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AROUND CERTAIN CRITICAL CASES
IN STABILITY STUDIES IN HYDRAULIC ENGINEERING

Vladimir Rasvan

Abstract. It is considered the mathematical model of a benchmark hydroe-
lectric power plant containing a water reservoir (lake), two water conduits (the
tunnel and the turbine penstock), the surge tank and the hydraulic turbine; all
distributed (Darcy-Weisbach) and local hydraulic losses are neglected,the only
energy dissipator remains the throttling of the surge tank. Exponential stabi-
lity would require asymptotic stability of the difference operator associated
to the model. However in this case this stability is “fragile” i.e. it holds only
for a rational ratio of the two delays, with odd numerator and denominator
also. Otherwise this stability is critical (non-asymptotic and displaying an
oscillatory mode).

1. Introduction. Problem statement

This paper has two starting points and the outcome is twofold. The first statement
is explained below, the second one will be revealed towards the final part. Starting
with the papers of A. D. Myshkis and his co-workers e.g. [1] and also with the
papers of K. L. Cooke and his co-workers e.g. [3] the following methodology was
established to deal with qualitative theory for non-standard BVP (Boundary Value
Problems) for 1D hyperbolic PDEs (Partial Differential Equations). Integrating
along the characteristics, a system of FDE (Functional Differential Equations)
was associated to the BVP with initial conditions and the Cauchy problem (with
initial conditions) for the FDEs. Consequently, any result obtained for one of the
aforementioned mathematical objects is automatically projected back on the other
one. Along almost half-century (starting from 1973-74) the author of this paper
promoted this approach throughout his publications with reference to applications
arising from Physics and Engineering, the most comprehensive presentation of the
approach being given in [9], where the theorem of Cooke in [3] is proven completely.

Now we can turn to the qualitative problem of interest to us: (asymptotic) stabi-
lity of the steady states (equilibria) for the BVPs mentioned above. This problem
is reduced (equivalently) to the problem of the stability for the associated system
of FDEs with deviated argument. Worth mentioning that in most applications the
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FDEs turn to be of neutral type. However the N(eutral)FDEs display a peculiar
aspect of the stability problem. More precisely, if we consider even the simplest
scalar NFDE, it is known - see e.g. [7], Corollary 1.7, p. 30 - that if the roots of its
characteristic polynomial are located in C− and its difference operator is stable,
the stability is exponential. If the difference operator is unstable it is possible to
have unbounded solutions while if the difference operator is in a critical case, the
stability is at most non-exponential. Following the seminal papers of Hale and his
co-workers (see [7] for complete references), the assumption on (strong) stability of
the difference operator accompanied almost all development on NFDEs.

The present paper starts from the finding that, in spite of the aforementioned ba-
sic assumption on the difference operator, there exist important applications where
it is not fulfilled. Various applications in Mechanical Engineering are modeled by
NFDEs with the difference operator displaying critical stability [9]. Also Hydraulic
Engineering (water hammer quenching, surge tank stability) is a source of such
critically stable difference operators, but with even more interesting mathematical
aspects. For this reason our choice went towards applications arising from Hydraulic
Engineering.

2. Application description. The basic mathematical model

It is considered the standard hydroelectric plant composed of the water reservoir
(lake), two water conduits (the tunnel and the penstock), the surge tank and the
hydraulic turbine. The technological diagram can be seen in [10]. The mathematical
model, considering distributed parameters of the water conduits, are as follows

(2.1)
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The model contains rated state variables: the piezometric heads hi (i = 1, 2) are
rated to the lake head H0; the water flows qi are rated to Q̄ = αqFθmax

√
H0 - the

maximal available flow at the turbine wicket gates; here Fθmax is the maximal cross
section area of the wicket gates and αq - a flow coefficient; the rotating speed of the
turbine is rated to the synchronous speed Ωc and the available mechanical power
to a resulting nominal power. The various time constants Ti, Twi, Tpi, Ts, Ta are a
result of the state variables rating (scaling) and they define (2.1) as a system with
several time scales. The terms in λi define the so called Darcy-Weisbach hydraulic
losses which are distributed along the water conduits. The terms in Ri define local
hydraulic losses and the term in Rs defines the dynamic hydraulic losses due to
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the throttling of the surge tank. It has to be mentioned that the space coordinates
along the water conduits are also rated to the lengths of the conduits ξi = xi/Li.

This basic model is rather complete and allows obtaining other models via
various simplifying assumptions, which in most cases arise either from neglecting
small terms or from engineering inferences suggested by the practical experience.
In what follows we shall discuss the model adopted in [5], obtained from (2.1)
by taking into account the following assumptions: i) the space variations of the
dynamic heads (1/2)(Twi/Ti)q2

i are negligible in comparison to the variations of
the piezometric heads mainly during water hammer: according to [2], the variation
of the piezometric head can reach several dozens of meters, while the variation
of the dynamic head is at most 1 meter; this assertion is documented in [2] with
exploitation data from hundreds of hydraulic power plants of the former USSR; ii)
all distributed and local hydraulic losses are neglected, except the losses due to the
throttling of the surge tank. Under these assumptions (2.1) become

(2.2)

∂ξihi + Twi∂tqi = 0 , δ2
i Twi∂thi + ∂ξiqi = 0 ,

h1(0, t) ≡ 1 ; h1(1, t) = 1 + z(t) +Rs
dz
dt = h2(0, t) ,

Ts
dz
dt = q1(1, t)− q2(0, t) , q2(1, t) = fθ

√
h2(1, t) ,

Ta
dϕ
dt = q2(1, t)h2(1, t)− νg .

This model is considered under water hammer: the water hammer is an abnormal
regime generated by sudden load discharge at the hydraulic turbine level. Here,
following [5], we shall consider the total turbine shutdown by complete instantaneous
closing of the turbine wicket gates: fθ ≡ 0. Consequently the boundary condition
of the penstock at ξ2 = 1 becomes q2(1, t) ≡ 0 and the turbine equation is “cut”
(decoupled) from the rest of the model. The model is thus completely linear and
represented by a non-standard BVP. We call it non-standard since the boundary
conditions are coupled to an ODE and this ODE at its turn is controlled by the
boundary conditions. It thus appears some kind of internal feedback which can
either stabilize or destabilize the dynamic process of the water hammer.

3. The associated system of functional differential equations
for stability analysis

We shall start from the model resulting from (2.2) and the condition q2(1, t) ≡ 0

(3.1)

∂ξihi + Twi∂tqi = 0 , δ2
i Twi∂thi + ∂ξiqi = 0 ,

h1(0, t) ≡ 1 ; h1(1, t) = 1 + z(t) +Rs
dz
dt = h2(0, t) ,

Ts
dz
dt = q1(1, t)− q2(0, t) , q2(1, t) = 0 ,

and compute firstly its steady state by letting the time derivatives to 0

h̄i(ξi) ≡ const ; h̄1(0) = h̄1(1) = h̄2(0) = 1 + z̄ = 1 ,
q̄i(ξ1) ≡ const ; q̄1(1) = q̄2(0) = q̄2(1) = 0 ,
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thus obtaining h̄i = 1, z̄ = 0, q̄i = 0; introduce the deviations χi(ξi, t) := hi(ξi, t)−1;
the variables qi(ξi, t), z(t) obviously coincide with their deviations. The system in
deviations reads

(3.2)

∂ξiχi + Twi∂tqi = 0 , δ2
i Twi∂tχi + ∂ξiqi = 0 ,

χ1(0, t) ≡ 0 ; h1(1, t) = z(t) +Rs
dz
dt = χ2(0, t) ,

Ts
dz
dt = q1(1, t)− q2(0, t) , q2(1, t) = 0 .

To this system we associate the energy identities
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and the Riemann invariants (the forward and backward waves)
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−
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δi
(r+
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Rewrite (3.2) in the Riemann invariants as follows

(3.5)
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From now on we follow the methodology of [3, 9]. Consider the two characteristic
lines crossing some point (ξi, t) of the half plane {ξi, t|0 ≤ ξi ≤ 1, t > 0}

(3.6) τ±i (σ; ξi, t) = t± δiTwi(σ − ξi) , i = 1, 2 .

Since the Riemann invariants are constant along the characteristics (r+
i along τ+

i

and r−i along τ−i ), the following representation formulae are deduced

(3.7)
r+
i (ξi, t) = r+

i (1, t+ δiTwi(1− ξi)) ,
r−i (ξi, t) = r−i (0, t+ δiTwiξi) .

Let consider firstly those characteristics which can be extended on the entire
interval 0 ≤ σ ≤ 1. Defining y+

i (t) := r+
i (1, t), y−i (t) := r−i (0, t), we obtain

(3.8)
r+
i (0, t) = r+

i (1, t+ δiTwi) = y+
i (t+ δiTwi) ,

r−i (1, t) = r−i (0, t+ δiTwi) = y−i (t+ δiTwi) .

These values are substituted in (3.5); we introduce further w±i (t) := y±i (t+ δiTwi)
in order to obtain the more “conventional” way of writing equations with deviated
argument. Next, recall that stability studies are made for large t > 0; it is thus
sufficient to take t > max{δ1Tw1, δ2Tw2} and eliminate the variables w+

1 (t) and
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w−2 (t). After an additional transformation requiring inversion of a 2×2 non-singular
matrix, making also the following notations [5]

ρ1 := 1 + (δ2 − δ1)R′s
1 + (δ1 + δ2)R′s

, ρ2 := 1 + (δ1 − δ2)R′s
1 + (δ1 + δ2)R′s

,

R′s := Rs/Ts ; ϑ := 2δ2Tw2 , νϑ := 2δ1Tw1(ν = (δ1Tw1)/(δ2Tw2)) ,

the following system of coupled delay differential and difference equations is obtained

(3.9)

Ts
dz
dt = (ρ1 + ρ2)[−δ1 + δ2

2 z(t)− w−1 (t− νϑ) + w+
2 (t− ϑ)] ,

w−1 (t) = (ρ1 + ρ2)δ1

2 z(t) + ρ1w
−
1 (t− νϑ) + (1− ρ1)w+
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w+
2 (t) = (ρ1 + ρ2)δ2

2 z(t)− (1− ρ2)w−1 (t− νϑ)− ρ2w
+
2 (t− ϑ) .

The solutions of (3.9) can be constructed by steps provided initial conditions are
given. For details the reader is sent to [10], Section 4. The one-to-one correspondence
between the solutions of (3.9) and those of (3.5) is given by Theorem 4.1 of [10];
at its turn this correspondence strongly relies on (3.8) and on the representation
formulae (3.7) re-written using the functions w±i (t) as follows

(3.10)
r+
i (ξi, t) = y+

i (t+ δiTwi(1− ξi)) = w+
i (t− δiTwiξi) ,

r−i (ξi, t) = y−i (t+ δiTwiξi) = w−i (t+ δiTwi(ξi − 1)) .

Summarizing, the mathematical result reads as follows

Theorem 3.1. Consider the system of the Riemann invariants (3.5) with the
initial conditions {z(0), r±io(ξi)}, where

(3.11) r±io(ξi) = 1
2(δiχoi (ξi)± qoi (ξi)) , 0 ≤ ξi ≤ 1 .

If {z(t), r±i (ξi, t)} is a classical solution of (3.5), then {z(t), w±i (t)} is a piecewise
continuous solution of (3.9) with the initial conditions defined by {z(0), w±io(θ)},
where

(3.12) w+
io(θ) = r+

io(−θ/(δiTwi)) , w
−
io(θ) = r−io(1 + θ/(δiTwi)) ; −δiTwi ≤ θ ≤ 0 .

Conversely, let {z(t), w±i (t)} be a solution of (3.9) with the initial conditions
{z(0), w±io(θ)}. Then {z(t), r±i (ξi, t)}, where r±i (ξi, t) are given by (3.7), is a (pos-
sibly discontinuous) classical solution of (3.5) with the initial conditions r±io(ξi)
obtained by letting t = 0 in (3.7).

4. The Lyapunov functional and the stability analysis

We refer firstly to system (3.2) and to the energy identities (3.3). The energy
identities suggest the following Lyapunov functional

(4.1) V
(
z, φi(·), ψi(·)

)
= 1

2

{
Tsz

2 +
2∑
1
Twi

∫ 1

0
[φ2
i (ξi) + δ2

i ψ
2
i (ξi)] dξi

}
,



114 V. RASVAN

written as a quadratic functional on the state space R × L2(0, 1; R4). We write
down (4.1) along the solutions of (3.2), differentiate it with respect to t and take
into account the energy identities and the boundary conditions in (3.2)

(4.2) d
dtV

?(t) = d
dtV

(
z(t), qi(·, t), χi(·, t)

)
= −RsTs

(
dz
dt (t)

)2
≤ 0 .

Inequality (4.2) gives the Lyapunov stability of the zero solution of (3.2) in the
sense of the metrics induced by the Lyapunv functional itself
(4.3) V

(
z(t), qi(·, t), χi(·, t)

)
≤ V

(
z0, q

o
i (·), χo

i (·)
)
.

Inequality (4.2) also shows that asymptotic stability might be obtained via the
invariance principle of Barbashin-Krasovskii-LaSalle. For this we shall turn to
system (3.9). Using the representation formulae (3.10), also (3.4), the Lyapunov
functional of (4.2) becomes, after some simple manipulation and with a slight abuse
of notation

(4.4)
V
(
z(t), w−1 (t+ ·), w+

2 (t+ ·)
)

= 1
2Tsz

2(t) + 1
δ1

∫ o

−νϑ
w−1 (t+ λ)2dλ

+ 1
δ2

∫ o

−ϑ
w+

2 (t+ λ)2dλ ,

the derivative of V remaining unchanged. This derivative vanishes for dz/dt = 0,
that is on the set where
(4.5) −(δ1 + δ2)z(t)− 2w−1 (t− νϑ) + 2w+

2 (t− ϑ) = 0.
On this set the difference subsystem of (3.9) takes the form, after substituting z(t)
from (4.5))

(4.6)
w−1 (t) = 1

δ1 + δ2
[(δ2 − δ1)w−1 (t− νϑ) + 2δ1w

+
2 (t− ϑ)],

w+
2 (t) = 1

δ1 + δ2
[−2δ2w

−
1 (t− νϑ) + (δ2 − δ1)w+

2 (t− ϑ)].

The invariant set of (4.5) is composed of the only constant solution {0, 0} and z̄ = 0.
The only invariant set included in the set where the derivative of the Lyapunov func-
tional vanishes is the zero solution. The theorem of Barbashin-Krasovskii-LaSalle
for system (3.9) – Theorem 9.8.2 of [7] – would give asymptotic stability and,
therefore, asymptotic stability for (3.5) and, via (3.4), for system (3.2). However,
there is a certain aspect to be taken into account: in the case of NFDE (and system
(3.9) is neutral - see [7, Section 9, p.301]) the invariance principle is proven under
the assumption that the difference operator D is asymptotically stable. This is not
quite true for (3.9). If the difference subsystem of (3.9) is considered, its asymptotic
stability is equivalent to the location of the roots of the characteristic equation
(4.7) (1− ρ1e−λνϑ)(1 + ρ2e−λϑ) + (1− ρ1)(1− ρ2)e−λ(ν+1)ϑ = 0
in C−. Since the two delays are, generally speaking, rationally independent (ν is
a real number), (4.7) ought have its roots with <e(λ) ≤ −α < 0 for some α > 0.
Denoting µ := eλϑ, the condition above reduces to the location of the roots of
(4.8) (µν − ρ1)(µ+ ρ2) + (1− ρ1)(1− ρ2) = 0
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inside the unit disk D1 ⊂ C. As it was rigorously and completely proven in [11],
this condition is fulfilled only for ν rational with both numerator and denominator –
odd numbers. For ν rational with even numerator and odd denominator, µ = −1
is a simple root of (4.8). Moreover, since the spectral radius of the difference
operator equals 1, there is no irrational ν such that (4.8) should have its roots
inside D1 ⊂ C - see [7]. We call this kind of asymptotic stability fragile since it
holds for a countable set of rational ratios ν of the propagation delays.

Summarizing, the mathematical result is as follows

Theorem 4.1. Consider the system (3.2) with the associated Lyapunov functional
(4.1), together with systems (3.9), (3.10) and with the rewritten Lyapunov functional
(4.4). Systems (3.2) and (3.9), (3.10) are stable in the sense of Lyapunov with
respect to the metrics defined by their associated Lyapunov functionals. If the delay
ratio ν = (δ1Tw1)(δ2Tw2)−1 is rational with both numerator and denominator - odd
numbers, then this stability is also asymptotic.

5. An even more critical system

We mention here another system arising from hydraulics, describing a hydroe-
lectric plant supplied through two independent tunnels starting from the same
reservoir (lake), endowed with surge tank, under water hammer [4]. Under lumped
parameters i.e. described by ODE and under the same description as our previous
structure (all losses neglected except the surge tank throttling):

(5.1) Twi
dqi
dt + z +Rs

dz
dt = 0 (i = 1, 2) , Ts

dz
dt = q1 + q2 ,

having an invariant set defined by
(5.2) Tw1q1(t)− Tw2q2(t) ≡ Tw1q1(0)− Tw2q2(0) .
The steady state is uniquely determined on the invariant set only. In the case of the
distributed parameters (PDE description) nothing is known about the invariant
set while the steady state is not uniquely determined. Other considerations on this
model can be seen in [10].

6. Some conclusions

It was mentioned in the Introduction that the outcome of the paper is twofold.
The first outcome refers to the mathematical aspects. Here (and not only) there are
displayed applications for which the difference operator associated to the NFDE is
only critically stable. The assumption on the asymptotic, even the strong stability
(i.e. stability with respect to the delays) turned to be very fruitful (productive) in
the sense that it allowed an immediate extension to NFDE of the results of the
stability theory obtained for the R(etarded)FDE. The price to be paid was that
several papers dealing with the aforementioned critical cases were obscured and
forgotten. We stress that returning to their results might be useful (their list is
given in [10]. Another approach to be taken within the mathematical studies would
be the one suggested in [12], page 341. It is specified there that the assumption
on the asymptotic stability for the difference operator is necessary to obtain the
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compactness of the positive orbits whenever the solution is bounded.It is then
suggested to embed the resulting semi-dynamical system in a space wherein the
positive orbits are pre-compact. To illustrate this approach the reader is sent to an
application in Chapter V, Section 4, page 252: the application there is a BVP for
a hyperbolic PDE. With the one-to-one correspondence between the solutions of
the BVP for the hyperbolic PDE and those of the associated system of NFDE, the
problem becomes one of choosing the state space for the NFDE - other than C [6].
A good reference for the role of the pre-compactness is [8]. On the other hand, the
aforementioned models of hydraulics are strongly idealized by neglecting almost all
static energy dissipation. Re-introducing some of them means changing the model
and restarting the entire analysis. Too much idealization can turn harmful!.
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