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THEORETICAL ASPECTS OF TOTAL TIME ON TEST
TRANSFORM OF WEIGHTED VARIABLES
AND APPLICATIONS

Mojtaba Esfahani, Gholam Reza Mohtashami-Borzadaran
and Mohammad Amini

Although the total time on test (TTT ) transform is not a newly discovered concept, it has
many applications in various fields. On the other hand, weighted distributions are extensively
developed by the statisticians to tackle the insufficiency of the standard statistical distributions
in modeling the arising data from real-world problems in the contexts like medicine, ecology,
and reliability engineering. This paper develops the TTT transform for the weighted random
variables and investigates the behavior of the failure rate function of such variables based on
the TTT transform. In addition, the conditions for establishing the TTT transform ordering
for weight variables and its relationship with some stochastic orders have been investigated,
and the conditions for establishing the TTT transform order as well as the presentation of the
new better than used in total time on test transform (NBUT ) class of the weighted variables
have also been studied. Finally, by analyzing the real data sets, applications of the transform
introduced in the fit of a model is presented, and it is shown that weighted models have a
significant advantage over the base models.

Keywords: total time on test transform, generalized failure rate, generalized reversed fail-
ure rate, new better than used in total time on test transform, weight function

Classification: 62N05, 62E15, 62P99

1. INTRODUCTION

The total time on test (TTT ) transform has attracted the attention of researchers in sev-
eral fields of applications such as reliability engineering (Klefsjo, [25]; [26]; Bergman and
Klefsjo,[11]; Nair and Sankaran,[34]; Gamiz et al.[20]), economics (Pham and Turkkan,
[41]), analysis of censored data (Sun and Kececloglu,[48]), maintenance schedule (Kumar
and Westberg, [30]), model identification (Franco-Pereira and Shaked, [18]), stochastic
orders (Kochar et al. [29]; Shaked and Shantikumar,[45] , and so on. In the domain
of stochastic ordering, Kochar et al. [29] implemented the TTT transform order for
nonnegative random variables, which is closely related to the position location indepen-
dent riskier (LIR) and excess wealth (EW ) orders. As a result of this expansion, one
can derive some new intrinsic properties of the TTT order. They also developed an
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intriguing separation results on the relation between the TTT and EW orders. In the
context of reliability analysis, Nair et al. [35] investigated the properties of the TTT
transform order and its applications.

Furthermore, Nair and Sankaran [34] described some known characterizations of com-
mon aging notions based on the TTT function. Finally, in the research direction of model
identification on the basis of TTT function and the observed TTT (when the random
variable X is observed), Franco-Pereira and Shaked [18] derived two characterizations of
the decreasing percentile residual life of order α (DPRL(α)) aging notion. In addition,
for distributions with decreasing generalized failure rate, Bieniek [12] and Bieniek and
Szpak [13] derived optimal bounds for the mean of TTT. Spiroiu [47] also calculated the
average time spent on the test, mean of TTT, for a large sample. All of these show the
pivotal role of TTT transforms in data analysis. Refer to Barlow and Campo [4], Barlow
[3], Bergman and Klefsjo [10], Klefsjo [27] and Klefsjo and Westberg[28] for further study
on the application of diagrams. Especially, TTT plots were used by Rao and Prasad
[43] to estimate maintenance intervals for failure data with increasing failure rate. The
TTT plot is a suitable criterion for analyzing nonnegative data. Later, Lai and Xie [31]
provided additional results for implementations of the TTT plots. Recently, Gamiz et
al. [20] also used the TTT plot as a graphical tool for aging trends recognition.

Weighted distributions have been widely developed by statisticians and data analysts
to provide efficient statistical models for the arising data from various domains, including
medicine, industry, ecology, reliability and many other fields. In fact, they are milestones
for efficient modeling and prediction of data when the standard distributions are not
adequate. Sometimes there is no suitable random sampling frame to observe events and
apply classical sampling. In practice, sometimes it is not possible to record and view
all the data of a random sample of the investigated population. It is even possible to
select an observation with a certain probability that depends on the characteristics of
the sample, but the selected sample is not a random sample of the population under
investigation. Therefore, the sample collected in this way is a weighted sample of the
community. For example, in situations where there is unequal probability sampling,
such as actuarial sciences, ecology, biomedicine biostatistics, and survival data analysis,
weighted distributions are appropriate. Up to now, a large number of investigations on
developing weight distributions have been conducted. In particular, over the last 25
years, the concept of weighted distributions has been used to collect appropriate models
for the observed data. According to the literature, Fisher [19] was the first to present
the concept of weighted distributions. Then, Cox [14] introduced the concept of length-
biased sampling, and Rao[42] developed a unifying approach that can be applied to a
variety of sampling situations and visualized using weighted distributions. Recently,
Patil [39] fully reviewed the weight distributions and investigated their features, as well
as provided examples of applications where these models can be applied. Saghir et al.
[44] presented the characterizations of these distributions based on a simple relationship
between two truncated moments. Nguyen and Nguyen[36]) introduced a linear time
partitioning algorithm for frequency weighted impurity functions.

As far as we know, obtaining the TTT transform for the weighted variables has not
yet been investigated in the literature. Hence, given the importance of the weighted
random variables in data modeling and the widespread application of the TTT trans-
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form, we are motivated to derive the TTT transform for the weighted variables as an
efficient tool for reliability analysis. The obtained results can be extended easily to the
other domains of applied sciences. We further investigated the properties of the TTT
transform corresponding to the weighted variables as well as provided various examples
for illustration purposes. In addition, the reversed failure rate (RFR) and generalized
failure rate (GFR) metrics are also assessed. Subsequently, the conditions for establish-
ing a TTT stochastic order for the weighted random variables are checked, and the new
better than used in total time on test transform (NBUT ) class for such variables are
obtained.

In reliability theory and lifetime testing, incorrect choice of weighted or original dis-
tribution in lifetime data analysis may lead to different results for different reliability
measures, such as, for example, failure rate function and mean residual lifetime func-
tion. For size-biased or length-biased distributions in which the weighted function is
monotonically increasing, a reasonably good approximation of the reliability function
and the mean residual life function will usually be obtained. Therefore, it is important
to examine the invariance of weighted distributions in relation to the invariance of the
main distributions.

In this paper, we continue this study by deriving some new results on the preserva-
tion of some properties of aging and stochastic orders by weighted distributions. Also,
considering the important application of TTT transform in identifying the behavior of
the failure rate function, the performance of this transform is very important to the
failure rate function of weighted variables. Also, comparing the failure rate function of
the weighted and the original variables according to the behavior of the TTT plot can
lead to interesting results.

The rest of the article is organized as follows: In section 2, some essential preliminaries
are reviewed. We provide the extention of weighted TTT transform and main results
of this study in section 3. Section 4 deals with the application of TTT transform for
weighted function with some illustrative examples. Finally, concluding remarks are given
in the last section.

2. PRELIMINARY

Let X and Y be two random variables with the corresponding distribution functions
F and G and probability density functions f and g, respectively. In addition, let
F̄ = 1−F

(
Ḡ = 1−G

)
be the survival (tail) function, let F−1(u) = inf{x : F (x) ≥ u},

u ∈ (0, 1)
(
G−1(v) = inf{y : G(y) ≥ v}, v ∈ (0, 1)

)
, be the quantile function, and let

F−1(0)(G−1(0)) and F−1(1)(G−1(1)) be the lower bound and upper bound of the sup-
port of the random variable X(Y ), say SF (SG).

Definition 2.1. For the nonnegative continuous random variable X, the TTT trans-
form is defined as

TX(u) =

∫ F−1(u)

0

F̄ (x) dx, for all u ∈ (0, 1).
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Note that T (1) = E(X), where the expectation E(X) can be finite or infinite. Given
the fact that 0 < µ = E(X) < ∞, the scaled TTT transform ϕ(u) of X is shown as
follows:

ϕF (u) =
TX(u)

µ
, for all u ∈ (0, 1).

Barlow and Campo [4] were the first to introduce the scaled TTT transform, which
is also a free scale. The scaled TTT transform has proved to be an extremely useful
tool in a variety of reliability applications, including model recognition, characterizing
different aging properties and analyzing various maintenance and burn-in problems.
According to Theorem 6 of Bartoszewicz and Skolimowska [6], it can be concluded
that if X is the increasing failure rate (the decreasing failure rate) IFR(DFR), then
ϕX(pq) ≤ (≥)ϕX(p)ϕX(q), for all p, q ∈ (0, 1].

Definition 2.2. Let X and Y be two random variables with distribution functions F
and G that have finite means. Then X is said to be smaller than Y in the TTT transform
order, denoted by X ≤ttt Y , if

TX(u) ≤ TY (u), for all u ∈ (0, 1).

Let us proceed with the definition of the EW order. The EW order is defined in
terms of the EW transform. Given the random variable X with distribution function
F , the EW transform associated to X, denoted here by EWX , is defined by

EWX(u) =

∫ ∞
F−1(u)

F̄ (x) dx, for all u ∈ (0, 1).

Accordingly, given the random variables X and Y with finite means, X is said to be
smaller than Y in the EW order, denoted by X ≤ew Y , if

EWX(u) ≤ EWY (u), u ∈ (0, 1).

When X and Y have an equal finite mean, that is, E(X) = E(Y ) <∞, it follows from
the definitions that

X ≤ttt Y ⇐⇒ X ≥ew Y.

Jewitt [24] considered an order, called the LIR order, represented by ≤lir . It is illus-
trated in Fagiuoli et al. [16] that, X ≤lir Y if and only if −X ≤ew −Y . In other words,
any result that holds for the order ≤ew can be rewritten with the assistance of order ≤lir.

Jewitt [24] proved that if X and Y have the distribution functions F and G, then

X ≤lir Y ⇐⇒ LIRX(p) ≤ LIRY (p), p ∈ (0, 1),

where LIRX(p) =
∫ F−1(p)

−∞ F (x) dx and LIRY (p) =
∫ G−1(p)

−∞ G(y) dy, are the LIR trans-
formations of X and Y , respectively. In what follows, we will provide a useful proposition
for theIFR and DFR random variables.
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A brief description of the weight function, the motivation for its creation, and its
characteristics, as well as some required definitions, are given below. Let X be a dis-
crete random variable with probability mass function p and support SX = {x1, x2, . . .}.
Consider an observation recording system in nature where each value in the sample space
SX is recorded as a sample observation with a chance that depends on the magnitude of
that value. If R is the occurrence of the observation record, then the sample obtained
in this way is not a random sample of p but a random sample of the conditional proba-
bility mass function pR, which is related to the conditional random variable (X|R). As
a result, using the Bayes formula, we have

pR = P (X = x|R)

=
P (R|X = x)P (X = x)

P (R)

=
w(x)p(x)

E[w(X)]
, x ∈ SX ,

where w(x) = P (R|X = x) is a value in [0, 1], which is actually the probability of
recording an observation with the value of x in the sample.

So in the general case if w : R −→ R+ be a function for which 0 ≤ E[w(X)] ≤ ∞.
Then

Fw(x) =
1

E[w(X)]

∫ x

−∞
w(u) dF (u) =

1

E[w(X)]

∫ F (x)

−∞
wF−1(z) dz,

is a distribution function, called the weighted distribution associated with baseline dis-

tribution F . If the density f of F exists, then fw(x) = w(x)f(x)
E[w(x)] is the density of

Fw(x). If F (0) = 0 and w(x) = xk, where k is a positive integer, then we call
Fw(x) the length-biased (or size-biased) distribution of order k and denote it by Fwk(x)
and simply by Fw1

(x) if k = 1. If E(X) < ∞, then Fw1
(x) = 1

E(X)

∫ x
0
udF (u) and

fw1
(x) = xf(x)

E(X) , x > 0. It is obvious that the function F−1(u)
E(X) is a probability density

function on (0, 1).

Definition 2.3. Let F be a lifetime distribution.

• F is said to be IFR (or DFR) if r(x) is increasing (or decreasing) on SF being

an interval, where r(x) = f(x)
F̄ (x)

is the hazard rate function of F .

• F is said to be increasing reversed failure rate (IRFR) if ř(x) is increasing, and F
is said to be decreasing reversed failure rate (DRFR) if ř(x) is decreasing, where

ř(x) = f(x)
F (x) is the reversed hazard rate function of F .

• F is said to be increasing generalized failure rate (IGFR) if h(x) is increasing, and
F is said to be decreasing generalized hazard rate (DGFR) if h(x) is decreasing,
where h(x) = xr(x) is the generalized hazard rate function of F .

• F is said to be increasing generalized reversed failure rate (IGRFR) if ȟ(x) is in-
creasing, and F is said to be decreasing generalized reversed hazard rate (DGRFR)
if ȟ(x) is decreasing, where ȟ(x) = xř(x) is the generalized hazard rate function
of F .
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Throughout this study, we have used notations similar to Shaked and Shanthiku-
mar [45]. On the other hand, stochastic orders are relationships between probability
distributions.

Definition 2.4. Let X and Y be two random variables with distribution functions F
and G.

• X is stochastically smaller than Y (X ≤st Y ) if F̄ (x) ≤ Ḡ(x) for all x values.

• X is smaller than Y in the likelihood ratio order (X ≤lr Y ) if g(x)
f(x) be increasing.

• X is smaller than Y in the hazard rate order (X ≤hr Y ) if Ḡ(x)
F̄ (x)

is increasing or

rF (x) ≥ rG(x) for all x values if F and G are absolutely continuous.

• X is smaller than Y in the reversed hazard rate order (X ≤rh Y ) if G(x)
F (x) is

increasing, or řF (x) ≤ řG(x) for all x values if F and G are absolutely continuous.

• X is smaller than Y in the dispersive order (X ≤disp Y ) if F−1(b) − F−1(a) ≤
G−1(b)−G−1(a) whenever 0 < a ≤ b < 1.

• X is smaller than Y in the star order (X ≤∗ Y ) if G−1(F (x)) is star-shaped in x

(that is, if G−1(F (x))
x increases in x ≥ 0).

• X is smaller than Y in the Lorenz order (X ≤Lorenz Y ) if and only if LX(p) ≥
LY (p), in which LX(p) =

∫ p
0
F−1(u) du∫ 1

0
F−1(u) du

, for all p ∈ [0, 1].

It is also well known that

• X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤st Y,

• X ≤lr Y =⇒ X ≤rh Y =⇒ X ≤st Y,

• X ≤st Y =⇒ X ≤ttt Y.

The work of Shaked and Shanthikumar [45] is a complete reference for studying the
conditions for establishing the opposite of the above relations.

3. MAIN RESULTS

The concept of TTT transform is well known for its applications in different fields such
as reliability analysis, econometrics, stochastic modeling, tail orderings, and ordering
distributions. Given the importance of the weight distributions, the TTT transform for
weight variables is interesting. The behavior of the failure rate function and the NBUT
class for the TTT transform of weighted variables will also be examined.
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3.1. TTT transform of weighted variables

Let Y = w(X) be a random variable, where w(·) is a derivative weight function with
probability density function fw(x).

Proposition 3.1. For the nonnegative random variable Y , the TTT transform and
scaled TTT transform are

TY (p) =

∫ F−1(p)

0

F̄ (s)w
′
(s) ds, (1)

ϕY (p) =
TY (p)

E(w(X))
, for all p ∈ (0, 1)

respectively. To obtain equation (1) is sufficient to write the TTT transform for the
weighted variable Y , therefore

TY (p) =

∫ H−1
Y (p)

0

H̄(y) dy =

∫ w(F−1(p))

0

F̄ (w−1(y)) dy,

where H̄(y) and H−1
Y (p) are survival and quantile functions of Y respectively. Now by

changing the variable w−1(y) = x the desired result is obtained.
If w(x) = K(F (x)), then w

′
(x) = f(x)K ′(F (x)), and thus

TY (p) =

∫ F−1(p)

0

f(s)F̄ (s)K
′
(F (s)) ds =

∫ p

0

(1− z)K
′
(z) dz. (2)

When the weight function is a function of the distribution function, Equation (2) is more
suitable for obtaining the TTT transform of weighed variables.

Proposition 3.2. Let X be a nonnegative random variable with distribution function F
and let Y = w(X) be a weighted random variable. Then TY (p) is convex (concave) if and

only if w
′
(x)

r(x) be increasing (decreasing). Also, for X, a nonnegative random variable with

distribution function F and Y = w(X), a weighted random variable, FY ∈ IFR(DFR)
if

T
′

Y (p) =
w
′
(F−1(p))(1− p)
f(F−1(p))

↘ (↗)in p, for all p ∈ (0, 1).

Remark 3.3. Let X be a nonnegative random variable with a distribution function
F and let Y = w(X) be a weighted random variable. Then EW transform and LIR
transform of Y are

• EWY (p) =
∫∞
F−1(p)

F̄ (x)w
′
(x) dx, for all p ∈ (0, 1),

• LIRY (p) =
∫ F−1(p)

−∞ F (x)w
′
(x) dx, for all p ∈ (0, 1),

respectively, and for w(x) = K(F (x)), we have

• EWY (p) =
∫ 1

p
(1− z)K ′(z) dz, for all p ∈ (0, 1),
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• LIRY (p) =
∫ p

0
zK

′
(z) dz, for all p ∈ (0, 1).

Corollary 3.4. Let X be a nonnegative random variable with distribution function F
and let Y = w(X) be a weighted random variable. With a simple calculation, we can
show that

TY (p) + EWY (p) = E(w(X))− w(0),

and in the special case for w(X) = X, we have TX(p) + EWX(p) = E(X).

Proposition 3.5. Let X and Y be two nonnegative random variables with distribution
functions F and G, respectively, and let w(x) be a weighted random variable. Then,

a) X <ttt(ew,lir) Xw if and only if w(x) ≥ x+ c where in c is constant.

b) If X ≤st Y , then Xw ≤ttt Yw.

c) For two weight functions w1 and w2, if X ≤st Y and F̄ (x)
Ḡ(x)

≤ w
′
2(x)

w
′
1(x)

, then Xw1
≤ttt

Yw2 .

P r o o f . To prove, it is enough to use the definition of stochastic orders. Here, we prove
the problem for the TTT transform order. For weight function w(·), we have

X <ttt Xw ⇐⇒ TX(p) ≤ TXw(p)⇐⇒
∫ F−1(p)

0

F̄ (s) ds ≤
∫ F−1(p)

0

F̄ (s)w
′
(s) ds,

⇐⇒ F̄ (s) ≤ F̄ (s)w
′
(s)⇐⇒ w

′
(s) ≥ 1⇐⇒ w(s) ≥ s+ c.

Substituting x with s results in the desired result. Cases b and c are clear. �

Corollary 3.6. Let w1 and w2 be two derivative weight functions. In this case, it holds
that

w
′

1(x) ≤ w
′

2(x)⇐⇒ Xw1
≤ttt(ew,lir) Xw2

.

Let us consider the the weight function wc(x) = xc for some fixed c ∈ (0, 1]. In this
case, the distribution function Fwc is usually called “size-biased”(see Patil and Ord [40]).
If c > (<)1 and F ∈ IGFR(DGFR), then Fw ∈ IGFR(DGFR) and as a result Tw(p)
is concave (convex). Transforms regarding wc(x) are as follows:

• Twc(p) = (1− p)(F−1(p))c + E[I{x ≤ F−1(p)}xc],

• EWwc(p) = E[I{x ≥ F−1(p)}xc]− (1− p)(F−1(p))c,

• LIRwc(p) = p(F−1(p))c − E[I{x ≤ F−1(p)}xc].
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According to Theorem 2.2 in Franco-Pereira and Shaked [18], this transform in weight
mode is also related to DPRL(α) as follows:

Fw ∈ DPRL(α)⇐⇒ (1− α)q(α+ (1− α)u)

q(u)
≤ w

′
(Q(u))

w′(Q(α+ (1− α)u))
,

where q(u) = d
duQ(u) and t(u) = d

duTw(u). It is useful to see Feranco-Pereira et al. [17]
and Haines and Singpurwalla [21].

Three typical examples of such weighted function are y1 = F θ(x), y2 = 1 − F̄ θ(x),
and y3 = Fα(x)F̄ β(x) that in the order named, respectively, the proportional reversed
hazard rate family of distributions, proportional hazard rate family of distributions, and
Jones model, where α, β, and θ are positive real parameters. In the following example,
we present the introduced transforms for these three weighted functions.

Example 3.7. Let X be a nonnegative random variable with distribution function F
and let y1, y2, y3 be weighted random variables with TTT transform of the form (2).
Then

• TY1(p) = pθ( 1+θ−θp
1+θ ), TY2

(p) = θ
1+θ (1− (1− p)θ+1),

TY3
(p) = αΓ(α)Γ(β+2)

Γ(α+β+2) Beta(p, α, β + 2)− β Γ(α+1)Γ(β+1)
Γ(α+β+2) Beta(p, α+ 1, β + 1),

• EWY1(p) = 1
θ+1 − p

θ(1− θ
θ+1p), EWY2(p) = θ

θ+1 (1− p)θ+1,

EWY3
(p) = α

Γ(α)Γ(β + 2)

Γ(α+ β + 2)
(1−Beta(p, α, β + 2))

−βΓ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
(1−Beta(p, α+ 1, β + 1)),

• LIRY1(p) = θ
θ+1p

θ+1, LIRY2(p) = 1
θ+1 (1− (1− p)θ+1)− p(1− p)θ,

LIRY3
(p) = α

Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
Beta(p, α+ 1, β + 1)

−βΓ(α+ 2)Γ(β)

Γ(α+ β + 2)
Beta(p, α+ 2, β).

Note that Beta(p, α, β) is Beta distribution function with parameters α and β in p.

For some weight functions, the weighted TTT transform has an explicit form, which
is presented in Table 1. Also, the EW transformation and LIR transformation for the
weights in Table 1 are shown in Table 2.

In addition, the behavior of TTT transform can be investigated by TTT plot. Figures
1 to 4 show the TTT plots for some of the weight functions in Table 1. It can be easily
concluded that the TTT plot of w3 and w7 is first convex and then concave, which means
that the distributions of w3 and w7 have a bathtub-shaped failure rate. Also, the TTT
plot of w4 and w8 is concave, which means distributions of w4 and w8 have increasing
failure rates, and for w4, as the parameter increases, the failure rate decreases. For w8,
as the parameter increases, the failure rate also increases.
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Weight function TTT Transform
w1(x) Constant 0
w2(x) x TX(p)
w3(x) F (x) + F̄ (x) ln F̄ (x) 1

2 (1− p)2 ln(1− p)− 1
4 (1− p)2 + 1

4

w4(x) 1− (1− α)F̄ (x) (1− α)p(1− p
2 )

w5(x) 1− (1− α)F̄ β(x) β(1−α)
β+1 (1− (1− p)β+1)

w6(x) αFα−1(x) Beta(p, α− 1, 2)
w7(x) a

(1−āF̄ (x))2
a

ā(1−ā(1−p))2 − 2a
ā(1−ā(1−p)) −

1
aā + 2

ā

w8(x) 1− F̄ a(x) a
a+1 (1− (1− p)a+1)

w9(x) F (x)(1 + aF̄ (x)) 1
2 −

α
3 −

(1−p)2

2 + α(1−p)3

3 + αp2

2 −
αp3

3

w10(x) aF (x)
1−(1−a)F (x) a2 − a2

1−(1−a)p + a ln(1− (1− a)p)

Tab. 1. TTT transforms regarding some well-known weight

functions.

w(x) EW transform LIR transform
w1(x) 0 0
w2(x) EWX(p) LIRX(p)

w3(x) 1
4 (1− p)2 − 1

2 (1− p)2 ln(1− p) 1
2 [(1− p)2 ln(1− p)− (1− p2)− (1−p)2

2 + 3
2 ]

w4(x) (1−α)
2 (1− p)2 (1−α)

2 p2

w5(x) β(1−α)
β+1 ((1− p)β+1) 1−α

β+1B(p, 2, β)

w6(x) 1−Beta(p, α− 1, 2) (α− 1)pα

w7(x) 2a
ā [ 1

1−ā(1−p) −
1

2(1−ā(1−p))2 + 1
2 ] 2a

ā(1−ā(1−p)) −
a2

ā(1−ā(1−p))2 + 1
aā −

2
ā −

1
a

w8(x) a
a+1 (1− p)a+1 1

α+1B(p, 2, α)

w9(x) (1+α)
2 (1− p)2 + 2α(p

2

2 −
p3

3 ) (1+α)2

2 p− 2αp3

3

w10(x) α
(1−α)2 [ln(1− (1− α)p) + α

1−(1−α)p − lnα− 1] α
(1−α)2 [ln(1− (1− α)p) + 1

1−(1−α)p − 1]

Tab. 2. EW and LIR transformations for some weights.

3.2. Weighted distributions with monotone failure rates properties

In this section, we examine the relationship between the weighted TTT transform and
failure rate concepts. For this purpose, considering the different modes, failure rate,
RFR, GFR, and reversed generalized failure rates are rewritten in terms of the TTT
transform of the weighted random variable, and these relationships are explained by pro-
viding examples. Also, using a special weight function, a characterization of distribution
F based on the GFR function is presented. Denote Y = w(X), and let ϕY be the scaled
TTT transform of Y . Considering the relationship between TTT transform and Lorenz
curve as well as Theorem 1 of Bartoszewicz and Skolimowska [6], we have the follow-
ing statement for weighted variables. Accordingly, it can be easily shown that Fw(x) =

ϕw(F (x))−w(x)F̄ (x)
E(w(X)) , if w is increasing and that Fw(x) = 1−ϕw(F̄ (x))+w(F−1(F̄ (x)))F (x)

E(w(X)) ,

if w is decreasing. Table 3 shows the relationship between the types of failure rate func-
tions and TTT transform of weighted variables.
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Fig. 2. TTT plot of w4 with different values of parameter a.

In that follows, the relationship between the weighted TTT transform and the GFR
expression will be discussed.

Proposition 3.8. Let F be a life distribution and let w(·) be a weight function. Given
w(x) = lnx, for the weighted distribution Fw, we have

(a) Fw is IGFR (DGFR) if and only if Tw(p) is concave (convex) for 0 < p < 1.

(b) Fw is IGFR and, as a result, ϕw(p) is concave, if w(x)hF (x) or w(x)ȟF (x) is
increasing.

P r o o f . (a) By taking the first derivation of Tw(p) with respect to p, it can be derived

that T
′

w(p) = (1−p)w
′
(F−1(p))

f(F−1(p) and T
′

w(p) = w
′
(x)

r(x) when p = F (x). Now, considering
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Fig. 3. TTT plot of w7 with different values of parameter a.
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Fig. 4. TTT plot of w9 with different values of parameter a.

w(x) = lnx with w
′
(x) = 1

x , it is easy to see that

T
′

w(p) =
1

xr(x)
=

1

h(x)
.

To verify the implications in the table for the IGFR(DGFR) case, first, let us assume
that Fw is absolutely continuous with the GFR function h(·). If Fw is IGFR(DGFR),
then T

′

w(p)|p=F (x) = 1
h(x) is decreasing (increasing) in x, which implies that Tw is con-

cave (convex). Conversely, if Tw is concave (convex), then the GFR function would be
increasing (decreasing).

(b) Considering (a) and equations (1) and (4) along with Theorem 3.13 of Behdani
et al. [8], the proof would be completed. �
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FR function w is increasing w is decreasing

rFw(x) w(x)rF (x)
E(w(X)) ×

F̄ (x)

1−ϕw(F (x))+
w(x)F̄
E(w(X))

w(x)rF (x)
E(w(X)) ×

F̄ (x)

ϕw(F̄ (x))−w(F−1(F̄ (x)))F (x)
E(w(X))

řFw(x) w(x)řF (x)
E(w(X)) ×

F (x)

ϕw(F (x))− w(x)F̄
E(w(X))

w(x)řF (x)
E(w(X)) ×

F (x)

1−ϕw(F̄ (x))+
F (x)w(F−1(F̄ (x))

E(w(X))

hFw(x) h(x)× w(x)
E(w(X)) ×

F̄ (x)

1−ϕw(F (x))+
F̄ (x)w(x)
E(w(X))

h(x)× w(x)
E(w(X)) ×

F̄ (x)

ϕw(F̄ (x))−F (x)w(F−1(F̄ (x))
E(w(X))

ȟFw(x) ȟ(x)× w(x)
E(w(X)) ×

F (x)

ϕw(F (x))− F̄ (x)w(x)
E(w(X))

ȟ(x)× w(x)
E(w(X)) ×

F (x)

1−ϕw(F̄ (x))+
F (x)w(F−1(F̄ (x))

E(w(X))

Tab. 3. Failure rate functions and TTT transform of weighted

variables.

Also, the weighted TTT transform can be written according to the GFR and the
generalized reversed failure rate. Let F be a life distribution and let w(·) be a weight
function. Then

Tw(p) = (1− p)w(F−1(p)) +

∫ F−1(p)

0

( h(x)ȟ(x)

h(x) + ȟ(x)

)w(x)

x
dx. (3)

In the equation (3), the expression in brackets can be supplanted with h(x)F̄ (x) and
ȟ(x)F (x). Next, equation (3) is obtained for some specific weight functions.

Example 3.9. Let F be a lifetime distribution and let w(·) be a weight function.

(a) For the length (size)-biased weight function, we have

Tw(p) = (1− p)F−1(p) +

∫ F−1(p)

0

( h(x)ȟ(x)

h(x) + ȟ(x)

)
dx.

(b) For the length (size)-biased of order α, α = 1, 2, . . . , the weight function is

Tw(p) = (1− p)(F−1(p))α +

∫ F−1(p)

0

( h(x)ȟ(x)

h(x) + ȟ(x)

)
xα−1 dx.

(c) For an inverse failure rate weight function with α = −1, we have

Tw(p) =
1− p
p

+

∫ F−1(p)

0

ȟ(x) dx.

(d) For a failure rate weight function with β = −1, it is

Tw(p) = 1 +

∫ F−1(p)

0

r(x) dx.
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reliability measures length-biased equilibrium

Fw(x) ϕX(F (x))− xF̄ (x)
µ ϕX(F (x))

rFw(x)
F̄ (x)+

xf(x)−x
µ

f(x)(1−ϕX(F (x))+
xF̄ (x))
µ

F̄ (x)

E(X)(1−ϕX(F (x))+
xF̄ (x)
µ )−xF̄ (x)

řFw(x)
F̄ (x)+

xf(x)−x
µ

f(x)(ϕX(F (x))− xF̄ (x))
µ

F̄ (x)

xF̄ (x)+E(X)(ϕX(F (x))− xF̄ (x)
µ )

mFw(x)
∫∞
x

1−ϕX(F (t))+
tF̄ (t)
µ dt

1−ϕX(F (x))+
xF̄ (x)
µ

∫∞
x

1−ϕX(F (t))+
tF̄ (t)
µ dt

1−ϕX(F (x))+
xF̄ (x)
µ

Tab. 4. Reliability measures and TTT transform of weighted

variables.

It is worth noting that the length-biased distribution and equilibrium distribution (as
a weighted distribution) resemble the Lorenz curve quite closely. Now considering the
relationship between the TTT transform and Lorenz curve as well as Propositions 5.9
and 5.14 of Behdani et al. [7], provides helpful information regarding these relationships.
For the length-biased distribution, we have the following expressions shown in Table 4

for some reliability measures and their relationships with the TTT transform, where

mF (x) =
∫∞
x
F̄ (t) dt

F̄ (x)
, x ≥ 0, is the mean residual life time corresponding to F .

3.3. Stochastic ordering of weighted distributions

In this section, we will conduct a comparison between the weighted and original distri-
butions in terms of stochastic ordering. We also look at the topic of stochastic ordering
preservation under weighting. Clearly, the definition leads to the following result. Let
X and Y be two random variables, let F and G be their respective distribution func-
tions, and let w(·) be a monotone left continuous weight function. According to the
results of section 2.4 in Bartoszewicz and Skolimowska[6] and the relations between
stochastic orders, it is simple to conclude that if w is increasing (decreasing), then
X ≤ttt Xw(Xw ≤ttt X). Also, if X ≤hr(rh) Y , then Xw ≤ttt Yw for all w increasing (de-

creasing). In addition, if X ≤hr(rh) Y and rG(x)
rF (x)

(
řG(x)
řF (x)

)
is increasing, or F is the DFR

and G is the IFR (F is the DRFR and G is the IRFR), then Xw ≤ttt Yw. Moreover,
according to Theorem 3 of Bartoszewicz [5], if Xw ≤disp Yw, then Xw ≤ttt Yw.

In the following, the storage conditions of the TTT transform order are expressed by
some stochastic orders.

Remark 3.10. Let X ≤st Y , let w(X) ≤Lorenz w(Y ), and let w be monotone left con-
tinuous. If w is increasing (decreasing), then Xw ≤ttt Yw(Yw ≤ttt Xw). Also if X ≤st Y ,
X ≤∗ Y , and w(x) = xp, p 6= 0, then Xw ≤ttt Yw(Yw ≤ttt Xw) for p > (<)0.

Remark 3.11. Let F and G be absolutely continuous distribution functions, let F (0) =
G(0) = 0, let F be the DFR, let G be the IFR, and let X ≤disp Y . Then the following
properties hold:
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(a) If w is decreasing and convex, then Xw ≤ttt Yw.

(b) If w is increasing left continuous and w(x)rF (x) is decreasing, then Xw ≤ttt Yw.

Remark 3.12. (a) Let X ≤disp, let Y ≤st X, let F be DRFR, and let G be IRFR.
If w is increasing and w(x)řG(x) is increasing, then Xw ≤ttt Yw.

(b) Let X ≤disp, let Y ≤st X, let F be DFR, and let G be IRFR. If w is decreasing
convex, then Yw ≤ttt Xw.

Let X and Y be two random variables, let F and G be their distribution functions,
and let wi, i = 1, 2 be two monotone left continuous functions. Misra et al. [33], Izad-
khah et al. [22], Izadkhah et al. [23], and Behdani et al. [7] obtained the criteria for
preserving some stochastic orders under various assumptions. All of these findings lead
to the conclusion that the TTT order has been formed as Xw1 ≤ttt Yw2 .

Marshall and Olkin [32] suggested a way for increasing the flexibility of a family
of distributions by introducing a parameter. They established the family of survival
functions

g = {Ḡα : Ḡα(x) =
αF̄ (x)

1− ᾱF̄ (x)
=

αF̄ (x)

F (x) + αF̄ (x)
;x ∈ R,α > 0, ᾱ = 1− α},

where F̄ is a survival function. According to Theorem 3 and Corollaries 1 and 2 of
Benduch-Fraszczak [9], for the weight function w(·) and 0 < α < β < ∞, it is easily
obtained Gwα ≤ttt Gwβ . Also Gwα ≤ttt Fw(Fw ≤ttt Gwα ), 0 < α < 1(α ≥ 1).

Esfahani et al. [15] showed that if X is a random variable with a distribution function
F and

w(x) = ae−aF̄ (x) + e−a, a > 0, (4)

is an increasing weight function, then Xw is a weighted variable with distribution func-
tion of the form

Fw(x) = e−a[F̄ (x)] − e−a[F̄ (x)].

For this weight, we have

• Tw(p) = (a(1− p) + 1)e−a(1−p) − (a+ 1)e−a,

• EWw(p) = 1− (a(1− p) + 1)e−a(1−p),

• LIRw(p) = ape−a(1−p) − e−a(1−p) + e−a,

and E[w(X)] = Tw(p) + Ww(p) + w(0). Figure 5 shows the TTT plot of Tw(p) for
different values of a.

It can be easily concluded that

(a) Tw(p) is increasing for p ∈ (0, 1),

(b) Tw(p) is convex (concave) for p ≤ (≥)a−1
a .
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From (b), it can be derived that Fw ∈ DFR(IFR) if and only if p ≤ (≥)a−1
a .

This can be clearly seen in Figure 5. Also Figure 6 shows the TTT plot of Tw(p) for the
breaking stresses of carbon fibers data set (Padgett and Spurrier [38]) and their weighted
values for the weight function w(x) = ae−aF̄ (x) + e−a, a > 0. Esfahani et al.[15] derived
another suitable and well-fitted density using the random conditional presenting of a
lifetime distribution with using the Weibull distribution as a baseline density, and they
showed the optimal value for a = 8.1. As can be seen, the weight function under study
changes the shape of TTT plot, and by examining the graph, it can be concluded that
the original data has a distribution with an increasing failure rate, but the weighted
data have a distribution with a decreasing failure rate.
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Fig. 5. TTT plot of Tw(p) for different values of a.
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3.4. Weighted random variables in NBUT class

In the reliability theory, the residual life and inactivity time variables are critical and the
study of their properties has always been considered. For this reason, in this part, the
conditions for putting the weighted variables in class NBUT are inspected. First, the
definition of class NBUT is stated, and then this class is rewritten for weighted variables
residual life. Next, conditions for establishing TTT transform order by inactivity time
and double truncate variables are expressed.
A random variable X or F is said to be new better than used in TTT transform order
denoted by NBUT if

Xt ≤ttt X,

or equivalently, X ∈ NBUT if and only if∫ F−1
Xt

(p)

0

F̄ (x+ t) dx ≤ F̄ (t)

∫ F−1(p)

0

F̄ (x) dx, p ∈ (0, 1),

where Xt = [X − t|X > t], t ∈ {x : F (x) < 1}, named residual life variable and denotes
a random variable whose distribution is the same as the conditional distribution of Xt

given that X > t. When X is the lifetime of a device, Xt can be regarded as the residual
lifetime of the device at time t, given that the device has survived up to time t.
Now, let Xw be a weighted random variable. Then for p ∈ (0, 1),

Xw ∈ NBUT ⇐⇒ Xw
t ≤ttt Xw

⇐⇒
∫ A(t))

w−1(t)

F̄ (w−1(x+ t))w
′
(x)

F̄ (w−1(t))
dx ≤

∫ F−1(p)

0

F̄ (x)w
′
(x) dx,

and also for t1 and t2, Xw
t1 ≤ttt X

w
t2 if and only if∫ A(t1)

w−1(t1)

F̄ (w−1(x+ t1))

F̄ (w−1(t1))
w
′
(x) dx ≤

∫ A(t2)

w−1(t2)

F̄ (w−1(x+ t2))

F̄ (w−1(21))
w
′
(x) dx,

where A(x) = F−1(p+ (1− p)F (w−1(x))).
For any random variable X, let

Xt = [t−X|X < t], t ∈ {x : F (x) < 1}.

When X is the lifetime of a device, Xt can be regarded as the inactivity time of the
device at time t. If w is a weight function, then for p ∈ (0, 1), Xt

w ≤ttt Xw if and only if∫ w−1(t)

B(t)

F (w−1(t− x))

F (w−1(t))
w
′
(x) dx ≤

∫ F−1(p)

0

F̄ (x)w
′
(x) dx.

For t1 and t2, Xt1
w ≤ttt Xt2

w if and only if∫ w−1(t1)

B(t1)

F (w−1(t1 − x))

F (w−1(t1))
w
′
(x) dx ≤

∫ w−1(t2)

B(t2)

F (w−1(t2 − x))

F (w−1(t2))
w
′
(x) dx,
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where B(x) = F−1((1− p)F (w−1(x))).

For any random variable X, the variable Xt1,t2 = [X|t1 < X < t2] is named double
truncate variable. By performing simple calculations similar to the previous cases, we
can write Xw

t1,t2 ≤ttt X
w if and only if

∫ C(t1,t2)

0

F (w−1(t2))− F (x)

F (w−1(t2))− F (w−1(t1))
w
′
(x) dx ≤

∫ F−1(p)

0

F̄ (x)w
′
(x) dx,

and for t1, t2 and t
′

1, t
′

2, Xt1,t2 ≤ttt Xt
′
1,t
′
2

if and only if

∫ C(t1,t2)

0

F (w−1(t2))− F (x)

F (w−1(t2))− F (w−1(t1))
w
′
(x) dx ≤

∫ C(t
′
1,t
′
2)

0

F (w−1(t
′

2))− F (x)

F (w−1(t
′
2))− F (w−1(t

′
1))

w
′
(x) dx,

where C(x, y) = F−1(p(F (w−1(y))− F (w−1(x))) + F (w−1(x))).

4. APPLICATION

Here, we present two different examples aiming to provide excellent illustrations for a
better understanding of our applications studies. The Weibull distribution is used to
model a wide range of data types. In the following, by introducing some generalized
models of Weibull distribution, we show that the new distributions give a better fit to the
real data than the basic Weibull distribution, and we also examine these distributions
from the point of view of weight variables.

Example 4.1. Let X1, X2, . . . , XN be the lifetimes of the components of a parallel
system, which N is a discrete random variable with the probability mass function

P (N = k) =
θk−1e−θ

(k − 1)!
, k = 1, 2, ..., θ ≥ 0.

Then gN (t) = E(tN ) = t exp(−θ(1− t)), 0 ≤ t ≤ 1, is a distortion function and

Fg(x) = gN (F (x)) = F (x) exp(−θF̄ (x)) (5)

is named the distorted distribution function of F (x). It is clear that Fg(x) is the lifetime
of the parallel system introduced above. Also it is simply shown that fg(x) = w(x)f(x) is
the density of distorted distribution function, where in w(x) = (1+θF (x)) exp(−θF̄ (x))
is an increasing function. Therefore if Xw has a distribution of Fg(x), then Xw is a
weighted random variable with density function fg(x). For this weight function, we
have

• Tw(p) = (1 + θp(1− p)) exp(−θ(1− p))− e−θ,

• EWw(p) = 1− (1 + θp(1− p)) exp(−θ(1− p)),

• LIRw(p) = θp2 exp(−θ(1− p)).
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If the base Weibull distribution is used in the distorted distribution function (5), then
the newly obtained distribution function is called the distorted Weibull distribution and
is denoted by Gw(α, β, θ), that is,

G1
w(x, α, β, θ) = (1− exp(−(

x

β
)α)) exp(−θ exp(−(

x

β
)α)). (6)

The newly introduced distribution can be a good supersede for the well-known Weibull
distribution. For more illustrations, we provide an applicable analysis for the wind speed
data collected in the Sweden country utilized in Abd-Elfattah [1], and the corresponding
fitted criteria are given by distorted Weibull distribution. Fit test criteria shown in
Tables 5 and 6 show the maximum likelihood estimator of unknown parameters. Also,
the TTT plot of wind speed data and its weighted values based on the desired weight
are shown in Figure 7. The results not only show the good performances of the new
distribution but also provide a concave curve that is a suitable example of increasing
failure rate. See [4] for more details.

Model AIC CAIC BIC HQIC KS
Weibull 103.0283 103.4727 105.8307 103.9248 0.1723
G1
w 99.5867 100.5098 103.7903 100.9315 0.0884

Tab. 5. The goodness-of-fit measures for wind speed data.

Model α β θ

Weibull α̂ = 3.1408 β̂ = 4.2363 −−−
G1
w α̂ = 0.7054 β̂ = 0.3476 θ̂ = 115.1782

Tab. 6. MLE values of the parameters.
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Example 4.2. Let X1, X2, . . . , XN be the lifetimes of the components of a parallel
system, in which N is a discrete random variable with the probability mass function,

P (N = k) =

{
(1 + a)e−a, k = 1,
ake−a

k! , k = 2, 3, . . . a > 0,
(7)

and Xi are independent and identically distributed random variables with distribution
F (x) that are independent from N . It can be simply said as in the previous cases that
Y = max{X1, . . . , XN} is the lifetime of this system, which has a distribution function
of the form

FY (x) = e−aF̄ (x) − e−aF̄ (x) = gN (F (x)), (8)

where gN (t) is the probability generating function of N . Therefore FY (x) is the same as
the distorted distribution function of F (x). Model (8) is a member of the distribution
family introduced by Esfahani et al. [15]. They introduced a new distorted family of
distributions using the distortion function. As mentioned it is clear that F is a weighted
distribution with weight (4).

The following is a case study of the breaking stress of carbon fibers (GPa) in Nichols
and Padgett [37]. The samples are 100 experimental data of the breaking stress of carbon
fibers. It is simply shown that the Gompertz distribution with parameters shape 0.077
and the scale 0.791 is an appropriate distribution for this data. Also, by considering
the Gompertz distribution as the base distribution in Equation (8), we will have a new
distribution that can easily show the suitability of this distribution for the data under
study, which is in the form below:

G2
w(x, α, β, a) = exp{−ae−

α
β (eβx−1)} − e−a−

α
β (eβx−1), α, β, a > 0. (9)

The parameter a = 6.6242 is obtained in the new distribution. If the TTT plot examines
the original data as well as the weighted data with the weight function (4), then it is found
that the weight function studied improves the data failure rate and reduces it. Figure 8

shows the TTT plot of the fiber strength data and their weighted values. According to
this figure, the original data has an increasing failure rate and the weighted data has a
decreasing failure rate. The goodness-of-fit measures for breaking stress of carbon fibers
data are shown in Tables 7 and 8.

Model AIC CAIC BIC HQIC KS
Gompertz 302.25 302.37 307.46 304.56 0.0962

G2
w 289.01 289.26 296.82 292.17 0.0684

Tab. 7. The goodness-of-fit measures for fiber strength data.

Model α β θ

Gompertz α̂ = 0.0769 β̂ = 0.7911 −−−
G2
w α̂ = 0.6596 β̂ = 0.2184 â = 6.6242

Tab. 8. MLE values of the parameters.
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Fig. 8. TTT plot for 100 experimental data of the breaking stress of

carbon fibers (GPa) and their weighted data.

Remark 4.3. Model (8) in the analysis of income data also leads to the production of
more suitable distributions. For example, we study the Texas city income data presented
in Arnold [2]. By choosing Fisk and Burr XII as the base distribution in model (8),
we conclude that the distortion (weighted) models of these distributions lead to better
results. A summary of the obtained results is presented in Table 9.

Model AIC CAIC BIC HQIC KS
Fisk 1777.83 1777.91 1783.94 1780.31 0.1424

BurrXII 2083.58 2083.66 2089.69 2086.63 0.5119
DistortionFisk 1733.12 1733.28 1742.29 1736.84 0.0934

DistortionBurrXII 1733.01 1733.18 1742.18 1736.74 0.0933

Tab. 9. Model evaluation criteria.

The presented examples show that the extended distributions have a better fit to the
applied data compared to the basic usage distribution in each case. Also, the increase
in flexibility of the new distribution compared to the basic distributions can be seen in
all three examples.

5. CONCLUSIONS

The main useful distorted form of random variables called weighted random variables
have been investigated under TTT transform. To this end, many situations like decreas-
ing and increasing failure rates for these variables were considered, and new transforms
were widely discussed. In the following, not only the corresponding relationships were
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provided, but also we presented many relating conditions organizing the TTT trans-
forms ordering for these variables, in addition to other types of truncated weighted ones
that are obtained in a detailed form. As our comparison results, some figures were also
given showing the behavior of TTT transform for such variables. Finally, three real
data sets were analyzed, and the applications of TTT transform for these considered
variables were provided including investigating weighted models, truncated forms, and
different kinds of failure rates. Increasing the flexibility and improving the fit of the
extended distributions compared to the base distribution used in each example showed
the superiority of the introduced weighted models compared to the base model used.

(Received May 23, 2022)
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