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Abstract. The concept of covering energy of a poset is known and its McClelland type
bounds are available in the literature. In this paper, we establish formulas for the covering
energy of a crown with 2n elements and a fence with n elements. A lower bound for
the largest eigenvalue of a poset is established. Using this lower bound, we improve the
McClelland type bounds for the covering energy for some special classes of posets.
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1. Introduction and preliminaries

The concept of the energy of graph was introduced by Gutman in 1978 (see [8]).

This concept has its roots in the Hückel molecular orbital (HMO) theory, see

Hückel [12]. The energy of a graph G is defined as the sum of the absolute values of

all eigenvalues of the adjacency matrix A(G) of G, denoted by E(G). We label the
eigenvalues of A(G) in the non-increasing order as λ1 > λ2 > λ3 > . . . > λn. This set

of eigenvalues is called the spectrum of G and denoted by Spec(G) = {λ1, λ2, . . . , λn}.
For details of the theory of graph energy, see Li, Shi and Gutman [15] and the survey

article by Gutman and Ramane [11].

McClelland in [16] gave simple bounds for the energy of a graph. A number of

researchers have improved these bounds, e.g. Altindağ and Bozkurt [2], Das et al. [5].

During the last four decades, many researchers have worked in this area. In the

context of graphs, more than 200 different types of “energies” were proposed, see

Gutman and Furtula [9] and [10]. Recently, Pawar and Bhangale [19] proposed one

more graph energy.
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Pawar and Bhamre (see [17] and [18]) extended the concept of the “energy” to

posets by defining the covering energy. They obtained the McClelland type bounds

for the covering energy of a poset. In the present paper, we give a lower bound for

the largest eigenvalue of a poset. We improve the McClelland type bounds for the

covering energy for some special classes of posets.

We recall some definitions. A nonempty set P, together with a binary relation 6

which is reflexive, antisymmetric, and transitive, is called a partially ordered set, in

short, a poset. The Hasse diagram of a poset is a representation of a poset in the

plane. For a poset (P , 6) one represents each element of P as a vertex in the plane

and draws a line segment that goes upward from x to y whenever y covers x (i.e.,

whenever x < y and there is no z such that x < z < y, denoted by x ≺ y). We

call such a line as an edge and denote the set of all edges in P by e(P ). The Hasse

diagram of a poset P considered as a graph is called the covering graph. We denote

it by G(P ). Hasse diagrams of some posets are depicted in Figure 1.

C2

x1 x2 x3

y1 y2 y3

C3

0

a b

d c

1

O6

a1 a2 a3

b1 b2

F5

Figure 1. Hasse diagrams of some posets.

Two elements a, b ∈ P are said to be comparable if either a 6 b or b 6 a; otherwise

they are said to be incomparable. A poset in which every pair of elements is compa-

rable is called a chain, and if every pair of elements is incomparable, it is called an

antichain.

A lattice is a poset in which every pair of elements has the supremum (called their

join) and the infimum (called their meet). If a and b are elements in a lattice L,

then their join and meet are denoted by a ∨ b and a ∧ b, respectively. An element x
in a poset P is called doubly-irreducible if it covers and is covered by at most one

element. The set of all doubly irreducible elements in P is denoted by Irr(P ). A

reducible element is an element in P, which is not doubly irreducible. The set of

all reducible elements in P is denoted by R(P ). If there is only one poset under

discussion, then the notation R(P ) will be replaced by R.

A partially ordered set Fn = {x1, x2, . . . , xn} is called fence, if either x1 < x2,

x2 > x3, . . . , x2m−1 < x2m, x2m > x2m+1, . . . , xn−1 < xn if n is even (xn−1 > xn

if n is odd) or x1 > x2, x2 < x3, . . . , x2m−1 > x2m, x2m < x2m+1, . . . , xn−1 > xn if n

is even (xn−1 < xn, if n is odd) are the only comparability relations. A fence Fn is

called a lower fence if x1 < x2 and an upper fence if x1 > x2, e.g. the fence F5 as

depicted in Figure 1 is a lower fence and its dual F ∗
n is an upper fence.
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For an integer n > 3, a crown of order n is a poset P = {x1, x2, x3, . . . , xn,
y1, y2, y3, . . . , yn} whose elements satisfy precisely the comparabilities x1 < y1,

y1 > x2, x2 < y2, y2 > x3, x3 < y3, y3 > x4, . . . , xn−1 < yn−1, yn−1 > xn, xn < yn,

yn > x1.We denote a crown of order n by Cn. The crownC3 is as depicted in Figure 1.

The concepts of a doubly irreducible element, crown, and fence are useful to study

dismantlable lattices, see, e.g. Kelly and Rival [14], Rival [20], and Thakare et al. [21].

Throughout this paper, P denotes a finite poset. For undefined terms and nota-

tions from lattice theory, refer to Grätzer [7] or Davey and Priestley [6], and for graph

theoretic terms, see Cvetković et al. [4] or Li, Shi and Gutman [15]. The following

two results are used in the next sections.

Lemma 1.1 ([15]). For a path Pn, n > 2,

Spec(Pn) =
{

2 cos
πr

n+ 1
: r = 1, 2, . . . , n

}

and

E(Pn) =















2

sin(π/2(n+ 1))
− 2 if n ≡ 0 (mod 2),

2 cos(π/2(n+ 1))

sin(π/2(n+ 1))
− 2 if n ≡ 1 (mod 2).

Lemma 1.2 ([13]). For p > 3, let Cp and Cp denote a p-cycle and the compliment

of Cp, respectively, then

Spec(Cp) =
{

2, 2 cos
2π

p
, 2 cos

4π

p
, 2 cos

6π

p
, . . . , 2 cos

2(p− 1)π

p

}

and

Spec(Cp) =
{

p− 3,−1− 2 cos
2π

p
,−1− 2 cos

4π

p
, . . . ,−1− 2 cos

2(p− 1)π

p

}

.

2. The covering energy of a poset

When the energy of a graph G was defined by Gutman [8], no loop edges were

allowed. However, it is natural to ask what happens if some loops are present. It does

not look promising to allow that vertices with loops form an arbitrary subset X of the

vertex set of G. Much after Gutman [8], Adiga et al. [1] allowed X to be a minimal

covering set of the graph. Now if G is the covering graph of a poset P , then we can

use the language of posets to uniquely define a vertex set X in a natural way, and we

can allow loops exactly at the vertices belonging to X . This is how Adiga et al. [1]
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motivated Pawar and Bhamre [17] to introduce the concept of covering energy of a

poset P , in which R(P ) plays the role of X . We recall the definition and some of

the results proved in [17] and [18].

Definition 2.1 ([17]). Let P = {v1, v2, v3, . . . , vn} be a poset. The covering
matrix of P denoted by C(P ) is an n× n matrix C(P ) = (aij), where

aij =











1 if i 6= j and vi ≺ vj or vj ≺ vi,

1 if i = j and vi /∈ Irr(P ),

0 otherwise.

The characteristic polynomial of P denoted by ψ(P, λ) is the determinant

det(λIn −C(P )). The eigenvalues of C(P ) are called the eigenvalues of the poset P .

The sum of absolute values of all these eigenvalues is called the covering energy of P

and denoted by E(P ). If E(P ) is an integer, then P is called an integral poset.

Note that C(P ) depends on how (in which order) we list the elements of P , but

this causes no problem since a different listing of elements gives a matrix similar to

C(P ) and similar matrices have the same characteristic polynomial and eigenvalues.

Hence, we can always fix a list v1, v2, . . . , vn and work with C(P ) defined by this

list. As C(P ) is a real and symmetric matrix, its all eigenvalues are real numbers.

We label them in the non-increasing order as λ1 > λ2 > λ3 > . . . > λn. This set of

eigenvalues is called the spectrum of P and denoted by Spec(P ). It is clear that

E(P ) =

n
∑

i=1

|λi|.

We compute covering energies of some simple posets depicted in Figure 1.

E x am p l e 2.2. The covering matrix of the chain C2 is C(C2) =

[

0 1

1 0

]

. This

leads to ψ(C2, λ) = λ2 − 1, Spec(C2) = {1,−1} and E(C2) = 2.

E x am p l e 2.3. For the lattice O6 = {0, a, b, c, d, 1} in Figure 1, the covering
matrix, characteristic polynomial, spectrum and covering energy of O6 are given by

C(O6) =



















1 1 1 0 0 0

1 0 0 0 1 0

1 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 0 1

0 0 0 1 1 1



















,

ψ(O6, λ) = −3− 6λ+ 7λ2 + 8λ3 − 5λ4 − 2λ5 + λ6,

Spec(O6) = {1 +
√
2,
√
3, 1, 1−

√
2,−1,−

√
3}, E(O6) = 2(1 +

√
2 +

√
3).
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E x am p l e 2.4. The crown C3 = {x1, x2, x3, y1, y2, y3} in Figure 1 is an integral
poset. The covering matrix, characteristic polynomial, spectrum and covering energy

of C3 are

C(C3) =



















1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1

1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1



















,

ψ(C3, λ) = −12λ2 + 4λ3 + 9λ4 − 6λ5 + λ6 = λ2(λ+ 1)(λ− 2)2(λ− 3),

Spec(C3) = {3, 2, 2, 0, 0,−1}, E(C3) = 8.

E x am p l e 2.5. Let F5 = {a1, b1, a2, b2, a3} be the poset shown in Figure 1. The
covering matrix, characteristic polynomial, spectrum and covering energy of F5 are

C(F5) =















0 1 0 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 0















,

ψ(F5, λ) = 1− λ− 5λ2 + λ3 + 3λ4 − λ5 = −(λ+ 1)(λ2 − 3λ+ 1)(λ2 − λ− 1),

Spec(F5) =
{1

2
(3 +

√
5),

1

2
(1 +

√
5),

1

2
(3 −

√
5),

1

2
(1−

√
5),−1

}

, E(F5) = 4 +
√
5.

Definition 2.6. Let P and Q be two disjoint posets. Then P ∪ Q is a poset

under the partial order defined by x 6 y in P ∪Q if and only if either x, y ∈ P and

x 6 y in P or x, y ∈ Q and x 6 y in Q.

Note that, if C(P ), C(Q) and C(P∪Q) are the covering matrices of P , Q and P∪Q,
respectively, then C(P∪Q) =

[

C(P ) 0

0 C(Q)

]

. Hence, ψ(P∪Q, λ) = ψ(P, λ)ψ(Q, λ).

This leads to next claim.

Proposition 2.7. Let P and Q be two disjoint posets. Then

E(P ∪Q) = E(P ) + E(Q).

Corollary 2.8. Let P1, P2, . . . , Pk be k disjoint posets. Then

E

( k
⋃

i=1

Pi

)

=

k
∑

i=1

E(Pi).
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We note that if P1
∼= P2, then E(P1) = E(P2). But, two non-isomorphic posets

may have the same covering energy, e.g. a poset and its dual have the same covering

matrix. This fact motivates us to define the known concepts of equienergetic and

co-spectral graphs for posets as follows.

Definition 2.9. Two posets P and Q are said to be co-spectral if they have the

same spectra and are said to be equienergetic if E(P ) = E(Q).

Naturally, dual posets are co-spectral. Moreover, two co-spectral posets are

equienergetic but not conversely. Here is an example.

E x am p l e 2.10. Consider the poset P consisting of four disjoint copies of C2.

From Corollary 2.8 and Example 2.2, we have

Spec(P ) = {1, 1, 1, 1,−1,−1,−1,−1} and E(P ) = 8.

Thus from Example 2.4, it is observed that C3 and P are equienergetic posets but

not co-spectral. Moreover they are of different orders.

For an integer n > 2, the covering matrix of the chain Cn is the same as the

adjacency matrix of the path Pn. This observation and Lemma 1.1 lead to the

following results.

O b s e r v a t i o n 2.11. For a chain Cn, n > 2,

Spec(Cn) =
{

2 cos
πr

n+ 1
: r = 1, 2, 3, . . . , n

}

,(1)

E(Cn) =















2

sin(π/2(n+ 1))
− 2 if n is even,

2 cos(π/2(n+ 1))

sin(π/2(n+ 1))
− 2 if n is odd.

(2)

The crown C3 and lattices O6 as depicted in Figure 1 have the same covering

graph. Interestingly, these posets are not equienergetic. For an integer n > 3, let us

write Pn = {P : |P | = n, G(P ) ∼= Pn}. Then in the class of posets Pn, the chain Cn

and the fence Fn (maybe an upper fence or a lower fence) are posets with maximum

and minimum number of doubly irreducible elements, respectively. Similarly, the

crown Cn is the poset with no doubly irreducible element and the covering graph

G(Cn) is a cycle with 2n edges. These observations motivate us to compute the

covering energy of the crown Cn and the fence Fn in terms of n. One can easily

derive the following result by using de Moivre’s theorem.
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Lemma 2.12. For an integer m > 1 and α ∈ R, we have

m
∑

r=1

cos(αr) =
1

2 sin(12α)

(

sin
(2m+ 1)α

2
− sin

α

2

)

and
m
∑

r=1

sin(αr) =
1

2 sin(12α)

(

cos
α

2
− cos

(2m+ 1)α

2

)

.

Using this result, we compute the covering energy of Cn and Fn.

Theorem 2.13. For an integer n > 3, the spectrum and covering energy of the

crown Cn are

Spec(Cn) =
{

3, 1 + 2 cos
π

n
, 1 + 2 cos

2π

n
, . . . , 1 + 2 cos

(2n− 1)π

n

}

,

E(Cn) =































2n

3
+ 2

√
3 cot

π

2n
if n ≡ 0 (mod 3),

2

3
(n− 1) + 4 cosec

π

2n
cos

(

π

6
− π

6n

)

if n ≡ 1 (mod 3),

2

3
(n+ 1) + 4 cosec

π

2n
cos

(

π

6
+

π

6n

)

if n ≡ 2 (mod 3).

P r o o f. In the crown Cn, n > 3, every element is a reducible element and hence

in the covering matrix C(Cn) all diagonal entries are 1. Also, if we denote the

adjacency matrix of the graph G(Cn) by A(Cn), then C(Cn) = I + A(Cn). Hence,

the characteristic polynomial of Cn can be expressed as

ψ(Cn, λ) = |λI − C(Cn)| = |(λ− 1)I −A(Cn)|.

Thus, if λ1, λ2, . . . , λ2n and β1, β2, . . . , β2n are the eigenvalues of A(Cn) and C(Cn),

respectively, then βi = λi + 1 for all i = 1, 2, . . . , 2n. Therefore Lemma 1.2 leads to

Spec(Cn) =
{

3, 1 + 2 cos
π

n
, 1 + 2 cos

2π

n
, . . . , 1 + 2 cos

(2n− 1)π

n

}

,

E(Cn) = 3 +

2n−1
∑

r=1

∣

∣

∣
1 + 2 cos

πr

n

∣

∣

∣

= 3 +

2n−1
∑

r=1
1+2 cos(πr/n)>0

(

1 + 2 cos
πr

n

)

−
2n−1
∑

r=1
1+2 cos(πr/n)<0

(

1 + 2 cos
πr

n

)

.

In the interval (0, 2π), it is 1+2 cos(πr/n) < 0 if and only if 2
3π < πr/n < 4

3π, that is,
2
3 < r/n < 4

3 .

543



Case (1): If n ≡ 0 (mod 3), that is, n = 3k, then 1+2 cos(πr/n) < 0 if and only if

r = 2k+1, 2k+2, . . . , 4k− 1. Hence, by symmetry of the curve 1+ 2 cosα, we have

E(Cn) = 3 + 2

2k
∑

r=1

(

1 + 2 cos
πr

n

)

−
4k−1
∑

r=2k+1

(

1 + 2 cos
πr

n

)

= 3 + 4k − (2k − 1) + 4

2k
∑

r=1

cos
πr

n
− 2

4k−1
∑

r=2k+1

cos
πr

n

= 2k + 4 + 6

2k
∑

r=1

cos
πr

n
− 2

4k−1
∑

r=1

cos
πr

n
.

Using Lemma 2.12, after simplification, we obtain

E(Cn) = 2k + 2
√
3 cot

π

2n
=

2n

3
+ 2

√
3 cot

π

2n
.

Case (2): If n ≡ 1 (mod 3), that is, n = 3k + 1, then 1 + 2 cos(πr/n) < 0 if

and only if 2
3 < r/n < 4

3 if and only if 2k + 1
3 < r < 4k + 1 + 1

3 . That is,

r = 2k + 1, 2k + 2, . . . , 4k + 1. Thus

E(Cn) = 3 + 2

2k
∑

r=1

(

1 + 2 cos
πr

n

)

−
4k+1
∑

r=2k+1

(

1 + 2 cos
πr

n

)

= 3 + 4k − 2k − 1 + 6

2k
∑

r=1

cos
πr

n
− 2

4k+1
∑

r=1

cos
πr

n
.

Using Lemma 2.12, after simplification, we obtain

E(Cn) =
2

3
(n− 1) + 4 cos

(

π

6
− π

6n

)

cosec
π

2n
.

Case (3): If n ≡ 2 (mod 3), that is, n = 3k−1 then 1+2 cos(πr/n) < 0 if and only if
2
3 < r/n < 4

3 if and only if
2
3n < r < 4

3n. That is, r = 2k, 2k+1, . . . , 4k−2. Therefore

E(Cn) = 3 + 2

2k−1
∑

r=1

(

1 + 2 cos
πr

n

)

−
4k−2
∑

r=2k

(

1 + 2 cos
πr

n

)

.

Using Lemma 2.12, after simplification, we obtain

E(Cn) =
2

3
(n+ 1) + 4 cosec

π

2n
cos

(

π

6
+

π

6n

)

.

�
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Corollary 2.14. Among all crowns, C3 is the only integral crown.

Corollary 2.15. If λ is an eigenvalue of the crown Cn, then −1 6 λ 6 3 and

λ∗ = 2− λ is another eigenvalue.

P r o o f. The first part is trivial. If λ = 1 + 2 cos(πr/n) is an eigenvalue of Cn,

then λ∗ = 2− λ = 1+ 2 cos(π(n+ r)/n) is also an eigenvalue of Cn. �

Theorem 2.16. Let Fn = {v1, v2, . . . , vn} and (Fn,6) be a fence. Then

(1) Spec(Fn) =
{

− 1, 1 + 2 cos
π

n
, 1 + 2 cos

2π

n
, . . . , 1 + 2 cos

(n− 1)π

n

}

.

(2) The covering energy of the fence Fn is given by

E(Fn) =































n− 3

3
+
√
3 cot

π

2n
if n ≡ 0 (mod 3),

n− 4

3
+
(√

3 cos
π

6n
+ sin

π

6n

)

cosec
π

2n
if n ≡ 1 (mod 3),

n− 2

3
+
(√

3 cos
π

6n
− sin

π

6n

)

cosec
π

2n
if n ≡ 2 (mod 3).

P r o o f. For an integer n > 3, the covering graph G(Fn) is the path Pn. Let

ψ(Fn, λ) and ϕ(Pn, λ) denote the characteristic polynomials of Fn and Pn, respec-

tively. Then the covering matrix C(Fn), the adjacency matrix A(Pn) and the char-

acteristic polynomial of Fn can be expressed as

C(Fn) =















0 1 0 . . . 0 0 0

1 1 1 . . . 0 0 0
...
...
...
. . .

...
...
...

0 0 0 . . . 1 1 1

0 0 0 . . . 0 1 0















, A(Pn) =















0 1 0 . . . 0 0 0

1 0 1 . . . 0 0 0
...
...
...
. . .

...
...
...

0 0 0 . . . 1 0 1

0 0 0 . . . 0 1 0















and

ψ(Fn, λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ −1 0 . . . 0 0 0

−1 λ− 1 −1 . . . 0 0 0
...

...
...
. . .

...
...

...

0 0 0 . . . −1 λ− 1 −1

0 0 0 . . . 0 −1 λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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If we write λ′ = λ− 1 and split the determinant using the first row, then

ψ(Fn, λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ′ −1 0 . . . 0 0

−1 λ′ −1 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . λ′ −1

0 0 0 . . . −1 λ′ + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 . . . 0 0

−1 λ′ −1 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . λ′ −1

0 0 0 . . . −1 λ′ + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ′ −1 0 . . . 0 0

−1 λ′ −1 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . λ′ −1

0 0 0 . . . −1 λ′ + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ′ −1 . . . 0 0
...

...
. . .

...
...

0 0 . . . λ′ −1

0 0 . . . −1 λ′ + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Applying the same technique to split these two determinants with respect to the last

row, we obtain

ψ(Fn, λ) = ϕ(Pn, λ
′) + 2ϕ(Pn−1, λ

′) + ϕ(Pn−2, λ
′).

It is well known that, for n > 3, ϕ(Pn, λ) = λϕ(Pn−1, λ) − ϕ(Pn−2, λ). Using this

recurrence relation, we have

ψ(Fn, λ) = λ′ϕ(Pn−1, λ
′)− ϕ(Pn−2, λ

′) + 2ϕ(Pn−1, λ
′) + ϕ(Pn−2, λ

′),

ψ(Fn, λ) = (λ+ 1)ϕ(Pn−1, λ
′) = (λ+ 1)

∏

(λ′ − αi),

where αi, i = 1, 2, . . . , n− 1, are eigenvalues of the matrix A(Pn−1). Hence,

ψ(Fn, λ) = (λ+ 1)
n−1
∏

r=1

(

λ− 1− 2 cos
πr

n

)

.

Thus,

Spec(Fn) =
{

− 1, 1 + 2 cos
π

n
, 1 + 2 cos

2π

n
, . . . , 1 + 2 cos

(n− 1)π

n

}

,

and

E(Fn) = 1 +

n−1
∑

r=1

∣

∣

∣
1 + 2 cos

πr

n

∣

∣

∣

= 1 +

n−1
∑

r=1
1

2
<cos(πr/n)<1

(

1 + 2 cos
πr

n

)

+

n−1
∑

r=1
− 1

2
6cos(πr/n)6 1

2

(

1 + 2 cos
πr

n

)

−
n−1
∑

r=1
−1<cos(πr/n)<− 1

2

(

1 + 2 cos
πr

n

)

.
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Using the symmetry of the curve 1 + 2 cos θ, 0 < θ < π, we have

E(Fn) = 1 + 4

k=max{r : 3r<n}
∑

r=1

(

cos
πr

n

)

+ (n− 1− 2k)

= n− 2k +
2

sin(π/2n)

(

sin
(2k + 1)π

2n
− sin

π

2n

)

(using Lemma 2.12)

= n− 2k − 2 + 2 cosec
π

2n
sin

(2k + 1)π

2n
.

Case (1): If n ≡ 0 (mod 3), then k = 1
3n− 1 and after routine calculations we have

E(Fn) = n− 2n

3
+ 2 sin

(

π

3
− π

2n

)

cosec
π

2n
=
n− 3

3
+
√
3 cot

π

2n
.

Case (2) : If n ≡ 1 (mod 3), then k = 1
3 (n − 1) and after simple calculations we

obtain

E(Fn) =
n− 4

3
+
(√

3 cos
π

6n
+ sin

π

6n

)

cosec
π

2n
.

Case (3) : If n ≡ 2 (mod 3), then k = 1
3 (n− 2), which leads to

E(Fn) =
n− 2

3
+
(√

3 cos
π

6n
− sin

π

6n

)

cosec
π

2n
.

�

To compute the covering energy of other poset classes whose covering graphs are

isomorphic to Pn is a separate subject. We do not go into those details. Now, we

turn our attention to the bounds of the covering energy of posets.

Pawar and Bhamre (see [17] and [18]) have studied the covering energy of some

special classes of posets. They have obtained formulas for coefficients of λn, λn−1,

λn−2 and λn−3 in the characteristic polynomial ψ(P, λ) of a poset P in terms of its

number of vertices, edges, reducible and doubly irreducible elements.

The following results are from Pawar and Bhamre (see [17]).

Theorem 2.17 ([17]). If λ1, λ2, . . . , λn are eigenvalues of a poset P , then

n
∑

i=1

λi = n− | Irr(P )| = |R|,(1)

n
∑

i=1

λ2i = n+ 2|e(P )| − | Irr(P )| = 2|e(P )|+ |R|.(2)

Pawar and Bhamre (see [17]) have also obtained McClelland type bounds for the

covering energy of a poset in terms of its number of vertices, number of edges and

the determinant of the covering matrix C(P ).
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Theorem 2.18 ([17]). If a poset P has n elements, m edges and D = det(C(P )),

then

(2.1)
√

2m+ n− | Irr(P )|+ n(n− 1)D2/n 6 E(P ) 6
√

n(2m+ n− | Irr(P )|).

We improve these bounds for a particular class of posets in the next section.

3. Improvement of bounds for the covering energy of a poset

In the literature, we can find definitions of singular and non-singular graphs. We

extend these concepts to posets as follows.

Definition 3.1. Let P be a poset with |P | = n and λ1, λ2, . . . , λn be the eigen-

values of P . Then P is called a singular poset if λi = 0 for some 1 6 i 6 n. Otherwise,

if λi 6= 0 for each i, then P is called a non-singular poset.

We recall that a Hermitian matrix (or a self adjoint matrix ) is a complex square

matrix which equals its conjugate transpose. Every real symmetric matrix is a Her-

mitian matrix. In the next result, we obtain a lower bound for the largest eigenvalue

of a poset.

Theorem 3.2. Let P be a poset with n elements and m edges. Let r be the

greatest eigenvalue of P and R = {v ∈ P : v /∈ Irr(P )}. Then

(3.1)
2m+ |R|

n
6 r.

Moreover, the equality holds if and only if P is C2 or more copies of C2 than one or

Irr(P ) = ∅ and the covering graph G(P ) is regular.
P r o o f. Since the covering matrix C(P ) = (aij)n×n is symmetric and real, it is

a Hermitian matrix. It is well known that the problem of finding the maximal value

of Rayleigh’s quotient

(3.2) Rq =

∑n
i=1

∑n
j=1 aijxixj

∑n
i=1 x

2
i

(the xi being arbitrary real numbers not all equal to zero) has the solution Rq = r.

The maximum is attained if and only if the xi, i = 1, 2, . . . , n, are the components

of the eigenvector of C(P ) belonging to r. If we put xi = 1, i = 1, 2, . . . , n, in

equation (3.2), we have Rq = d̄ = (1/n)
n
∑

i=1

di, where

(3.3) di =

n
∑

j=1

aij =

{

d(vi) if vi ∈ Irr(P ),

d(vi) + 1 if vi /∈ Irr(P )
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(here d(vi) denotes degree of the vertex vi in the covering graph G(P )). So, d̄ is a

particular value of Rayleigh’s quotient. This leads to

(3.4) d̄ =
2m+ |R|

n
6 r.

Thus the first part of the theorem is proved.

In Case-I, we prove the second part of the theorem for a connected poset and in

Case-II, as a consequence of Case-I, we can prove it for disconnected posets.

Case-I: For the chain C2, it is trivial to show that the equality holds in (3.1). If P

is a connected poset, for which Irr(P ) = ϕ, and G(P ) is regular of order k, then

2m+ |R|
n

= k + 1 = r,

i.e., equality holds in the inequality (3.1).

Conversely, if the equality holds in (3.1), then the values xi = 1, i = 1, 2, . . . , n,

constitute an eigenvector for C(P ) belonging to r and
n
∑

j=1

aijxj = rxi, i = 1, 2, . . . , n,

implies di =
n
∑

j=1

aij = r, i = 1, 2, . . . , n. As di is an integer for each i, hence |R| = 0

or |R| = n. In both the cases G(P ) is regular. As G(P ) is connected, |R| = 0 if and

only if P is a chain C2, and |R| = n if and only if Irr(P ) = ∅. This proves the result
for connected posets.

Case-II: Let us consider a disconnected poset P with s connected components

P1, P2, . . . , Ps with n1, n2, . . . , ns elements and m1,m2, . . . ,ms edges, respectively.

Case (a): P is regular of order one if and only if each component Pi is regular

of order one, i.e., Pi = C2, i = 1, 2, . . . , s. Hence m = s, n = 2s, |R| = 0 and

r = 1 = (2m+ |R|)/n.
Case (b): The poset P is regular of order k > 1 and no element of P is doubly

irreducible if and only if for each i = 1, 2, . . . , s, Pi is regular of order k and no

element of Pi is doubly irreducible. Using Case-I for each Pi, 1 6 i 6 s, the largest

eigenvalues of Pi,

ri =
2mi + |R(Pi)|

ni
=
kni + ni

ni
= k + 1.

Hence

r = max{r1, r2, . . . , rs} = k + 1 =
kn+ n

n
=

2m+ |R|
n

.

�

The Theorem 3.2 is a generalization of a result which is originally due to Collatz

and Sinogowitz [3] (for the English version of this result, see [4]). The following two

results are applications of Theorem 3.2.
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Theorem 3.3. Let P be a non-singular poset with n elements, m edges and

R = {v ∈ P : v /∈ Irr(P )}. Then

(3.5)
2m+ |R|

n
+ n− 1 + ln

n|det(C(P ))|
2m+ |R| 6 E(P ).

P r o o f. As P is a non-singular poset, |λi| > 0 for each 1 6 i 6 n. Consider the

function

f(x) = x− 1− ln(x) for x > 0.

It is easy to show that f(x) is decreasing for x ∈ (0, 1] and increasing for x > 1.

Hence, f(x) > f(1) = 0 implies that

(3.6) x > 1 + ln(x) for x > 0.

Moreover, equality holds if and only if x = 1. Also, using the inequality (3.6), we

have

(3.7) E(P ) = λ1 +

n
∑

i=2

|λi| > λ1 + n− 1 +

n
∑

i=2

ln |λi| = λ1 + n− 1 + ln

n
∏

i=2

|λi|.

Thus,

(3.8) E(P ) > λ1 + n− 1 + ln |det(C(P ))| − ln(λ1).

By Theorem 3.2, we have λ1 > (2m+ |R|)/n. The function g(x) = x + n − 1 +

ln |det(C(P ))| − lnx is increasing for x ∈ [1, n] and we conclude that

(3.9) g(λ1) >
2m+ |R|

n
+ n− 1 + ln |det(C(P ))| − ln

2m+ |R|
n

for x > 2m/n. Combining (3.9) with (3.8), we arrive at (3.5). �

Suppose that equality holds in (3.5). Then all the inequalities considered in the

Theorem 3.3 must be equalities. From the equality (3.7), we obtain |λ2| = |λ3| =
. . . = |λn| = 1. Since P is connected, the condition |λi| = 1, i = 2, 3, . . . , n, is

satisfied if and only if P = C2. This discussion leads to the following claim.

R em a r k 3.4. Equality holds in (3.5) if and only if P is the chain C2.

For crowns Ck, k = 4, 5, 7, 8, one can numerically verify that (3.5) is superior

to (2.1). But for k > 9, the situation is the opposite. (If 3|k, then det(C(Ck)) = 0

and the inequality (3.5) is not applicable). That is, in general, (3.5) may not be

superior to (2.1).

The next result gives a sufficient condition for (3.5) to be superior to (2.1).
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Ob s e r v a t i o n 3.5. Let Ω be the class of connected posets with n elements

and m edges, and for which the following conditions are satisfied:

(3.10) 16 6
n

2
6

2m+ |R|
n

6 |det(C(P ))| 6 n− 1.

Then for each poset P ∈ Ω, the inequality (3.5) is better than the inequality (2.1).

P r o o f. As P ∈ Ω, by the inequality (3.10), we have

ln |det(C(P ))| − ln
2m+ |R|

n
= ln

n|det(C(P ))|
2m+ |R| > 0 and n > 32,

which leads to (n− 1)2/n 6 5
4 . Thus, using Theorem 3.3, we obtain

(3.11) E(P ) >
2m+ |R|

n
+ n− 1 + ln

n|det(C(P ))|
2m+ |R| >

2m+ |R|
n

+ n− 1.

Also,

(3.12)

2m+|R|+n(n−1)|det(C(P ))|2/n 6 2m+|R|+n(n−1)(n−1)2/n6 2m+|R|+n(n−1)
5

4
.

In the light of inequalities (3.11) and (3.12), to prove the result it is sufficient to

show that

2m+ |R|+ n(n− 1)
5

4
6

(2m+ |R|
n

+ n− 1
)2

.

That is, to show that,

2m+ |R|+ n(n− 1)
5

4
6

(2m+ |R|
n

− 1
)2

+ n2 + 4m+ 2|R| − 2n,

i.e.,

(3.13)
n2 + 3n

4
6

(2m+ |R|
n

− 1
)2

+ 2m+ |R|.

As (2m+ |R|)/n > 1
2n, we have

(3.14)
(2m+ |R|

n
− 1

)2

+ 2m+ |R| >
(n

2
− 1

)2

+
n2

2
=

3n2 − 4n− 4

4
.

But for n > 16, the inequality

3n2 − 4n− 4

4
>
n2 + 3n

4

is always true. Thus, using (3.13) and (3.14), the proof is complete. �

Now, we improve the McClelland type upper bound for the covering energy of a

poset whose covering graph G(P ) contains no isolated vertex.
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Theorem 3.6. Let P be a poset with n elements and m edges. If G(P ) contains

no isolated vertex and R = {v ∈ P : v /∈ Irr(P )}, then

(3.15) E(P ) 6
2m+ |R|

n
+

√

(n− 1)
(

2m+ |R| −
(2m+ |R|

n

)2)

.

P r o o f. As G(P ) does not contain any isolated vertex, 2m > n. Suppose λ1 >

λ2 > . . . > λn are the eigenvalues of P , then by the inequality (3.1), we have

(3.16) 1 6
2m+ |R|

n
6 λ1.

Moreover, by Theorem 2.17 (2), we have

(3.17)

n
∑

i=2

λ2i = 2m+ |R| − λ21.

Using (3.17) together with the Cauchy-Schwarz inequality applied to the vectors

(|λ2|, |λ3|, . . . , |λn|) and (1, 1, . . . , 1) with n− 1 entries, we obtain the inequality

(3.18)

n
∑

i=2

|λi| 6
√

(n− 1)(2m+ |R| − λ21).

Thus, we have

(3.19) E(P ) 6 λ1 +
√

(n− 1)(2m+ |R| − λ21).

Now, as the function F (x) = x +
√

(n− 1)(2m+ |R| − x2) is decreasing on the

interval
(
√

(2m+ |R|)/n,
√

2m+ |R|
]

, in view of the fact 2m+ |R| > n, we observe

that
√

(2m+ |R|)/n 6 (2m+ |R|)/n 6 λ1 holds. Hence,

(3.20) F (λ1) 6 F
(2m+ |R|

n

)

6 F
(

√

2m+ |R|
n

)

.

The inequalities (3.19) and (3.20) lead to (3.15). �

It is easy to verify that F
(
√

(2m+ |R|)/n
)

=
√

n(2m+ |R|). Hence in the light of
the inequality (3.20), we observe that the bound given in Theorem 3.6 is an improved

bound for the given class of posets. Also, if P is 1
2n copies of C2, then the eigenvalues

for P are ±1 (both with multiplicity 1
2n) and |R| = 0. It is easy to check that for

the poset P , equality holds in the relation (3.15).
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