi} for all 1 6 i 6 n. Since R′′ is Gorenstein,

by Remark 2.6 equation (2.1) we obtain

AnnR′′(Ht
m(M)) ⊆ AnnR′′

(
M/

⋂

Pi∈MinAsst
R′′

(M)

Mi

)
.
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For any R-module N we have J ⊆ AnnR′′(N) and so AnnR′′/J (N) = (AnnR′′(N))/J .

Therefore, the above inclusion proves the claimed inclusion in the case when R is

complete.

Now, suppose that R is not necessarily complete. Assume 0=
⋂

k∈K

Mk is a minimal

R̂-primary decomposition of the zero submodule of M̂ with AssR̂(M̂/Mk)= {Pk}.
Since AssR̂(M̂) =

n⋃
i=1

AssR̂(R̂/piR̂), there exist subsets K1, . . . ,Kn of K such that

K =
n⋃

i=1

Ki, and for each i, AssR̂(R̂/piR̂) = {Pk : k ∈ Ki}. Also, the subsets
K1, . . . ,Kn of K are disjoint by Lemma 3.1 (i).

Assume x ∈ AnnR(H
t
m(M)) and pi ∈ MinAsstR(M). By the complete case,

(3.1) xR̂ ⊆ AnnR̂(H
t
mR̂

(M̂)) ⊆ AnnR̂

(
M̂/

⋂

Pk∈MinAsst
R̂
(M̂)

Mk

)
.

Now, suppose that k ∈ Ki and Pk ∈ AsshR̂(M̂/M̂i) (note that, by Lemma 3.1,

AssR̂(M̂/M̂i) = AssR̂(R̂/piR̂)). We have

dimR̂(R̂/Pk) = dimR̂(M̂/M̂i) = dimR(M/Mi) = dimR(R/pi) = t.

We show that Pk is a minimal element of AssR̂(M̂). Assume that 1 6 i′ 6 n,

k′ ∈ Ki′ and Pk′ ⊆ Pk. Then pi′ = Pk′ ∩ R ⊆ Pk ∩ R = pi. Since pi is a minimal

element of AssR(M) and K1, . . . ,Kn are disjoint sets, we deduce that i = i′. It

follows that both Pk and Pk′ are elements of AssR̂(M̂/M̂i). Therefore,

dimR̂(M̂/M̂i) = dimR̂(R̂/Pk) 6 dimR̂(R̂/Pk′) 6 dimR̂(M̂/M̂i),

and hence,Pk = Pk′ . Thus, Pk ∈ MinAsst
R̂
(M̂) and inclusion (3.1) yields xM̂ ⊆Mk.

Since Pk is a minimal element of AssR̂(M̂/M̂i), it follows that the contraction

of (M̂i)Pk
under the canonical map M̂ → M̂Pk

, denoted by Nk, is the Pk-primary

component of each minimal primary decomposition of M̂i in M̂ (see Lemma 2.2

or [12], Theorem 6.8.3 (iii)). Hence, Nk/M̂i is the Pk-primary component of each

minimal primary decomposition of 0 in M̂/M̂i. Also, we haveMk ⊆ Nk becauseMk

is the contraction of the zero submodule under the map M̂ → M̂Pk
. Therefore,

x(M̂/M̂i) ⊆ Nk/M̂i. Since Pk is an arbitrary element of AsshR̂(M̂/M̂i), we have

x(M̂/M̂i) ⊆ ⋂
Pk∈Assh

R̂
(M̂/M̂i)

Nk/M̂i. Hence, by Lemma 2.1, AssR̂(x(M̂/M̂i)) ⊆

AssR̂(M̂/M̂i) \AsshR̂(M̂/M̂i). This yields

dimR(x(M/Mi)) = dimR̂(x(M̂/M̂i)) < dimR̂(M̂/M̂i) = t.

Therefore, pi /∈ AssR(x(M/Mi)) and hence, AssR(x(M/Mi)) = ∅ or equivalently,
xM ⊆Mi. This proves the claimed inclusion and completes the proof. �
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Now, in the following theorem, we give a bound for the annihilator of top local

cohomology module without the local assumption on R. But before that, we need

the following lemma.

Lemma 3.3 ([9], Theorem 2.2). Let a be an ideal of R andM , N two finitely gen-

erated R-modules such that SuppR(M) ⊆ SuppR(N). Then cdR(a,M) 6 cdR(a, N).

Assume a is an ideal of R and M is a finitely generated R module. Since

SuppR(M) = SuppR

( ⊕
p∈AssR(M)

R/p
)
, the above lemma implies that

cdR(a,M) = cdR

(
a,

⊕

p∈AssR(M)

R/p

)
= sup{cdR(a, R/p) : p ∈ AssR(M)}.

By [6], Exercise 6.2.6 and Theorem 6.2.7, Hi
a(M) is zero for all i if and only if

M = aM , and so in this case, we have cdR(a,M) = sup ∅ = −∞. On the other
hand, if a is generated by t ∈ N0 elements, then cdR(a,M) 6 t < ∞, see [6],
Theorem 3.3.1. Hence, cdR(a,M) is a nonnegative integer if and only if M 6= aM .

Theorem 3.4. Let M be a nonzero finitely generated R-module and a an ideal

of R such that M 6= aM . Let c = cdR(a,M) and 0 = M1 ∩ . . . ∩Mn be a minimal

primary decomposition of the zero submodule of M with AssR(M/Mi) = {pi} for
all 1 6 i 6 n. Set ∆ = {p ∈ AssR(M) : cdR(a, R/p) = c} and Σ = {p ∈ AssR(M) :

cdR(a, R/p) = dimR(R/p) = c}. Then
(i)

⋂
pi∈∆

Mi = SM (0), where S = R \ ⋃
pi∈∆

p. In particular,
⋂

pi∈∆

Mi is independent

of the choice of minimal primary decomposition of the zero submodule of M .

(ii) SM (0) is the largest submodule N of M such that cdR(a, N) < c,

(iii)

AnnR

(
M/

⋂

pi∈∆

Mi

)
⊆ AnnR(H

c
a(M)) ⊆ AnnR

(
M/

⋂

pi∈Σ

Mi

)
.

In particular, when c = dimR(M), there are the equalities ∆ = Σ and

AnnR(H
dimR(M)
a (M)) = AnnR(M/SM (0)).

P r o o f. Set S =
⋂

pi∈∆

Mi and T =
⋂

pi∈Σ

Mi.

(i) If q ∈ AssR(M) and q ⊆ p for some p ∈ ∆, then by Lemma 3.3,

c = cdR(a, R/p) 6 cdR(a, R/q) 6 cdR(a,M) = c.

It follows that q ∈ ∆, and hence ∆ is an isolated subset of AssR(M). Therefore (i)

follows from Lemma 2.2.
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(ii) Lemma 2.1 implies that AssR(S) = {p ∈ AssR(M) : cdR(a, R/p) < c}.
Hence, by Lemma 3.3, cdR(a, S) < c. Also, if N is a submodule of M such that

cdR(a, N) < c, then

AssR(N/(N ∩ S)) = AssR((N + S)/S) ⊆ AssR(M/S) = ∆.

Thus, if AssR(N/(N ∩ S)) 6= ∅, then c = cdR(a, N/(N ∩ S)) 6 cdR(a, N), which is

impossible. Therefore, N ⊆ S and the proof of (ii) is completed.

(iii) We proved in (ii) that cdR(a, S) < c. Therefore, Hc
a(M) ∼= Hc

a(M/S) and

hence,

AnnR(M/S) ⊆ AnnR(H
c
a(M/S)) = AnnR(H

c
a(M)).

This proves the first inclusion. Now, we prove the second inclusion claimed in (iii).

Case 1 : Assume that c = dimR(M) and (R,m) is a complete local ring. For each

prime ideal p, in view of Grothendieck’s Vanishing Theorem (see [6], Theorem 6.1.2),

we have cdR(a, R/p) 6 dimR(R/p). It follows that ∆ = Σ, and so S = T . Also, we

have ∆ = {p ∈ AsshR(M) :
√
a+ p = m} by the Lichtenbaum-Hartshorne Theorem.

Therefore,

√
a+ AnnR(M/S) =

√
a+

⋂

p∈AssR(M/S)

p =

√
a+

⋂

p∈∆

p.

Since M is a finitely generated R-module, the set ∆ is finite and so

√
a+

⋂

p∈∆

p =

√ ⋂

p∈∆

(a + p) =
⋂

p∈∆

√
a+ p = m.

(Note that for ideals a, b, c and prime ideal q we have (a + b) ∩ (a + c) ⊆ q if

and only if a + (b ∩ c) ⊆ q. Therefore,
√
(a+ b) ∩ (a + c) =

√
a+ (b ∩ c)). Hence,√

a+AnnR(M/S) = m and we deduce from the Independence Theorem that

Hc
a(M) ∼= Hc

a(M/S) ∼= Hc
m(M/S).

Also, since AssR(M/S) = ∆ = Σ ⊆ AsshR(M) and ∆ is not empty, we have

dimR(M/S) = dimR(M) = c and AsshR(M/S) = AssR(M/S). Therefore, the

previous theorem yields

AnnR(H
c
a(M)) = AnnR(H

c
m(M/S)) = AnnR(M/S).

Case 2 : Assume that c = dimR(M) and R is not necessarily local. As in the

previous case, we have ∆ = Σ and S = T . To prove AnnR(H
c
a(M)) ⊆ AnnR(M/S),

assume that x ∈ R and xM * S and we show xHc
a(M) 6= 0. By (ii), Hc

a(xM) 6= 0.
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Thus, there exists a prime ideal m such that Hc
aRm

(xMm) 6= 0 and consequently,

Hc
aR̂m

(xM̂m) 6= 0. Therefore, c 6 cd
R̂m

(aR̂m, xM̂m). It follows from Lemma 3.3 and

Grothendieck’s Vanishing Theorem that

c 6 cd
R̂m

(aR̂m, xM̂m) 6 cd
R̂m

(aR̂m, M̂m) 6 dim
R̂m

(M̂m) 6 dimR(M) = c.

Hence, dim
R̂m

(M̂m) = cd
R̂m

(aR̂m, M̂m) = c. Since Hc
aR̂m

(xM̂m) 6= 0, we obtain

xM̂m * S′, where S′ is the largest submodule of M̂m such that cdR̂m
(aR̂m, S

′) < c.

So, by the complete case, we have xHc
aR̂m

(M̂m) 6= 0 and therefore, xHc
a(M) 6= 0.

This proves the claimed inclusion (in fact equality) in the case when c = dimR(M).

Case 3 : Assume c < dimR(M). If Σ = ∅, then T = M and there is nothing to

prove. Assume Σ 6= ∅. Since cdR(a, T ) 6 c, the short exact sequence

0 → T →M →M/T → 0

induces the epimorphism Hc
a(M) → Hc

a(M/T ). It follows that AnnR(H
c
a(M)) ⊆

AnnR(H
c
a(M/T )). Since AssR(M/T ) = Σ 6= ∅, we have

cdR(a,M/T ) = max
p∈AssR(M/T )

cdR(a, R/p) = max
p∈Σ

cdR(a, R/p) = c

and

dimR(M/T ) = max
p∈AssR(M/T )

dimR(R/p) = max
p∈Σ

dimR(R/p) = c.

Thus, dimR(M/T ) = cdR(a,M/T ) = c, and so AnnR(H
c
a(M/T )) = AnnR(M/T ) by

the previous case. This completes the proof. �

When (R,m) is a Cohen-Macaulay local ring, a is a nonzero proper ideal of R

and t = grade(a, R), Bahmanpour calculated the annihilator of Ht
a(R) in [4], Theo-

rem 2.2. The following theorem generalizes his result for Cohen-Macaulay modules

whenever R is not necessarily local.

Lemma 3.5 ([8], Theorem 2.1). Let a be an ideal of R andM a finitely generated

R-module such that aM 6=M . Then

AssR(H
grade(a,M)
a (M)) = {p ∈ V (a) : depthRp

Mp = grade(a,M)}.

Let M be an R-module. For p ∈ SuppR(M), the M -height of p, denoted htM (p),

is the supremum of the lengths t of strictly descending chains

p = p0 ⊃ p1 . . . ⊃ pt
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of prime ideals in SuppR(M). For an arbitrary ideal a we define the M -height of a,

denoted htM (a), by

htM (a) = inf{htM (p) : p ∈ SuppR(M) ∩ V(a)}.

In particular, if SuppR(M) ∩ V(a) = ∅, then htM (a) = inf ∅ = ∞.

Theorem 3.6. Let a be an ideal of R, M a nonzero finitely generated Cohen-

Macaulay R-module, and 0 =M1∩ . . .∩Mn with AssR(M/Mi) = pi for all 1 6 i 6 n

a minimal primary decomposition of the zero submodule ofM . Then for each t ∈ N0,

AnnR(H
t
a(M)) ⊆ AnnR

(
M/

⋂

htM (a+pi)=t

Mi

)
.

Moreover, if M 6= aM and t = grade(a,M), then the equality holds.

P r o o f. Set Σ(t) = {p ∈ AssR(M) : htM (a + p) = t}. To prove the claimed
inclusion, assume that x ∈ R and x /∈ AnnR(M/

⋂
pi∈Σ(t)

Mi) and we show x /∈

AnnR(H
t
a(M)). Hence, xM *Mi for some pi ∈ Σ(t). Therefore, AssR(x(M/Mi)) =

AssR(M/Mi) = {pi}. Suppose that q is a minimal prime ideal of a + pi such that

htM (q) = htM (a + pi) = t. Then

AssRq
(x(M/Mi)q) = AssRq

(M/Mi)q = {piRq}.

Therefore, √
aRq +AnnRq

(M/Mi)q =
√
aRq + piRq = qRq.

Also, since Mq is Cohen-Macaulay and piRq ∈ AssRq
(Mq), we have

dimRq
(Rq/piRq) = dimRq

(Mq) = t.

Hence, dimRq
((M/Mi)q) = t and by Theorem 3.2, in view of the Independence

Theorem we have

AnnRq
(Ht

aRq
((M/Mi)q)) = AnnRq

(Ht
qRq

((M/Mi)q)) = AnnRq
(M/Mi)q.

Thus, xHt
aRq

((M/Mi)q) 6= 0 because x(M/Mi)q 6= 0. On the other hand, the exact

sequence

0 → (Mi)q →Mq → (M/Mi)q → 0

induces the epimorphism Ht
aRq

(Mq) → Ht
aRq

((M/Mi)q). Thus, xH
t
aRq

(Mq) 6= 0 and

consequently, xHt
a(M) 6= 0. This proves the claimed inclusion.
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Finally, assume t = grade(a,M) and we prove the reverse inclusion. Let x ∈ R

be such that xHt
a(M) 6= 0. Hence, there exists q ∈ AssR(H

t
a(M)) ⊆ SuppR(M/aM)

such that xHt
aRq

(Mq) 6= 0. By the above lemma, htM (q) = htM (a), and hence q is

a minimal prime ideal of a + AnnR(M). Since Mq is a Cohen-Macaulay module of

dimension t, Theorem 3.2 and Independence Theorem yield

AnnRq
(Ht

aRq
(Mq)) = AnnRq

(Ht
qRq

(Mq)) = AnnRq
(Mq),

and so we have xMq 6= 0. If q ∈ SuppR

( ⋂
pi∈Σ(t)

Mi

)
, then there is a p ∈

AssR

( ⋂
pi∈Σ(t)

Mi

)
= AssR(M) \ Σ(t) such that p ⊆ q. Therefore,

t = htM (a) 6 htM (a + p) 6 htM (q) = t.

Hence, htM (a+ p) = t, and so p ∈ Σ(t), a contradiction. Thus,
( ⋂
pi∈Σ(t)

Mi

)
q
= 0. It

follows that xMq *
( ⋂
pi∈Σ(t)

Mi

)
q
and consequently, xM *

⋂
pi∈Σ(t)

Mi. This proves

the claimed equality in the case when t = grade(a,M) and completes the proof. �
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