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INTERVAL MULTI-LINEAR SYSTEMS FOR TENSORS IN
THE MAX-PLUS ALGEBRA AND THEIR APPLICATION
IN SOLVING THE JOB SHOP PROBLEM

Sedighe Khaleghzade, Mostafa Zangiabadi, Aljoša Peperko
and Masoud Hajarian

In this paper, we propose the notions of the max-plus algebra of the interval tensors, which
can be used for the extension of interval linear systems to interval multi-linear systems in the
max-plus algebra. Some properties and basic results of interval multi-linear systems in max-
plus algebra are derived. An algorithm is developed for computing a solution of the multi-linear
systems in the max-plus algebra. Necessary and sufficient conditions for the interval multi-linear
systems for weak solvability over max-plus algebra are obtained as well. Also, some examples
are given for illustrating the obtained results. Moreover, we briefly sketch how our results can
be used in the max-plus algebraic system theory for synchronized discrete event systems.

Keywords: interval tensor, max-plus algebra, multi-linear systems, weak solvability, job
shop problem

Classification: 15A80, 15A06, 65G30, 15A69

1. INTRODUCTION

In the last twenty years, there has been a tremendous interest and activity in tensors,
which are multi-arrays with at least m ≥ 3 indices. Since tensors do not represent
linear operators, as matrices do, the theory of tensors is more delicate than the theory
of matrices. Recently, there have been many new developments in the study of tensors
and their associated multi-linear system problems. In particular, results coming from
the interval matrix setting when studying the max-plus algebra have shown especially
attractive.

Max-plus algebra provides mathematical theory and techniques for solving nonlinear
problems that can be given the form of linear problems, when arithmetical addition is
replaced by the operation of maximum and arithmetical multiplication is replaced by
addition. Max-plus algebra plays an important role in modeling and analysis of various
types of discrete event systems, including railway networks, job shop problem, flexible
manufacturing systems, intelligent transportation systems, traffic control systems and
etc. [2, 4, 9, 12, 14, 19–21]. A typical application of discrete events systems are job shop
problems, where an event is scheduled to meet a deadline.
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During the last three decades the role of compact intervals as independent objects
has continuously increased in numerical analysis when verifying or enclosing solutions
of various mathematical problems or when proving that such problems cannot have
a solution in a particular given domain. This was possible by viewing intervals as
extensions of real or complex numbers, by introducing interval matrices and interval
tensors. Interval tensors have been treasured for solving multi-linear systems of equations
[3], and in this paper also extended to max-plus systems.

This paper is organized as follows. In Section 2, we recall some preliminary definitions
and results. In addition, we give an algorithm for computing a solution of the multi-
linear systems in the max-plus algebra. Necessary and sufficient conditions for weak
solvability of the interval multi-linear system, together with some examples, will be
discussed in Section 3. Finally, in Section 4 we give the application of max-plus algebra
in the synchronized discrete event systems, more precisely in the job shop problem.

2. PRELIMINARIES AND SOME BASIC RESULTS

The following notations are used in the sequel. Vectors are written as italic lowercase
letters such as x, y, . . . , matrices correspond to italic capitals such as A,B, . . . and tensors
are written as calligraphic capitals such as A,B, . . . . For each nonnegative integer n,
denote [n] = {1, . . . , n} and R is the set of real numbers.

The max-plus algebra Rmax is the set R∪{ε}, equipped with two operations, addition
(⊕) and multiplication (⊗), where ε = −∞, x ⊕ y = max {x, y} and x ⊗ y = x + y for
every x, y ∈ Rmax. The algebraic structure of Rmax is an idempotent semifield, i. e., an
idempotent commutative semiring where every element x ∈ Rmax, with x 6= ε has an
inverse under the ⊗ operation, denoted −x (see, for instance, [4, 6, 7, 15]).

A tensor can be regarded as a higher order generalization of a matrix, which takes
the form A = (ai1···im), ai1···im ∈ R. We denote the elements of an m-order tensor
A ∈ Rn1×···×nm by ai1i2···im where 1 ≤ ij ≤ nj , 1 ≤ j ≤ m. If n1 = · · · = nm = n, then
it is said A is an m-order n-dimensional cubical tensor or for simplicity just m-order
n-dimensional tensor. Obviously, a vector is a tensor of order 1 and a matrix is a tensor
of order 2. The set of all tensors of size n1 × n2 × ... × nm over the max-plus algebra
is denoted by Rn1×···×nm

max . The set of all tensors of order m and dimension n over the

max-plus algebra is denoted by R[m,n]
max . Let A = (ai1i2···im) ∈ R[m,n]

max . We define its jth

row tensor Aj = (aji2···im) as a tensor in R[m−1,n]
max for j ∈ [n].

In [1], Afshin et al. extended the basic max-plus algebraic operations to tensors.

Definition 2.1. The max-plus algebra addition (⊕) and multiplication (⊗) are defined
as follows [1, 8]:

(i) Suppose that A,B ∈ Rn1×···×nm
max , we have A⊕ B ∈ Rn1×···×nm

max and

(A⊕ B)i1···im = ai1···im ⊕ bi1···im = max{ai1···im , bi1···im}.

(ii) Suppose that A ∈ Rn1×···×nm
max and x ∈ R

max
i∈{2,··· ,m}

{ni}
we have

(A⊗ x)i = max
i2∈[n2],...,im∈[nm]

{aii2···im + xi2 + · · ·+ xim}.
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Interval linear algebra is a mathematical field developed from classical linear algebra.
The only difference is that we do not work with real numbers but with real closed
intervals xI = [x, x], where for any x ∈ xI we have x ≤ x ≤ x and the relation ≤ is
always understood coordinatewise. Sometimes in applications, we do not know some
parameters precisely, that is why we rather use intervals of possible values. When
the components of a tensor possess interval uncertainty, we have an interval tensor.
Applied problems in which there is a minimal information about the nature of the tensor
coefficient uncertainty, the tensor is interval. In [3], Bozorgmanesh et al. introduced
interval tensors. An interval tensor is a tensor where every element is an interval. An
m-order n-dimensional cubical interval tensor is denoted by AI = [A,A], where A and
A are real m-order n-dimensional tensors such that for any A ∈ AI we have A ≤ A ≤ A.
In other words, AI is a tensor with coefficients formed by real closed intervals. Notice
that, for m = 2, AI is an interval matrix (see, for instance, [5, 11, 16–18]).

The interval tensor operations in max-plus algebra are defined formally in the same
manner (with respect to ⊕,⊗) as tensor operations in the multi-linear algebra. Let us
first define a system of interval multi-linear equations or, as we abbreviate it, an interval
multi-linear system. It is a set of all multi-linear systems that is defined by an interval
tensor and an interval vector.

Definition 2.2. Let AI = [A,A] be an interval tensor such that A,A ∈ R[m,n]
max and

bI = [b, b] such that b, b ∈ Rn
max. For x ∈ Rn the notation

AI ⊗ x = bI , (1)

represents max-plus interval multi-linear systems.

Interval multi-linear system (1) in max-plus algebra is the family of all multi-linear
systems of the form

A⊗ x = b, (2)

where A ∈ AI and b ∈ bI . Each system of the form (2) is said to be a subsystem of
system (1). We say that interval multi-linear system has a constant tensor if A = A and
has a constant right-hand side, if b = b.

Remark 2.3. If m = 2 (namely AI = [A,A] is an interval matrix of order n), then

AI ⊗ x = bI , (3)

represents an interval system of linear max-plus equations (see, for instance, [5, 10, 16–
18]). Therefore multi-linear system (1) is a generalization of linear system (3) in max-plus
algebra.

For the study of multi-linear system (2), we have the following definitions.

Definition 2.4. For a multi-linear system A ⊗ x ≤ b, we call x̄∗ = (x̄∗1, · · · , x̄∗n)T a
solution of A⊗ x ≤ b, if for any i ∈ [n] and all i2, . . . , im ∈ [n]

m∑
j=2

x̄∗ij ≤ bi − aii2···im . (4)
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Definition 2.5. Let A ∈ R[m,n]
max and b ∈ Rn

max. The solution set of the multi-linear
system (2) is defined as follows:

S(A, b) = {x ∈ Rn | A ⊗ x = b}.

Remark 2.6. Let x̄∗ be a solution of A⊗x ≤ b. Then by Definition 2.5, x̄∗ is a solution

of A⊗ x = b if and only if for any k ∈ [n] there exist i
(k)
2 , . . . , i

(k)
m ∈ [n] such that

m∑
j=2

x̄∗
i
(k)
j

= bk − aki(k)
2 ...i

(k)
m
. (5)

Throughout the paper we shall use the notation x∗(A, b) to denote a solution of the
multi-linear system A ⊗ x = b and use the notation x̄∗(A, b) to denote a solution of
the multi-linear system A⊗ x ≤ b. For notational convenience, unless otherwise stated,
x∗(A, b) will be denoted by x∗ and x̄∗(A, b) will be denoted by x̄∗. For A = (ai1i2···im) ∈
R[m,n]

max , let rk(A) = max i2,··· ,im
i2 6=···6=im

aki2···im , k ∈ [n] (i2 6= · · · 6= im means all situations

excluding the situations where i2 = · · · = im). If in the kth row of A the maximum
in definition of rk(A) is attained more than once, then we denote rkj

(A) = a
ki

(j)
2 ···i

(j)
m
,

where a
ki

(j)
2 ···i

(j)
m

is the jth entry in which the maximum in definition of rk(A) is attained.

Based on the above discussion, we give the following algorithm for solving multi-linear
system A⊗ x = b (for more details on the following algorithm refer to Appendix A).

Algorithm 2.7. (For solving the multi-linear systems A⊗ x = b)

1: Input: The tensor A ∈ Rn1×···×nm
max and b ∈ Rn1

max.
2: set j = 1
3: for k = 1, . . . , n1 do
4: set rkj (A) := a

ki
(j)
2 ...i

(j)
m

5: set βj := bk − rkj (A)
6: while there exist some entries aki2···im in kth row of A such that

aki2...im = rkj (A) do
7: set j := j + 1
8: set rkj (A) := aki2...im
9: set βj := bk − rkj (A)
10: end while
11: set j := j + 1
12: end for
13: set nmin = min

i=2,...,m
{ni} and nmax = max

i=2,...,m
{ni}

14: for k = 1, . . . , n1 do
15: for i = 1, . . . , nmin do
16: set αi := min

k

bk−aki···i
m−1

17: end for
18: end for
19: Compute the following system of linear inequalities:
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

m∑
t=2

x
i
(1)
t
≤ β1

...
m∑
t=2

x
i
(j)
t
≤ βj

x1 ≤ α1

...
xnmin

≤ αnmin

(6)

20: By solving the inequality system (6) we have xi ≤ γi where γi ∈ R, i ∈ [nmax]
21: for k = 1, . . . , n1

22: if there exists a
ki

(k)
2 ...i

(k)
m

of A such that
m∑
t=2

γ
i
(k)
t

= bk − aki(k)
2 ...i

(k)
m

and

for any i2, . . . , im, we have
m∑
t=2

γit ≤ bk − aki2...im ,

do xj := γj where j ∈ max{i2, . . . , im}
23: end if
24: else the multi-linear system A⊗ x = b is not solvable and break
25: end else
26: end for
27: if x = (x1, . . . , xnmax)T = (γ1, . . . , γnmax)T then
28: x∗ = (γ1, . . . , γnmax

)T is a solution of the multi-linear systemA⊗ x = b
29: end if
30: else
31: the multi-linear system A⊗ x = b is not solvable.
32: end else

Remark 2.8. In order to get the upper bound of solution of inequality system (6), we
prepare the Algorithm 4.1 (see, Appendix B). Also we can use the Multi-Stage ABS
algorithm [13].

Theorem 2.9. The computational complexity of Algorithm 2.7 is O(n1×n2×· · ·×nm).

P r o o f . For estimation of the computational complexity realize that Algorithm 2.7
computes in Line 4, the maximum of all entries in n1 rows of A and requires n1 × n2 ×
· · · × nm − (n1 × nmin) operations. The maximum number of operations in Line 6 is
n1×n2× · · · ×nm−n1(nmin + 1) and in Line 22 is n1×n2× · · · ×nm. Then the overall
complexity is O(n1 × n2 × · · · × nm). �

In the following example we illustrate how the previous algorithm works (the imple-
mentation of Algorithm 2.7 is discussed in Appendix A).
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Example 2.10. Let the entries of A ∈ R3×2×3
max and b ∈ R3

max be defined as follows:

a111 = 2 a121 = 1 a112 = 1 a122 = −3 a113 = −1 a123 = 3 b1 = 4,
a211 = −1 a221 = 0 a212 = ε a222 = 2 a213 = 0 a223 = 0 b2 = 6,
a311 = −2 a321 = −1 a312 = 0 a322 = 1 a313 = ε a323 = 2 b3 = 5.

Consider the multi-linear system A ⊗ x = b. Due to Lines 4 and 6 of Algorithm 2.7,
a123, a221, a213, a223, and a323 are the maximum of the rows 1, 2 and 3, respectively. Due
to Line 16 of the algorithm, α1 = 1, α2 = 2. Continuing the algorithm, we obtain the
following system of inequalities:

x2 + x3 ≤ 1 = β1
x2 + x1 ≤ 6 = β2
x2 + x3 ≤ 6 = β3
x1 + x3 ≤ 6 = β4
x3 + x2 ≤ 3 = β5
x1 ≤ 1 = α1

x2 ≤ 2 = α2.

By Algorithm 4.1 (or the Multi-Stage ABS algorithm [13]), we obtain x1 ≤ γ1 = 1, x2 ≤
γ2 = 2 and x3 ≤ γ3 = −1. Applying Line 22 of Algorithm 2.7, we have

γ2 + γ3 = b1 − a123 and

3∑
t=2

γit ≤ b1 − a1i2i3 ∀i2, i3,

γ2 + γ2 = b2 − a222 and

3∑
t=2

γit ≤ b2 − a2i2i3 ∀i2, i3,

γ2 + γ2 = b3 − a322 and

3∑
t=2

γit ≤ b3 − a3i2i3 ∀i2, i3,

which show that the multi-linear system A⊗ x = b is solvable, and x∗ = (1, 2,−1)T is
a solution of A⊗ x = b.

Example 2.11. The following equation

x1 + x2 = 0

can be expressed as a special case of A ⊗ x = b, where b = 0 and A ∈ R1×2×2
max is a

tensor such that a1i2i3 = 0 if (i2, i3) ∈ {(1, 2), (2, 1)} and a1i2i3 = ε otherwise. We check
solvability of the multi-linear system A⊗ x = b by Algorithm 2.7.

Due to Lines 4 and 6 of the algorithm, max
i2, i3

a1i2i3 = a112 = a121 = 0, and Due to Line

16 of the algorithm, α1 = ε. By (6), we have the following system of inequalities:
x1 + x2 ≤ 0
x1 + x2 ≤ 0
x1 ≤ ∞
x2 ≤ ∞,
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that yields x1 ≤ γ1 and x2 ≤ −γ1. By setting x1 = γ1, x2 = −γ1, and applying Line 22
of the algorithm, we have γ1 − γ1 = 0 and 2γ1 ≤ ∞. This shows that x∗ = (γ1,−γ1)T is
a solution of multi-linear system A⊗ x = b.

In this example we showed that the multi-linear system (2) is solvable even when the
tensor A is rectangular. The following results are obtained from Algorithm 2.7.

Corollary 2.12. Let A ∈ R[m,n]
max and b, d ∈ Rn

max be such that b ≤ d and let x∗(A, d)
and x̄∗(A, b) be solutions of multi-linear systems A⊗ x = d and A⊗ x ≤ b, respectively.

Then A ⊗ x∗(A, b) ≤ A ⊗ x∗(A, d) and for any k ∈ [n], there exist i
(k)
2 , . . . , i

(k)
m ∈ [n]

such that
m∑
j=2

x̄∗
i
(k)
j

(A, b) ≤
m∑
j=2

x∗
i
(k)
j

(A, d).

P r o o f . By Remark 2.6 for any k ∈ [n] there exist i
(k)
2 , . . . , i

(k)
m ∈ [n] such that

m∑
j=2

x∗
i
(k)
j

(A, d) = dk − aki(k)
2 ...i

(k)
m
. Therefore we have

m∑
j=2

x∗ij(k)(A, d) = dk − aki(k)
2 ...i

(k)
m
≥ bk − aki(k)

2 ...i
(k)
m
≥

m∑
j=2

x̄∗
i
(k)
j

(A, b),

where the last inequality follows from Eq. (4). �

Corollary 2.13. Let A,B ∈ R[m,n]
max and d ∈ Rn

max be such that A ≤ B and let x∗(A, d)
be a solution of A ⊗ x = d. If x̄∗(B, d) is a solution of B ⊗ x ≤ d, then B ⊗ x∗(B, d) ≤
A⊗ x∗(A, d) and for any k ∈ [n] there exist i

(k)
2 , . . . , i

(k)
m ∈ [n] such that

m∑
j=2

x̄∗
i
(k)
j

(B, d) ≤
m∑
j=2

x∗
i
(k)
j

(A, d).

P r o o f . By Remark 2.6 and Eq. (4), for any k ∈ [n] there exist i
(k)
2 , . . . , i

(k)
m ∈ [n]

such that

m∑
j=2

x∗
i
(k)
j

(A, d) = dk − aki(k)
2 ...i

(k)
m
, (7)

m∑
j=2

x̄∗
i
(k)
j

(B, d) ≤ dk − bki(k)
2 ···i

(k)
m
. (8)

Therefore by (7) and (8) we have

m∑
j=2

x∗
i
(k)
j

(A, d) = dk − aki(k)
2 ...i

(k)
m
≥ dk − bki(k)

2 ···i
(k)
m
≥

m∑
j=2

x̄∗
i
(k)
j

(B, d).

�
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3. WEAK SOLVABILITY

Before solving a multi-linear system we might want to know whether it is actually solv-
able. In the first result of this section, we obtain the necessary and sufficient conditions
for the interval multi-linear systems with a constant tensor to be weakly solvable. Then
by definition of the canonical tensor, we obtain similar result for nonconstant tensors.

Definition 3.1. We call the system AI ⊗ x = bI weakly solvable if at least one of its
subsystems is solvable.

In other words, a system (1), (i. e., AI ⊗x = bI) is said to be weakly solvable if some
system (1) with data (2), (i. e., A⊗ x = b) is solvable. Hence, the word ”weakly” refers
to validity of the respective property for some system in the family.

Introduction of weak properties has an obvious motivation. Assume we are to decide
whether some system A ⊗ x = b is solvable, but the exact data of this system are not
directly available to us (they come from some measurements, are with rounding errors,
etc.); instead, we only know that they satisfy A ∈ AI , b ∈ bI . Then we can be sure that
the system AI ⊗x = bI is not solvable only if we know that the system (1) is not weakly
solvable.

Characterizations of weak solvability of interval multi-linear systems are given in the
following.

Proposition 3.2. An interval multi-linear system (1) with a constant tensor A = A =
A is weakly solvable if and only if

A⊗ x∗(A, b) ≥ b,

for some solution x∗(A, b) of multi-linear system (2).

P r o o f . Sufficiency: Since b ≤ A ⊗ x∗(A, b) = b ≤ b, then A ⊗ x∗(A, b) ∈ bI , and the
sufficiency is proved. To treat the necessity, let A ⊗ x = b be a solvable subsystem of
(1) for some b ∈ bI . Then A⊗ x∗(A, b) = b ≥ b. � Weak solvability
of interval linear system corresponds with the existence A ∈ AI and b ∈ bI . Then the
aim for weak solvability is finding the matrix A and vector b, such that linear system
A ⊗ x = b is solvable. Cechlárová et al. [5] proposed an algorithm (Canonical matrix)
for finding a matrix A ∈ AI such that for constant vector b the subsystem A⊗ x = b of
interval linear system AI ⊗ x = b is solvable. Similarly, a condition for weak solvability
of interval multi-linear system with a nonconstant tensor can be stated formally and
identically for max-plus, using a canonical tensor of an interval multi-linear system.

For a given x∗(A, b) ∈ S(A, b) the canonical tensor A(b) ∈ AI is defined by the
following algorithm (for more details on the following algorithm refer to Appendix C).

Algorithm 3.3. (For finding the canonical tensor)

1: Input: The tensors A,A ∈ R[m,n]
max and b ∈ Rn

max.
2: Suppose that i2, i3, . . . , im ∈ [n].
3: for j′ = 1, · · · , n and j′ is at least one of i2, i3, . . . , im do
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4: aj′(b) = max
k, i2,...,im


aki2···im − bk +

m∑
j=2, ij 6=j′

x∗ij (A, b)

l

 ;

5: where l is the number of indices ij such that ij = j′.
6: end for
7: for k = 1, · · · , n do
8: for i2, i3, . . . , im = 1, . . . , n do

9: if aki2...im ≥
m∑
j=2

aij (b) + bk then

10: aki2...im(b) =
m∑
j=2

aij (b) + bk

11: end if
12: else
13: aki2...im(b) = aki2...im
14: end else
15: end for
16: end for

Now, we give some properties of the canonical tensor according to Algorithm 3.3.

Proposition 3.4. Let AI ⊗ x = b be any interval multi-linear system with a constant

right-hand side such that AI = [A,A] ∈ R[m,n]
max , and x∗(A, b) ∈ S(A, b). Then

(a) x∗j′(A, b) = −aj′(b) for each j′ ∈ [n],

(b) max
k, i2,...,im


aki2...im(b)− bk+

m∑
j=2, ij 6=j′

x∗j′(A, b)

l

 = aj′(b) for each j′ ∈ [n], where

l is the number of indices ij such that ij = j′.

(c) If x∗(A(b), b) ∈ S(A(b), b), then A(b) ⊗ x∗(A(b), b) = A ⊗ x∗(A, b) and for each

k ∈ [n] there exist i
(k)
2 , . . . , i

(k)
m such that

m∑
j=2

x∗
i
(k)
j

(A(b), b) = −
m∑
j=2

a
i
(k)
j

(b).

(d) For any solvable subsystem A ⊗ x = b, if x∗(A(b), b) ∈ S(A(b), b), then for each

k ∈ [n] there exist i
(k)
2 , . . . , i

(k)
m such that

m∑
j=2

x∗
i
(k)
j

(A, b) ≤
m∑
j=2

x∗
i
(k)
j

(A(b), b).
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P r o o f . (a) Since S(A, b) 6= ∅, then by Remark 2.6 for any k ∈ [n] there exist

i
(k)
2 , . . . , i

(k)
m ∈ [n]

m∑
j=2

x∗
i
(k)
j

(A, b) = bk − aki(k)
2 ...i

(k)
m
,

which shows that a
ki

(k)
2 ...i

(k)
m

+
m∑
j=2

x∗
i
(k)
j

(A, b) = bk. Therefore

−x∗j′(A, b) =


a
ki

(k)
2 ...i

(k)
m
− bk +

m∑
j=2, i

(k)
j 6=j′

x∗
i
(k)
j

(A, b)

l



= max
k, i2,...,im


aki2...im − bk +

m∑
j=2, ij 6=j′

x∗ij (A, b)

l

 = aj′(b),

where l is the number of indices ij such that ij = j′.
(b) Due to Line 4 of the Algorithm 3.3, we have

aj′(b) = max
k, i2,...,im


aki2...im − bk +

m∑
j=2, ij 6=j′

x∗ij (A, b)

l



≤ max
k, i2,...,im


aki2...im − bk +

m∑
j=2, ij 6=j′

x∗ij (A, b)

l

 . (9)

Let us assume that the condition (b) is not satisfied, so we have two cases:
(I) If

max
k, i2,...,im


aki2...im(b)− bk+

m∑
j=2, ij 6=j′

x∗ij (A, b)

l

 < aj′(b),

then aj′(b) >

aki2...im(b)− bk +
m∑

j=2, ij 6=j′
x∗ij (A, b)

l
. Due to Lines 7-13 of the Algorithm

3.3, this is possible only if

aki2...im(b) = aki2...im < l aj′(b) + bk −
m∑

j=2, ij 6=j′

x∗ij (A, b).
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Therefore

aj′(b) >

aki2...im − bk +
m∑

j=2, ij 6=j′
x∗ij (A, b)

l
,

which is impossible by Eq. (9).
(II) If

max
k, i2,...,im


aki2...im(b)− bk+

m∑
j=2, ij 6=j′

x∗ij (A, b)

l

 > aj′(b),

then similar to (I), we have

aki2...im(b) > l aj′(b) + bk −
m∑

j=2,ij 6=j′

x∗ij (A, b).

Due to Lines 9-10 of the Algorithm 3.3, this is possible only if

aki2...im(b) = l aj′(b) + bk −
m∑

j=2,ij 6=j′

x∗ij (A, b),

that is a contradiction and the proof is complete.

(c) Since the Canonical tensor A(b) belongs to interval tensor AI , i.e., A ≤ A(b) ≤ A
and by Corollary 2.13 for each k ∈ [n], there exist i

(k)
2 , . . . , i

(k)
m ∈ [n] such that

m∑
j=2

a
i
(k)
j

(b) = −
m∑
j=2

x∗
i
(k)
j

(A, b) ≤ −
m∑
j=2

x∗
i
(k)
j

(A(b), b). (10)

Since S(A(b), b) 6= ∅, then by Remark 2.6 for any k′ ∈ [n] there exist i
(k′)
2 , . . . , i

(k′)
m ∈ [n]

such that

m∑
j=2

x∗
i
(k′)
j

(A(b), b) = bk − aki(k′)2 ...i
(k′)
m

(b).
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Then by (b) for any j′ ∈ [n], we have

aj′(b) = max
k, i2,...,im


aki2...im(b)− bk +

m∑
j=2, ij 6=j′

x∗ij (A, b)

l



≥ max
k, i2,...,im


aki2...im(b)− bk +

m∑
j=2, ij 6=j′

x∗ij (A(b), b)

l



=

−bk + a
ki

(k′)
2 ...i

(k′)
m

(b) +
m∑

j=2, i
(k′)
j 6=j′

x∗
i
(k′)
j

(A(b), b)

l
= −x∗j′(A(b), b),

then

m∑
j=2

a
i
(k)
j

(b) ≥ −
m∑
j=2

x∗
i
(k)
j

(A(b), b). (11)

Then by Eqs. (10) and (11) for each k ∈ [n] there exist i
(k)
2 , . . . , i

(k)
m ∈ [n] such that

m∑
j=2

x∗
i
(k)
j

(A(b), b) = −
m∑
j=2

a
i
(k)
j

(b).

(d) According to parts (a) and (c), for each k ∈ [n] there exist i
(k)
2 , . . . , i

(k)
m ∈ [n] such

that
m∑
j=2

x∗
i
(k)
j

(A(b), b) = −
m∑
j=2

a
i
(k)
j

(b) =

m∑
j=2

x∗
i
(k)
j

(A, b).

Therefore by Corollary 2.13, one obtains
m∑
j=2

x∗
i
(k)
j

(A(b), b) ≥
m∑
j=2

x∗
i
(k)
j

(A, b).

�

Corollary 3.5. An interval multi-linear system (1) with a constant right-hand side b
is weakly solvable if subsystem A(b)⊗ x = b is solvable.

P r o o f . The result trivially follows from A(b) ∈ AI . �

Theorem 3.6. Let S(A(b), b) 6= ∅, where A(b) ∈ AI and b ∈ bI . Then an interval
multi-linear system (1) is weakly solvable and it holds

A(b)⊗ x∗(A(b), b) ≥ b, (12)

for any solution x∗(A(b), b) of multi-linear system A(b)⊗ x = b.
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P r o o f . Since S(A(b), b) 6= ∅, then the solvable subsystem is obtained with A = A(b)
and b = A(b)⊗ x∗(A(b), b). It follows from x∗(A(b), b) ∈ S(A(b), b) that

A(b)⊗ x∗(A(b), b) = b ≥ b.

�

3.1. Examples

In this subsection we illustrate the main result of this section by some examples.

Example 3.7. Let us consider an interval tensor AI given by the corresponding interval
for each entry in the form

AI(:, :, 1) =

 [2, 6] [3, 8] [4, 6]
[1, 4] [6, 6] [5, 7]
[4, 5] [3, 7] [6, 7]

 ,

AI(:, :, 2) =

 [3, 5] [2, 7] [4, 4]
[2, 3] [1, 5] [4, 6]
[5, 8] [2, 4] [1, 3]

 ,

AI(:, :, 3) =

 [6, 8] [3, 5] [5, 9]
[3, 5] [6, 6] [6, 7]
[2, 6] [4, 5] [2, 3]

 .

Consider the interval multi-linear system AI ⊗ x = bI , where

bI =

 [7, 10]
[5, 9]
[8, 11]

 .

By Algorithm 2.7 (see Appendix A), we consider the following system of inequalities:

x1 + x3 ≤ 4 = β1
x2 + x3 ≤ 3 = β2
x2 + x1 ≤ 3 = β2
x3 + x1 ≤ 5 = β3
x1 ≤ 3.5 = α1

x2 ≤ 4 = α2

x3 ≤ 1.5 = α3.

By solving the above inequality system (Algorithm 4.1) and Line 22 of Algorithm 2.7,
we have

x∗(A, b) = (1.5, 1.5, 1.5)T .

Then we obtain aj′(b) = (−1.5,−1.5,−1.5)T by applying Algorithm 3.3 (for more de-
tails, see Appendix C). Therefore the Canonical tensor A(b) is in the following form:
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A(b)(:, :, 1) =

 6 7 6
4 6 6
5 7 7

 ,

A(b)(:, :, 2) =

 5 7 4
3 5 6
8 4 3

 ,

A(b)(:, :, 3) =

 7 5 7
5 6 6
6 5 3

 .

Similarly, we get x∗(A(b), b) = (1.5, 1.5, 1.5)T , which in this case equals x∗(A, b) and the
system AI ⊗ x = bI is weakly solvable.

Example 3.8. Consider the interval multi-linear system AI ⊗ x = bI , where

AI(:, :, 1) =

 [2, 6] [3, 8] [6.5, 7]
[1, 4] [6, 6] [5, 7]
[4, 5] [3, 7] [7.5, 8]

 ,

AI(:, :, 2) =

 [1, 5] [2, 6] [3, 4]
[2, 3] [4, 6] [3, 5]
[1, 6] [4, 7] [2, 8.5]

 ,

AI(:, :, 3) =

 [2, 4] [3, 6] [1, 4]
[2, 4] [5, 6] [7, 8]
[3, 7] [2, 6] [1, 7]

 ,

bI =

 [4, 7]
[2, 6]
[5, 8]

 .

Algorithm 2.7 gives the following system of inequalities:

x1 + x3 ≤ 0.5 = β1
x2 + x1 ≤ 0 = β2
x3 + x1 ≤ 1 = β3
x1 ≤ 2 = α1

x2 ≤ 1 = α2

x3 ≤ −0.5 = α3.

By solving the above inequality system (Algorithm 4.1) and Line 22 of Algorithm 2.7,
we have

x∗(A, b) = (1,−1,−0.5)
T
.
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By Algorithm 3.3, one can obtain the Canonical tensor A(b) with entries as follows:

A(b)(:, :, 1) =

 5 7 6.5
4 6 5.5
5 7 7.5

 ,

A(b)(:, :, 2) =

 5 6 4
3 6 5
6 7 8.5

 ,

A(b)(:, :, 3) =

 4 6 4
4 6 7
7 6 7

 .

Similarly, we get x∗(A(b), b) = (0, 0,−0.5)T and b ≤ A(b)⊗ x∗(A(b), b) = (7, 6, 7)T ≤ b.
Therefore x∗(A, b) is a solution of the multi-linear system A⊗ x = b and x∗(A(b), b) is
a solution of the multi-linear system A(b) ⊗ x = b, so the interval multi-linear system
AI ⊗ x = bI is weakly solvable.

4. USING MAX-PLUS ALGEBRA TO SOLVE THE JOB SHOP PROBLEM

Max-plus algebra is an effective tool for modeling discrete event systems, especially syn-
chronized discrete event systems (like a job shop manufacturing system). Synchronized
discrete event problem is a problem in which an event is scheduled to meet a dead-
line. The events run simultaneously and the completion of the lengthiest event has to
compulsorily happen exactly at the deadline.

Job shops are a special category of synchronized discrete event systems. In a job shop,
the flow of resources through the jobs is not identical. This means that each job might
not require the machines in the same order for processing. Also, all the machines may
not be required by all jobs. In a job shop scheduling problem, the number of schedules
generated is equal to the number of machines in the system, because each machine can
have a distinct schedule (see, for instance, [19]).

In this section, we considered the max-plus algebra to job-shop problem in synchro-
nized discrete event system as follows [2, Example 3.5]:

Six shops which are within the same market but are located at some meters from
each other were studied. The six shops find out that customers start buying at 7:00
a.m. They all decided to open their shops for customers at exactly 7:00 a.m. Since
the shops want to meet that deadline, the sale representatives (reps) for each product
for each shop are to start restocking before the set time. This will enable the shops to
serve their customers on time and other consumers to make more profit because of the
competitions. The six shops A, B, C, D, E and F sell six different beverage products,
Vigul milk(V), Peak milk(P), Coastal milk(C), Dano milk (D), Cowbell milk (CB) and
Three Crown milk (TC).

The shops work six days within the week, that is from Monday to Saturday. For the
shops to avoid losses, each product has one Representative. The time available to the
sale representatives to restock the shops depend on when the shops are opened to them
before the set time 8 a.m. The time available for reps and the time each rep spent on
each product was taken on each of the six days for each of the six shops. Suppose we



Interval multi-linear systems for tensors in the max-plus algebra and job shop problem 723

only coordinate the events of a single deadline, then the latest start time can be obtained
via the difference between the finish time and individual event duration times. If we are
to take shop A for example, when the shop is opened to the reps for V, P, C, D, CB, and
TC, the time each rep took was 20 min, 25 min, 30 min, 35 min, 30 min and 35 min,
respectively. Where they were to finish within 45 min. Obtaining the difference implies
that the latest starting time for each event is 25 min, 20 min, 15 min, 10 min, 15 min
and 10 min, respectively. After considering the events of all the six shops, we will get a
multiple deadline. When we consider the case where we have six shops, each shop will
have different time available to the reps for their respective products. This will depend
on the size of the shop, quantity of products available to the reps to restock, time the
reps report at work, and also the time the shops are opened to the reps to start restock.

Below are the tables for shops A - F for various data taken for the respective shops
in the selected week.

Day V P C D CB TC Time available
MON 17 15 20 25 15 19 30
TUE 16 18 27 28 18 20 30
WED 25 17 25 22 23 25 30
THUR 23 25 30 33 27 37 40

FRI 40 45 40 37 30 35 50
SAT 35 35 30 32 35 35 40

Tab. 1. Shop A.

Day V P C D CB TC Time available
MON 33 35 35 32 32 42 50
TUE 37 38 29 29 29 49 55
WED 38 45 43 35 35 50 60
THUR 42 40 47 43 43 55 60

FRI 25 25 26 28 28 30 35
SAT 35 42 35 38 38 40 45

Tab. 2. Shop B.

Day V P C D CB TC Time available
MON 28 20 25 25 25 25 30
TUE 30 30 35 35 38 35 40
WED 32 33 30 28 30 32 35
THUR 40 40 43 42 40 36 45

FRI 31 32 30 35 33 40 50
SAT 40 40 30 35 35 30 40

Tab. 3. Shop C.
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Day V P C D CB TC Time available
MON 32 33 47 50 40 48 50
TUE 40 42 43 35 38 37 40
WED 30 31 35 40 42 43 45
THUR 20 29 30 30 33 32 35

FRI 30 37 30 29 30 35 45
SAT 45 40 38 35 25 20 40

Tab. 4. Shop D.

Day V P C D CB TC Time available
MON 20 25 30 35 30 35 45
TUE 25 30 45 47 45 45 50
WED 30 20 25 33 35 25 40
THUR 25 35 40 30 43 30 55

FRI 30 32 40 43 33 30 45
SAT 35 40 45 30 45 40 60

Tab. 5. Shop E.

Day V P C D CB TC Time available
MON 15 30 18 15 33 20 40
TUE 23 25 28 30 33 30 40
WED 30 32 29 23 30 33 35
THUR 40 27 41 35 35 40 45

FRI 35 35 43 40 35 48 50
SAT 26 40 50 30 35 50 55

Tab. 6. Shop F.

We consider a tensor Aijk ∈ R[3,6]
max such that the index i shows the reps for V, P, C, D,

CB and TC when the shops is opened and the index j shows the six shops A, B, C, D, E
and F. The index k shows the shops work six days within the week, that is from Monday
to Saturday. Also we consider a vector b ∈ R6

max such that bl is a maximum of each
time available corresponding to row l of each of six shops, for example for Monday we
have b1 = max{30, 50, 30, 50, 45, 40} = 50. Then we have a tensor A and time available
corresponding to each days as follows.
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AMON = A(:, :, 1) =



shop A B C D E F

V 17 33 28 32 20 15
P 15 35 20 33 25 30
C 20 35 25 47 30 18
D 25 32 25 50 35 15

CB 15 32 25 40 30 33
TC 19 42 25 48 35 20

,


Time available

30
50
30
50
45
40

,

ATUE = A(:, :, 2) =



shop A B C D E F

V 16 37 30 40 25 23
P 18 38 30 42 30 25
C 27 29 35 43 45 28
D 28 29 35 35 47 30
CB 18 29 38 38 45 33
TC 20 49 35 37 45 30

,


Time available

30
55
40
40
50
40

,

AWED = A(:, :, 3) =



shop A B C D E F

V 25 38 32 30 30 30
P 17 45 33 31 20 32
C 25 43 30 35 25 29
D 22 35 28 40 33 23
CB 23 35 30 42 35 30
TC 25 50 32 43 25 33

,


Time available

30
60
35
45
40
35

,

ATHUR = A(:, :, 4) =



shop A B C D E F

V 23 42 40 20 25 40
P 25 40 40 29 35 27
C 30 47 43 30 40 41
D 33 43 42 30 30 35
CB 27 43 40 33 43 35
TC 37 55 36 32 30 40

,


Time available

40
60
35
35
55
45

,

AFRI = A(:, :, 5) =



shop A B C D E F

V 40 25 31 30 30 35

P 45 25 32 37 32 35
C 40 26 30 30 40 43
D 37 28 35 29 43 40
CB 30 28 33 30 33 35
TC 35 30 40 35 30 48

,


Time available

40
60
35
35
55
45

,



726 S. KHALEGHZADE, M. ZANGIABADI, A. PEPERKO AND M. HAJARIAN

ASAT = A(:, :, 6) =



shop A B C D E F

V 35 35 40 45 35 26
P 35 42 40 40 40 40
C 30 35 30 38 45 50
D 32 38 35 35 30 30
CB 35 38 35 25 45 35

TC 35 40 30 20 40 50

,


Time available

40
45
40
40
60
55

.

Consider the events completed at 7 a.m. when the shops are opened to customers.
We need to find the latest starting times for the various product Vigul milk, Peak milk.
Coastal milk, Dano milk, Cowbell milk, and Three crown milk.

The problem is formulated as a multi-linear system A ⊗ x = b, where the entries
of A and b are given as shown in the above with A(:, :, 1) = AMON , A(:, :, 2) =
ATUE , A(:, :, 3) = AWED, A(:, :, 4) = ATHUR, A(:, :, 5) = AFRI , A(:, :, 6) = ASAT ,
and b = [50, 55, 60, 60, 50, 60]T .

Now we use Algorithm 2.7 for calculating a solution of the multi-linear system A⊗x =
b, as follows:
Due to Lines 4 and 6 of Algorithm 2.7, a146 = 45, a223 = a215 = 45, a341 = a324 = 47,
a441 = 50, a552 = 45, and a624 = 55 are the maximum of the rows 1, 2, 3, 4 , 5 and
6, respectively. Due to Line 16 of the algorithm, α1 = 17.5, α2 = 5.5, α3 = 11, α4 =
8.5, α5 = 8.5, and α6 = 5. We have the following inequality system

x4 + x6 ≤ 5 = β1
x2 + x3 ≤ 10 = β2
x1 + x5 ≤ 10 = β3
x1 + x4 ≤ 13 = β4
x2 + x4 ≤ 13 = β5
x1 + x4 ≤ 10 = β6
x2 + x5 ≤ 5 = β7
x2 + x4 ≤ 5 = β8
x1 ≤ 17.5 = α1

x2 ≤ 5.5 = α2

x3 ≤ 11 = α3

x4 ≤ 8.5 = α4

x5 ≤ 8.5 = α5

x6 ≤ 5 = α6.

.

By solving the above inequality we have x1 ≤ 10 = γ1, x2 ≤ 5 = γ2, x3 ≤ 5 = γ3, x4 ≤
0 = γ4, x5 ≤ 0 = γ5, x6 ≤ 5 = γ6. By checking conditions in Line 22 of Algorithm 2.7,
x∗ = (10, 5, 5, 0, 0, 5)T is a solution of multi-linear system A⊗ x = b.

As observed in the above, some entries of the tensor A are marked with a � symbol,
to indicate that these entries are used in solving multi-linear system A ⊗ x = b. In
other words, these marked entries are satisfied in the multi-linear system. For example,
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consider the following equation:

(A⊗ x)1 = max
j,k∈[6]

(a1jk + xj + xk) = b1. (13)

By substituting x∗ in Eq. (13), we see that only entries a115 = 40, a116 = 35, a136 = 40
and a146 = 45 of A(1, :, :), where marked with a � symbol, satisfy in Eq. (13).

Now, these marked entries show that the delay time on Saturday is less than for the
other days, because A(:, :, 6) = ASAT has the most marked entries. After Saturday the
delay time on Monday, Wednesday and Friday are the same because on each of these
days there are two marked entries. Similarly, shop A has the least delay time among
other shops and Vigul milk has the least delay time among other products.

Notice that if the problem is formulated as a max-plus matrix equation A⊗x = b, then
matrix A and vector b formed from the averages to show the preparation before a shop
is opened to customers and the averages of the time available to the shop, respectively
(see, for instance, [2, Example 3.5]). However, in multi-linear system A ⊗ x = b, all
entries of A and b have been used. Also in the matrix case, we can only consider the
time delays for products V, P, C, D, CB, TC and shops A-F, while in the tensor case,
the time delays for the days of the week were also considered.

In this section the focus is on third-order tensors. However, our approach naturally
generalizes to higher-order tensors in a similar manner.

CONCLUSIONS

The max-plus algebra system of interval matrices has been studied widely in the liter-
ature. In this paper, we proposed the interval multi-linear systems for tensors in the
max-plus algebra. We have developed an algorithm for computing the multi-linear sys-
tem A ⊗ x = b and used for the job shop problem in a synchronized discrete events
system. The weak solvability of interval multi-linear systems in max-plus algebra have
been studied. The results obtained have shown that the method is very efficient for
solving multi-linear max-plus systems and is also applicable to job shop problems.

Appendix A. Implementation of Algorithm 2.7

We derive an alternative expression for implementation of Algorithm 2.7 which provides
step by step procedure.

Step 1: We find the maximum entries in each row of A ∈ Rn1×...×nm
max . Notice that, it

is possible the maximum in some row of A is attained more than once, then before we
find the maximum in the next row, the condition (Lines 6-10) will be checked for other
maximum in the same row. We also computed βj for each maximum (Lines 5 and 8).
Step 2: We compute the αi, i ∈ [nmin] and inserted in the linear inequality system (6)
of Algorithm 2.7.
Step 3: In this step, we solve the linear inequality system (6) by using the Multi-
Stage ABS algorithm [13] or Algorithm 4.1 in the Appendix B. Therefore, we have
x1 ≤ γ1, . . . , xnmax ≤ γnmax , where γi ∈ R, i ∈ [nmax].
Step 4: Finally, if two conditions of Line 22 are satisfied, then (x∗1, . . . , x

∗
nmax

) =
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(γ1, . . . , γnmax) is a solution of the multi-linear system (2). Otherwise the multi-linear
system (2) is not solvable.

Appendix B. An algorithm for solving the system of linear inequalities (6)

In [13] Guo and Liu propose the Multi-Stage ABS algorithm, for solving the system of
linear inequalities. In the following, we suggest a new algorithm for solving the system
of linear inequalities (6) and we will illustrate this by an example.

Let the number of inequalities in the inequality system (6) be q, where q ∈ N.

Algorithm 4.1. (Solving the system of linear inequalities (6))

1: Input: Linear inequality system (6)

2: l = 1

3: set αs := min
i
αi 6= ε, rl := s and γrl = xrl := αs

4: for j = 1, . . . , q do

5: if x
i
(j)
t

= xrl and x
i
(j)
t

is not a single variable in some inequality of

inequality system (6) then

6: insert xrl in part1 of inequality system (6)

7: end if

8: else break to Line 11

9: end else

10: end for

11: if
⋃
l

rl 6= [nmax] i.e., there exists f ∈ [nmax] and f /∈
⋃
l

rl then

12: if xf is a single variable in some inequality of inequality system (6),

which xf ≤ θr (θr ∈ R and r ∈ q) then

13: set xf := min
{

min
r
{θr}, αf

}
14: l := l + 1

15: set γrl = xrl := xf and go to Line 4

16: end if

17: else

18: set αs := min
i 6=

⋃
l

rl
{αi}

19: set l := l + 1, rl := s and γrl = xrl := αs

20: go to Line 4

21: end else

22: end if

23: else return γ1, . . . , γnmax

24: end else

Let us illustrate this algorithm by an example.
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Consider the linear inequality system in Example 2.10 as follows:



x2 + x3 ≤ 1 = β1
x2 + x1 ≤ 6 = β2
x2 + x3 ≤ 6 = β3
x1 + x3 ≤ 6 = β4
x3 + x2 ≤ 3 = β5
x1 ≤ 1 = α1

x2 ≤ 2 = α2.

(14)

In order to get the upper bound of solution of inequality system, we implement Algorithm
4.1 in the following way:

Step 1: min
i
αi 6= ε = min{1, 2} = 1 = α1, then set i1 = 1, r1 = 1 and γ1 = x1 = 1.

Step 2: We inserted x1 = 1 in inequality system (14) and we get



x2 + x3 ≤ 1
x2 ≤ 5
x2 + x3 ≤ 6
x3 ≤ 5
x3 + x2 ≤ 3
x1 ≤ 1 = α1

x2 ≤ 2 = α2.

(15)

Step 3: Because
⋃

l rl = {1} 6= [3], we set f = 2. Since the second inequality of (15)
has a single variable, then x2 = min{5, 2 = α2} = 2. Set l = 2, r2 = f = 2 and we go
to line 6 of Algorithm 4.1, that give γ2 = 2. We insert x2 = 2 in inequality system (15)
and we have



x3 ≤ −1
x3 ≤ 4
x3 ≤ 5
x3 ≤ 1
x1 ≤ 1 = α1

x2 ≤ 2 = α2.

(16)

Step 4: Because
⋃
l

rl = {1, 2} 6= [3], we set f = 3. Since inequalites 1,2,3 and 4 of (16)

have a single variable, then x3 = min{5, 4, 1,−1} = −1.

Step 5: Finally, we set r3 = 3, γ3 = −1 and because
⋃
l

rl = {1, 2, 3} = [3], then the

algorithm is finished and returns γ1 = 1, γ2 = 2, γ3 = −1.
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Appendix C. Implementation of Algorithm 3.3

In this section we consider step by step, how Algorithm 3.3 can obtain the canonical
tensor in Example 3.7.
Consider the tensor A ∈ AI and vector b ∈ bI given in Example 3.7 as follows:

A(:, :, 1) =

 2 3 4
1 6 5
4 3 6

 ,

A(:, :, 2) =

 3 2 4
2 1 4
5 2 1

 ,

A(:, :, 3) =

 6 3 5
3 6 6
2 4 2

 , b =

 10
9
11

 .

Step 1: We calculated x∗(A, b) by Algorithm 2.7, that gives x∗(A, b) = (1.5, 1.5, 1.5)T .
Step 2: We obtained aj′(b) for j′ ∈ [3] (by Line 4 of Algorithm 3.3). For example for
j′ = 1 we have the following:

a1(b) = max
k, i2,i3


aki2i3 − bk +

3∑
j=2, ij 6=1

x∗ij (A, b)

l

 =

max

{
a111 − b1

2
,
a211 − b2

2
,
a311 − b3

2
, a112 − b1 + x∗2(A, b), a212 − b2 + x∗2(A, b),

a312 − b3 + x∗2(A, b), a113 − b1 + x∗3(A, b), a213 − b2 + x∗3(A, b), a313 − b3 + x∗3(A, b),
a121 − b1 + x∗2(A, b), a221 − b2 + x∗2(A, b), a321 − b3 + x∗2(A, b), a131 − b1 + x∗3(A, b),

a231 − b2 + x∗3(A, b), a331 − b3 + x∗3(A, b)
}

= a221 − b2 + x∗2(A, b) = −1.5.

Similarly, we obtained a2(b) = −1.5 and a3(b) = −1.5.
Step 3: Finally, we determined all entries of A(b) by Lines 7-15 of Algorithm 3.3. For
a111(b), we have the following

2a1(b) + b1 = 7 ≥ a111 = 6,

then by Line 13 of Algorithm 3.3

a111(b) = a111 = 6.

Similarly, we determined the other entries of tensor A(b) (see, Example 3.7).
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