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SEASONAL TIME-SERIES IMPUTATION
OF GAP MISSING ALGORITHM (STIGMA)

EDUARDO RANGEL-HERAS, PAVEL ZUNIGA, ALMA Y. ALANIS,
ESTEBAN A. HERNADEZ-VARGAS AND OSCAR D. SANCHEZ

This work presents a new approach for the imputation of missing data in weather time-
series from a seasonal pattern; the seasonal time-series imputation of gap missing algorithm
(STIGMA). The algorithm takes advantage from a seasonal pattern for the imputation of un-
known data by averaging available data. We test the algorithm using data measured every 10
minutes over a period of 365 days during the year 2010; the variables include global irradiance,
diffuse irradiance, ultraviolet irradiance, and temperature, arranged in a matrix of dimensions
52,560 rows for data points over time and 4 columns for weather variables. The particularity
of this work is that the algorithm is well-suited for the imputation of values when the missing
data are presented continuously and in seasonal patterns. The algorithm employs a date-time
index to collect available data for the imputation of missing data, repeating the process until all
missing values are calculated. The tests are performed by removing 5%, 10%, 15%, 20%, 25%,
and 30% of the available data, and the results are compared to autoregressive models. The
proposed algorithm has been successfully tested with a maximum of 2,736 contiguous missing
values that account for 19 consecutive days of a single month; this dataset is a portion of all
the missing values when the time-series lacks 30% of all data. The metrics to measure the
performance of the algorithms are root-mean-square error (RMSE) and the coefficient of deter-
mination (RQ). The results indicate that the proposed algorithm outperforms autoregressive
models while preserving the seasonal behavior of the time-series. The STIGMA is also tested
with non-weather time-series of beer sales and number of air passengers per month, which also
have a cyclical pattern, and the results show the precise imputation of data.

Keywords: contiguous missing values, seasonal patterns, time-series

Classification: 62-04, 68Pxx

1. INTRODUCTION

Data play an essential role in different applications such as chemometrics [10], ge-
nomics [5], network inference [I1], meteorology [26], engineering [24], informatics [I7],
chemical [6], biochemical [I3], pharmaceutical, and industry [I2]. From these, meteo-
rological time-series are measured by weather stations to be processed, analyzed, and
implemented in the sizing of wind-turbines and photovoltaic systems; or these can also
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be employed to forecast, for example, solar irradiance or wind speed to calculate electric
power generated by PV systems or wind-turbines.

This work aims at imputing data in time-series, and to present the literature review we
divide the imputation techniques in three groups: a) classic methods like the previous
neighbor, linear interpolation, cubic spline, or piecewise cubic Hermite interpolation
polynomial; b) time-series methods such as the autoregressive (AR) or autoregressive
integrated moving average; and ¢) nonconventional methods like those based on principal
component analysis or other techniques.

Among classic methods, Dan et al. [§] compared the previous neighbor, linear in-
terpolation, cubic spline, piecewise cubic Hermite interpolation polynomial, Akima, and
Makima methods for the imputation of pupil diameter missing data. They concluded
that the Akima and Makima interpolation methods yield the lowest deviation with a
smooth curve fitting that makes them well-suited for slowly varying data. Noor et al.
[22] compared the linear interpolation and mean method for missing data in air pollu-
tion time-series and showed that linear interpolation results in the smallest RMSE and
R?. Classic methods work well when the missing data is randomly distributed, as in a
Missing at Random or Completely Missing at Random form [I5][20]; however, when the
missing values are contiguous, these techniques tend to fail.

Time-series techniques are also employed to fill gaps, for example, Murad et al. [20]
proposed using time-dependent covariates in a Cox model with Multiple Imputations
by Chained Equations to complete missing data related to diabetes and some types of
cancer. They showed that these methods are only feasible for small groups of contiguous
missing data. Regressive, autoregressive, vector autoregressive (VAR), and autoregres-
sive moving average (ARMA) models have also been implemented for the imputation of
missing data. Bashir and Wei [3] developed a VAR-based algorithm for handling missing
data in multivariate time-series. They tested it on electrocardiogram signals with 10%
and 20% Missing Completely at Random data sets, with the disadvantage that time-
series must be stationary. Zhang [27] implemented a regressive model for the imputation
of clinical data in blood pressure and lactate. The results showed that the relation be-
tween missing values and variables is preserved. Liu & Molenaar [16] recovered missing
data from electrodermal activity with a VAR model. They first fitted the model to the
complete data and the Direct Transfer Functions to examine the directional influence
between the child and therapist. Dunsmuir & Robinson [9] developed a method to es-
timate stationary time-series data in the presence of missing values based on ARMA
models; they only tested the models with pollution levels containing little missing data.
Anava et al. [2] predicted time-series online with missing data based on AR models.
The work focused on studying the time-series prediction problem using AR models in
the presence of missing data. Pedreschi et al. [23] evaluated methods to treat missing
values in gel-based proteomics data. The methods dealt with missing values during the
multivariate analysis with the Nonlinear estimation by Iterative Partial Least Squares
algorithm, k-nearest neighbor, and Bayesian Principal Component Analysis (BPCA)
before carrying out the multivariate analysis. The authors concluded that there is no
absolute truth in terms of which is the most appropriate method to treat missing data,
however, from the ones studied, the BPCA showed the best result when applying cross-
validation to test the model’s performance. Choong et al. [7] proposed a new algorithm
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called the Autoregressive Model-based Missing Value Estimation Method, and employed
it for the imputation of data of a matrix of gene array values of DNA. The authors used
a data set consisting of five different AR processes of order four and tested the method
on several microarray time-series. According to the authors, their proposal is well-suited
for time-series with many missing values, but it is unclear if they can be contiguous.

In summary, multivariable models (e. g., VARs models) are well-suited when indepen-
dent variables do not have missing data in the same position as the dependent variable.
This is a disadvantage in many cases, such as the one shown in this work, where the
dataset shows portions of missing values in all variables at the same time. On the other
hand, AR models do not have this problem because they take past values for the impu-
tation of missing data, but their main drawback, as in classic models, comes when the
window of missing data is excessively long.

For non-conventional methods, Folch et al. [12] developed a Missing Data Imputation
Toolbox for Matlab®© based on Principal Component Analysis that exploits the interde-
pendence between variables and works on data matrices with missing values randomly
presented in rows and columns. The disadvantage is that it needs additional variables
that cannot have missing values in the same periods. Junger & Ponce [15] employed
the Expectation-Maximization algorithm for the imputation of multivariate time-series
under the assumption of normal distribution. They performed tests with 5%, 10%, 20%,
30%, and 40% Missing at Random data, and the study focused on environmental time-
series to develop epidemiological studies of the effect of air pollutants on health. Batista
& Monard [4] implemented the k-nearest Neighbor algorithm as an imputation method
to treat missing data and compared it to two algorithms based on Decision Trees and
the Mean Imputation Method. The models were tested with breast data and resulted
in a final model of 10-NN (Nearest Neighbors); the analysis indicates that the k-Nearest
Neighbor algorithm outperforms the other techniques. Hui et al. [I4] employed Multiple
Imputations to fill gaps in the missing data for annual estimations of net ecosystems’
carbon exchange, latent heat flux, and sensible heat flux. The algorithm is a Monte
Carlo technique in which several simulated values replace the missing ones, but the au-
thors do not indicate the maximum contiguous missing data allowed. These references
do not specify the behavior of the models when the window of missing data is very long
with contiguous missing values, which is the case presented here.

Researchers have recently reported algorithms for the imputation of data that employ
machine and deep learning techniques. For example, Sun et al. [25] present a review of
statistical, machine learning, and deep learning approaches, and discuss the advantages
and disadvantages of these methods for the imputation of missing data. The authors
test the methods with different amounts of missing data using three kinds of missing
mechanisms named the Missing Completely at Random (MCAR), Missing at Random
(MAR), and Missing not at Random (MNAR). The deep learning approaches imple-
mented are the Generative Adversarial Imputation Networks (GAIN) and Variational
Auto-Encoder (VAE); the authors also test conventional methods like the Multiple Im-
putation by Chained Equations (MICE) and Miss Forest. The results show that the
conventional methods outperform the deep learning methods. Another work by Neves
et al. [2I] present three novel generative imputation methods based on Generative Ad-
versarial Networks (GAN), the Slim GAIN (SGAIN), the Wasserstein Slim GAIN with
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Clipping Penalty (WSGAIN-CP), and Wasserstein Slim GAIN with Gradient Penalty
(WSGAIN-GP); from the tests the authors report that the SGAIN outperforms the other
techniques. Additionally, Ahn et al. [I] implement six imputation methods named the
mean substitution, Last Observation Carried Forward (LOCF), Next Observation Car-
ried Backward (NOCB), Expectation-Maximization (EM), k-Nearest Neighbors (k-NN),
and Multiple Imputation by Chained Equation (MICE), where, according to the authors,
the best model is the k-NN. It is important to mention that all these methods are not
tested in the presence of large sets of continuous missing values, and do not compare
directly to the method proposed in this work, since it is focused on time-series with
great amounts of continuous missing data.

The literature review shows that many authors in different fields deal with missing
data using classic, time-series, or non-conventional methods. Still, they mainly focus on
randomly located discontinuous data gaps with algorithms that perform well when the
window of contiguous missing points is small. To the authors’ best knowledge, there is no
specific technique to treat cyclic and seasonal time-series with many contiguous missing
values. Therefore, this work aims at solving the problem of treating vast quantities of
contiguous missing data in weather time-series under the assumption that sensors can
stop working for long periods, for example, when systems are under maintenance or
simply fail.

The data used here comes from a weather station that has been recording information
from the year 2010 up to the present day in Temixco, Morelos, México. We use the
time-series of the year 2010 because it has no missing values, as opposed to other years;
however, there are data windows of atypical values, as will be shown latter. The data
of the year 2010 results in a matrix of 52,560 x 4 (four vectors, each one with a length
of 52,560), with data-points measured every 10 minutes (144 values per day); the tests
consider a window with a minimum of 144 contiguous missing values (a full day). The
variables include global irradiance in W/m?, diffuse irradiance in W/m?2, ultraviolet
irradiance in W/m?, and temperature in C. We found that some years, other than 2010,
have full days of missing data, representing large windows of contiguous missing values.
Moreover, some days with missing values are holidays, from which we speculate that
these may be maintenance days.

The proposal is based on techniques such as persistence, moving averages, and the
random behavior inherent to the weather time-series with cyclic and seasonal patterns.
First, the algorithm takes advantage of a persistence model in which data from variables
such as global irradiance or temperature have similar values in a particular time frame, in
this case, a month. The algorithm then finds all non-missing values of the month and at
the time of each missing point. When the total number of data used for the imputation
of the missing values is greater than ten, the algorithm randomly takes a group of values
to represent the random behavior inherent to the time-series and computes its average
(moving average technique). Finally, the average is used for the imputation of a missing
value, and the procedure is repeated until all missing values are computed.

The work is presented in three sections. Section 1 gives an introduction and related
work; Section 2 explains the development of the proposed algorithm; and Section 3
exposes the tests to evaluate its performance.
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2. DEVELOPMENT OF THE STIGMA

The proposed algorithm operates over a matrix that contains data of weather variables
and their corresponding dates. All missing values must be identified with a date index
that include the month, day, and time of each missing value, tied to their row position
within the data matrix. The date index helps to locate all non-missing values over a
certain period to be used to calculate an unknown point. A set of these values is ran-
domly selected to calculate its average and fill a clear space. The steps of the algorithm
are given by:

1. Build a matrix of weather data and identify the date and time of its entries;
2. Identify all missing values by their date and time;

3. Relying on a persistence model, find all the non-missing data that match the time
of the missing values for each month, and randomly select n points to compute its
average value;

4. Use the average value to fill the missing data according to their time of occurrence;

5. Repeat Steps 2 to 4 for every point of every variable until all missing data are
computed.

As an example, Table[1|shows a window of five contiguous missing values correspond-
ing to January first from 09:50 to 10:30 hours. The algorithm identifies the row with
the missing values in the matrix and finds available data at the same time in every day
of the month. Then it randomly selects data points and calculates the average value, as
shown in Table [2] to finally use it to fill the missing data in the rows of Table [1] The
process is repeated until all missing data are calculated.

Unknown Dates Global irradiance | Diffuse irradiance | UV irradiance ’ Temperature ‘
(W/m?) (W/m?) (W/m?) (°C)
- 01/01/2010 09:50:00 NaN—305.02 NaN-114.44 NaN—-14.42 NaN—-17.96
Window 01/01/2010 10:00:00 NaN NaN NaN NaN
of missing 01/01/2010 10:10:00 NaN NaN NaN NaN
data 01/01/2010 10:20:00 NaN NaN NaN NaN
01/01/2010 10:30:00 NaN NaN NaN NaN

Tab. 1. Unknown data.

Global irradiance | Diffuse irradiance | UV irradiance | Temperature
Known Dates (Wim?) Wim?) (Wim?) C)
24/01/2010 09:50:00 532.2 64.8 21.9 20.2
Random 15/01/2010 09:50:00 189.3 168.1 10.8 18.5
dates 08/01/2010 09:50:00 110.8 102.9 75 15.2
25/01/2010 09:50:00 511.0 76.6 20.9 20.9
31/01/2010 09:50:00 181.8 159.8 11.0 15.0
Average 305.02 114.44 14.42 17.96

Tab. 2. Known data
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3. TESTS AND RESULTS
3.1. Performance measurements

To measure the performance of the STIGMA we employ the root-mean-square error
(RMSE) and the coefficient of determination (R?), respectively given by

(1)

R2:1_M (2)

Y (Yi—Y)?

where Y; is the actual data, }A/Z is the calculated data, Y is the average of the actual
data, and n is the number of samples.

3.2. Testing the algorithm with weather time-series

We propose six tests to validate the performance of the algorithm by removing 5%, 10%,
15%, 20%, 25%, and 30% of the data and comparing it with an autoregressive model.
For this time-series with contiguous missing values we choose an autoregressive model
since it takes past values to compute new ones that can also be used to calculate a new
set of missing values. However, this kind of model fails when the window of contiguous
missing data is large, as will be shown by the results. The autoregressive model of order
p used in this work is defined as

P
X = Z ©iXi—i + &t (3)

i=1

where ; are the parameters of the model, ¢; is white noise, and X; is the time series
[18].

Table [3| shows the dates and number of missing points in the headers “Days” and
“Missing Data”, respectively. A close examination of Table [3| shows that the biggest
window of consecutive missing values is 2,736 (February 10-28) and takes place when
30% of the data is missing; on the other hand, the smallest window is of 144 values,
which corresponds to an entire day. This large set of 2,736 contiguous missing values
is selected in this work because it presents a challenge to classical and autoregresive
algorithms. Under the assumption that at least some of the missing data takes place
on holidays, we remove very little or no data in June and July because we managed to
accommodate all missing data in months were there are in fact holidays. As mentioned
before, we speculate that maintenance days may be placed on holidays and that this can
result in missing values. However, from the point of view of the proposed algorithm,
there is no distinction among missing values that result from maintenance days or any
other reason, therefore, all of them are treated in the same way.

We compared some of the statistical data distribution parameters like mean, standard
deviation, asymmetric coefficient (skewness), and kurtosis to determine how close the
calculated data is to the actual data in terms of statistical distribution. First we present
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5% of missing data

10% of missing data

15% of missing data

Missin Missin Missin
Month Days Data 9 Days Data g Days Data g
Jan 1,6 288 1-6 864 1-14 2016
Feb 24 144 24-28 720 24-28 720
Mar 21 144 21 144 15-25 1584
Apr 30 144 27-30 576 27-30 576
May 15,15 342 1,5-7 720 1,5-8 720
Jun - -- -- - -- -
Jul - -- -- - -- -
Aug 15 144 5,15 288 15 144
Sep 1,16 288 1,16-18 576 1,16-18 576
Oct 12 144 8-9,12 432 8-9,12 432
Nov 1,2,20 342 1-2,20 432 1-2,20 432
Dec 12,24-26 576 12,24-26,31 720 12,24-26,31 720
20% of missing data 25% of missing data 30% of missing data
Missin Missin Missin
Month Days Data 9 Days Data g Days Data g
Jan 1-14 2016 1-14 2016 1-14 2016
Feb 16-28 1872 16-28 1872 10-28 2736
Mar 15-25 1584 15-25 1584 15-25 1584
Apr 27-30 576 14-30 2448 14-30 2448
May 1,5-8 720 1,5-8 720 1,5-8 720
Jun -- -- -- -- 4-16 1872
Jul - -- -- -- -- -
Aug 15-21 1008 15-21 1008 15-21 1008
Sep 1,16-18 576 1,16-18 576 1,16-18 576
Oct 8,9,12 432 8,9,12 432 8,9,12 432
Nov 1,2,20 432 1,14-20 1152 1,14-20 1152
Dec |8-12,24-26,31 1296 8-12,24-26,31 1296 8-12,24-26,31 1296

Tab. 3. Dates and quantity of missing data.
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the descriptive statistics in Table[4to Table[9]to compare the values of the calculated and
actual data for missing value sets of 5%, 10%, 15%, 20%, 256%, and 30%, respectively.
The results for the test with 10% of missing data are slightly different from the rest, as
will be explained. In Table [4 to Table [0] GI stands for global irradiance, DIF for diffuse
irradiance, UV for ultraviolet irradiance, and T for temperature.

Standard

) Average - Skewness Kurtosis
Variable | RMSE deviation
Imputed | Actual | Imputed | Actual | Imputed | Actual | Imputed | Actual
Gl 79.42 22275 23159 29532 316.77 0.92 1.04 2.29 2.62
DIF 35.58 54.27 58.13 64.63 74.67 0.63 1.05 1.80 3.04
uv 3.68 10.86 11.19 14.93 15.89 1.05 1.20 2.60 3.08
T 1.83 2151 22.06 4.64 4.69 0.34 0.31 2.67 2.58
Tab. 4. Removing 5% of the data. Descriptive statistics of the
calculated and actual data.
. Average Sta’.‘d"?‘rd Skewness Kurtosis
Variable | RMSE deviation
Imputed | Actual | Imputed | Actual | Imputed | Actual | Imputed | Actual
Gl 86.36 22454 233.80 29650 317.56 0.93 1.03 2.57 2.32
DIF 37.60 54.83 58.60 65.09 75.42 0.63 1.09 3.14 1.83
uv 3.81 11.08 11.37 15.13 15.92 1.03 1.15 2.90 2.57
T 1.67 21.90 22.32 4.72 4.88 0.34 0.42 2.64 2.57
Tab. 5. Removing 10% of the data. Descriptive statistics of the
calculated and actual data.
. Average Star_wdgrd Skewness Kurtosis
Variable | RMSE deviation
Imputed | Actual | Imputed | Actual | Imputed | Actual | Imputed | Actual
Gl 101.96 23146 22572 30445 313.70 0.90 1.10 2.26 2.74
DIF 38.52 51.31 55.96 61.06 73.55 0.66 1.18 1.92 3.42
uv 4.45 11.46 11.17 15.63 15.91 1.02 1.20 2.54 3.06
T 2.10 22.05 21.85 4.62 4.98 0.28 0.36 2.36 2.50

Tab. 6. Removing 15% of the data. Descriptive statistics of the
calculated and actual data.
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. Average Stapdz_ird Skewness Kurtosis
Variable | RMSE deviation
Imputed | Actual | Imputed | Actual | Imputed | Actual | Imputed | Actual
Gl 108.20 227.44 22229 298,57 311.80 0.90 1.12 2.25 281
DIF 3859 51.18 5541  61.07 7368  0.67 1.23 1.94 3.57
uv 4.80 11.31 11.08 15.39 15.87 1.01 1.22 2.52 3.11
T 2.18 21.72 21.33 4.42 4.90 0.31 0.33 2.47 2.63
Tab. 7. Removing 20% of the data. Descriptive statistics of the
calculated and actual data.
. Average Star.‘d‘?“d Skewness Kurtosis
Variable | RMSE deviation
Imputed | Actual | Imputed | Actual | Imputed | Actual | Imputed | Actual
Gl 102.93 23392 231.33 306.06 318.97 0.90 1.07 2.27 2.66
DIF 3894 5403 5496 6425 7213  0.67 1.22 1.95 3.63
uv 4.59 11.62 11.53 15.76 16.28 1.02 1.17 2.54 2.97
T 2.08 22.23 21.89 4.60 5.00 0.24 0.26 2.38 2.50
Tab. 8. Removing 25% of the data. Descriptive statistics of the
calculated and actual data.
. Average Star_1de_1rd Skewness Kurtosis
Variable | RMSE deviation
Imputed | Actual | Imputed | Actual | Imputed | Actual | Imputed | Actual
Gl 105.83 230.94 236.97 301.70 323.65 0.91 1.03 231 2.54
DIF 40.63 55.64 56.81 67.01 74.03 0.76 1.19 2.16 3.49
uv 481 11.49 11.85 15.51 16.57 1.02 1.13 2.57 2.83
T 221 22.34 22.27 4.64 5.04 0.21 0.24 2.32 2.46

Tab. 9. Removing 30% of the data. Descriptive statistics of the

calculated and actual data.

As can be seen, the calculated and actual data present similar average values as well
as standard deviation, which confirms the accuracy of the algorithm; this means that
the calculated and actual data share a very similar central value and that the dispersion

of the data is also similar.

Additionally, the proposed algorithm results in a lower

standard deviation with respect to the actual data, indicating less variation due to how
the information is processed. Other important metrics are skewness and kurtosis, where
the calculated and actual data also have similar values; this means that the calculated
data preserves the distribution of the original time series. In the case of skewness, the
values are always positive, which denotes that the data is concentrated to the left of
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the distribution with the tail on the right. For the case of kurtosis, the values are, in
general, close to three; a value of three indicates data concentrated in the center of the
distribution (normal distribution); a value lower than three means that the distribution
of the data is wide; and a value higher than three results in the opposite, i.e., a very
narrow data distribution [19].

For the test cases in Table [4] and Table [6] to Table [0} we observe the same trend
in the variation of skewness and kurtosis for the diffuse irradiance. This shows that
the proposed algorithm tends to reduce the value of these metrics, which means a more
symmetric distribution with fewer data in its center; kurtosis indicates the quantity of
data in the Gaussian bell whereas skewness accounts for its symmetry. However, in
Table |5, we observe the opposite for kurtosis, i.e., the proposed algorithm concentrates
the data distribution. In general, these results indicate that the statistical properties of
the calculated data are maintained, which is a desirable feature when performing studies
with the resulting time series, for example, forecasting.

We now compare the proposed algorithm with the autoregressive model in equation
using the RMSE in equation 1| for each variable, as shown in Figure [I] In general, the
RMSE for the proposed algorithm increases with the number of missing data, except
for the global irradiance and temperature, where it decreases when going from 20% to
25% of missing data (Figure[lh) and d)); this means that the calculated and actual data
are very similar, which is desirable. According to the RMSE, the proposed algorithm
outperforms the autoregressive model by resulting in a lower value in every test, which
means that calculated and actual data have very similar values, also a desirable result.

The R? performance index in equation [2|is shown in Figure [2| for the case with 30%
of missing data since it has the highest RMSE according to Figure (worst case); an R?
value of 100% denotes a perfect fit between the calculated and original data. The highest
values of R? correspond to the ultraviolet irradiance with 91.6% and 83.0%; followed by
the global irradiance with 89.3% and 78.0%; next is the temperature with 80.9% and
75.0%; and last the diffuse irradiance with 69.9% and 51.7%. For all variables, the first
result for R? corresponds to the proposed algorithm and the second to the autoregressive
model. As with the descriptive statistics in Table [d] to Table [9] the diffuse irradiance
shows a decreased performance when compared to the other variables, and this will be
studied later in more detail. Still, the R? value is higher for all cases where the STIGMA
is employed for the imputation of the missing data.

In Figure [2[ we also show a linear regression of the data, which gives information on
how the calculated data fits the actual data. The continuous line represents the linear
regression model (Y) of the calculated data versus the actual data, and the discontinuous
line (Y) stands for the actual data versus the actual data (hypothetical case of a perfect
fit). The plots in Figure [2h), c), e), and g) show the results of the proposed algorithm
and the plots in Figure )7 d), f), and h) show the ones of the autoregressive model. The
linear regression of the calculated data (\?) is obtained by plotting the calculated and
actual data on the y and x axes, respectively, whereas the perfect fit (Y) is the real data
plotted on the y and x axes; the closer these two lines are, the better the calculated data
fits the actual data. It is evident from all plots that the proposed algorithm performs
better than the autoregressive model, as these two lines are closer.

The plots of the calculated and actual data for all variables in the case of 30%
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Fig. 1. RMSE for the calculated data; using the STIGMA algorithm
and the Autoregressive model, a) global irradiance, b) diffuse
irradiance, c) ultraviolet irradiance, d) temperature.

of missing data are depicted in Figure 3] where the calculated data results from the
proposed algorithm. As shown in the plots, the STIGMA maintains the trend of the
corresponding time-series even for large gaps of missing data for the global irradiance,
ultraviolet irradiance, and temperature. However, for the case of the diffuse irradiance
the results do not perform as expected and will be analyzed in detail. For comparison,
Figure 4| depicts the actual and calculated data using the autoregressive model for all
variables, where a visual inspection shows that the calculated data fails to maintain the
trend of the known data; we see that the shape of the calculated and known data are
not similar. The results for the diffuse irradiance data calculated using the proposed
algorithm are now given using Figure [5] where the “best” and “worst” three days are
selected based on their individual RMSE. The “best” three days, ordered from lowest
to highest by their individual RMSE, are December 31, December 08, and October 08
(Figure a)), and have a combined RMSE of 7 W/m? and an R? of 98.6% for the
complete set of 432 data points (144 for each day).

On the other hand, Figure b) shows the “worst” three days, again ordered from
lowest to highest by their individual RMSE, that are June 16, January 04, and February
24, and have a combined RMSE of 72.5W/m? and an R? of —9.9%; a negative value
of R? means that the error between the calculated and actual data is much larger than
the error between the actual data and its average, which is not desirable. As mentioned
before, we notice that the “worst” three days show atypical data points that do not
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Fig. 2. Linear regression to measure the data fitness for a 30% of the
missing data using the STIGMA algorithm for the a) global
irradiance, c) diffuse irradiance, e) ultraviolet irradiance, and g)
temperature; and using the autoregressive technique for the b) global
irradiance, d) diffuse irradiance, f) ultraviolet irradiance, and h)
temperature.

follow the trend of the signal. These atypical points are clearer on June 16 were we
see a data window of constant values (see the data marked in blue in Figure [5|b)); the
authors do not know why the data behaves in this manner.

As an example, let us consider the data from February, where only 9 days are known
and the rest have to be calculated (19 days). Figure c) shows the available data
used for the imputation of unknown values, from February 01 to February 09, where
we see that data is not uniform among days, and some of them present very high or
low values that fall outside what would be considered normal, i.e. a smooth sinusoidal
like behaviour as in February 06 and February 07; a good practice could be to delete
the atypical values (February 01 to February 05 and February 08 to February 09) and
calculate new data using days with typical behaviour. Also, Figure d) depicts the
calculated data, from February 10 to February 28, where we can see the same kind
of atypical high and low values compared to the other time-series (global irradiance,
ultraviolet irradiance, and temperature). Since the proposed algorithm randomly selects
data points for the imputation of missing values, if the available data is not accurate it
will result in inaccurate calculated values.

Now, as with the results obtained using the proposed algorithm, Figure [f] shows the
“best” and “worst” three days from Figure [4| for the diffuse irradiance data calculated
with the autoregressive model; these days are selected based on their individual RMSE
and ordered from lowest to highest. The “best” three days have a combined RMSE of
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Fig. 3. Time-series with 70% of known data and 30% of the values
calculated using the STIGMA for the a) global irradiance, b) diffuse
irradiance, ¢) ultraviolet irradiance, and d) temperature.

9.6 W/m? and an R? of 94.8% for the complete set of 432 data points (144 for each day),
and correspond to November 20, May 01, and March 25 (Figure[6a)). On the other hand,
the “worst” three days are March 16, June 05, and June 11 with a combined RMSE of
91.4 W/m? and an R? of —447.4% (Figure @b)) Comparing these results with the ones
calculated with the proposed algorithm (Figure 7 we can observe that the proposal
performs better, showing lower RMSE and less negative R? values, which, as mentioned
before, means that the error between the calculated and actual data is very large.

It is important to note that the autoregressive model takes past values for the impu-
tation of new ones (Equation )7 but when the window of missing data is large, it is
clear that it will eventually use calculated values as data for new ones, which diminishes
accuracy. On the other hand, the proposed algorithm finds all similar known data cor-
responding to a certain period and takes n values to calculate the average employed for
the imputation of the missing data; the process is repeated until all missing values are
completed.

3.3. Other applications of the STIGMA

To further confirm the results, the STIGMA is employed for the imputation of the beer
sales and air-passenger time-series shown in Figure [7] and Figure |8, respectively; these
time series also present cyclic patterns. There are no missing values in any of the two
time-series. However, we randomly remove 30% of the data points in both cases to test
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Fig. 4. Time-series with 70% of known data and 30% of the values
calculated using the autoregressive model for the a) global irradiance,
b) diffuse irradiance, c¢) ultraviolet irradiance, and d) temperature.

the proposed algorithm.

The beer sales time-series has 154 measurements every three months from January
01, 1956, to April 01, 1994. In Figure a) we show the complete time-series along with
the 30% randomly removed data points that are going to be calculated.

Since the proposed algorithm works from a seasonal pattern, we divide the complete
time-series into a set of sections marked by discontinuous lines, as shown in Figure a).
The criterion used was to group data points that present a somewhat periodic behavior
and run the proposed algorithm on each one of them. First, we identify the window
that presents a positive trend corresponding to January 01, 1956, to January 01, 1973
(first 72 data points) to determine the number of sections. To reduce the effect of this
trend, we divide the window in four sections with 18 points in each one. The rest of the
time-series (last 82 points) is fairly stationary and is treated as one section.

Figure b) shows the actual versus the calculated data using the proposed algorithm,
where a visual inspection indicates good agreement between them. This is confirmed by
an RMSE of 13.2 x 106 liters and an R? of 98.2%, which indicates that the error between
the calculated and actual data is small.

On the other hand, the time-series for air passengers has 144 data points, measured
every month from January 01, 1949, to December 01, 1960. Similar to the time-series
of beer sales, Figure a) shows the complete time-series along with the 30% randomly
removed data points that are to be calculated; the proposed algorithm also runs over
sections, in this case, three.
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Figure b) shows the actual versus the calculated data using the proposed algorithm,
where it is clear to see the good agreement between them; again, this is confirmed by
an RMSE of 283.7 passengers per month and an R? of 96%, which also indicates that

the error between the calculated and actual data is small.
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4. CONCLUSIONS

The main problem researchers and engineers face using time-series from weather stations
is filling gaps when data is missing. When these gaps are small, several classic methods
can be employed; however, they fail when the window length of missing data is large
because they need available data close to the missing values. On the other hand, autore-
gressive models are well-suited in these cases because they take past data to determine
the missing values and use these to compute new ones. However, these methods also fail
when the window of missing data is very large and the points are consecutive.

We developed a new approach for the imputation of missing data from seasonal
and cyclic time-series that, according to the results, is straightforward to implement
and outperforms an autoregressive model employed for testing. The proposed model is
based on the persistence and moving average models, and it randomly finds available
data using the date and time of the missing values, thus better representing the behavior
of the time-series. The algorithm was developed for the imputation of large windows
of contiguous missing data, and, for example, in the tests presented in this work, we
successfully calculated a maximum window of 2,736 data points.

The results show that the statistical properties of the calculated and available data
are very similar even for large windows of missing values, thus confirming the accuracy
of the proposed algorithm. The tests in this work also show that the proposed algorithm
is adequate for the imputation of data on time-series with seasonal and cyclic patterns,
achieving lower RMSE and higher R? values when compared to an autoregressive model
employed for testing. Moreover, the algorithm is also tested with time-series of beer
sales and the number of air passengers, also showing good performance. The results
suggest that the proposed algorithm can be used to complete missing data in weather
stations to develop, for example, forecasting models based on statistical and machine
learning techniques for the sizing of PV systems or wind parks.
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