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UNIQUENESS WITHOUT CONTINUOUS 
DEPENDENCE 
T. A. BURTON and D. P. DWIGGINS 
Department of Mathematics, Southern Illinois University 
Carbondale, Illinois 62901, U.S.A. 

1. Introduction. In the classical theory of ordinary differential 

equations if solutions of a system 

(1) x' = h(t,x) 

are uniquely determined by initial conditions, then the solutions are 

continuous in the initial conditions. But the situation is much differ

ent for differential equations in infinite dimensional spaces. Suffi

cient conditions for this to hold have been discussed in [8-16] and [19-

20]. Recently, Schaffer [18] constructed a fairly abstract example of 
00 

a differential equation in the Banach space I of bounded sequences with 

the supremum norm in which solutions are unique but are not continuous 

in initial conditions. 

We present a simple example of the same behavior and point out that 

the real difficulty is that there are many topologies for the initial 

condition space. 

2. Continuity in initial conditions. Consider the system 
t 

(2) x' = h(t,x) + J q(t,s,x(s))ds 
- 00 

in which h: (-00,00) x Rn + Rn, q: (-00,00) x (-00,00) x Rn + Rn, with h and 

q continuous pointwise. To fix the function space we suppose all solu

tions start at tn = 0. Then, to specify a solution of (2) we require a 

continuous initial function cj>: (-°°,0] -* R such that 
def ° 

$(t) = J q(t,s,4>(s))ds 
_ 00 

is continuous for t >̂  0. We may then use the Schauder fixed point the

orem to show that the system 
t 

(3) x' = h(t,x) + j q(t,s,x(s))ds + *(t) , x(0) = 4>(0) 

has a solution x(t,0,<J>) satisfying (3) on an interval [0,3), for some 

3 > 0, with <x(t,0, cj>) = <J>(t) on (-<*>,OV 

System (2) is well defined using pointwise continuity in R and 

there is an initial function set X consisting of continuous functions <t> 

for which $ is continuous for t >_ 0 (X may be empty) . Without putting 

any topology at all on X the problems of existence, uniqueness, and 

continuation of solutions are well-defined. But to complete a classical 
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fundamental theory for (2) we want to say that for each <p £ X if there 

is a un ique s o l u t i o n x(t,0,(f>) on [0,3] and if {ijj } is a sequence in X 

conve rg ing to 4> t hen s o l u t i o n s x(t,0,i|; ) converge to x( t ,0 , ( j ) ) on [0,3], 

While we are quite w i l l i n g to accept any type of convergence of 

x(t,0,i|> ) to x(t,0,cj>) on [0,3], the mean ing of \\> c o n v e r g i n g to $ must 

be specified. 

In a g i v e n problem we f r e q u e n t l y have a wide degree of freedom in 

our choice of topology for the i n i t i a l c o n d i t i o n space. Recen t prob

lems call for unbounded i n i t i a l , f u n c t i o n s , p l e n t i f u l compact subsets 

of these i n i t i a l functions, and'cont inuity of the t r a n s l a t i o n map. 

These requirements lead us to a locally convex topological vector 

R is c o n t i n u o u s and for <J>, \\J £ Y s p a c e ( Y , P ) w i t h ф € Y i f ф: (-°°,0 

t h e n 

( 4 ) P(Ф,Ф) = ^ 2 " k [ p 
k = l 

[P
k
U-<!>)/U + P

k
(<f>,ifO)] 

where p, (<J>,i|0 = max | <Ks) - ip(s ) | and |«| is any norm on R . For 
K
 -k<_s<0 

motivations see [1 - 5] and [7]. Problems are also effectively treated 

using a Ranach space with weighted norm as the same r e f e r e n c e s show. 

LXAMPLli 1. C o n s i d e r the l i n e a r scalar e q u a t i o n 

(5) x' = x + J" [x(s)/(t - s + l) ]ds 

which has the zero s o l u t i o n and it is u n i q u e . In fact, if $ :' (-°°,0] -• R 
0
 3 

is any c o n t i n u o u s f u n c t i o n for which $ ( t ) = J U ( s )/ (t-s + 1) ]ds is con

t i n u o u s for t >_ 0, t h e n there is one and on l y one s o l u t i o n x(t,0,<j>) 

d e f i n e d on [0,°°) . Note that the set X is not empty. We now show that 

s o l u t i o n s x(t,0,(J>) are not c o n t i n u o u s i n ( Y , p ) . 
PROOF. Def ine a sequence {(J> } c X by 

Ф (s) = 

0 

- n ( s + n ) 

if 

if 

-n < s < 0 

Notice that 

P(Ф
П
,0) 

k=l 
P

k
(Ф

n
,0)/[l +P

k
(Ф

n
,0)] 

k=n 

and so {(j) } c o n v e r g e s to the zero f u n c t i o n i n (Y,p). Now, for 0 <_ t <_ 1 
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and n > 2 we have 

0 
$ n ( t ) = J* ̂ n ( s ) / U " s + !)^s 

-n 
>_ -n j [(s + n)/(-s + 2)3]ds >_ 1/16. 

- CO 

Hence, we are considering the equation 

t 
x' = x + f [x(s)/(t - s + l ) J ] d s + <i> ( t ) - x - J t x l . . . . _, ,__ .„. 

> x + ( 1 / 1 6 ) 

so that continuity of x(t,0,(J>) in <j> fails. 

Schaffer suggests that the absence of continuity in his example 

may be the result of his space, £ , being neither separable nor reflex

ive. But our sequence {<j> } is contained in a compact subset of (Y,p) 

so the subset is separable and it may be embedded in a Banach space. 

One can show that (Y,p) is not reflexive. However, since (Y,p) is 

Frechet it is barreled (cf. [17; p. 60]). 

PROPOSITION 1. Let {<j>n} be the sequence of Lxample 1 in (Y,p). 

Then {<j> } is contained in a compact subset of (Y,p). 

PROOF. Define a continuous function g: (-°°,0] -> [0,°°) by 

g ( s ) = sup <j> (s) . Then g is a continuous piecewise linear function. 
n 

Moreover, if s > -n, then g(s) is Lipschitz with constant n. Let 

a: (-°°,0] -*• [0,oo) be the piecewise continuous linear function defined 

by a(-n) = n. Then the set 

S = U € Y | |cf)(s) | <_ g(s) on (-«>, 0] , 

| cj)(u) - cf)(v) | <_ a(|u| + |v| + 1) |u - v| } 

is compact in (Y,p) (cf. [7; p. 2]) and contains {<!>}• This completes 

the proof. 

To see that S can be embedded in a compact subset of a Banach 

space, for the function g defined in the proof of Proposition 1, define 

(s) = [g(s) 

€ Y and if 

j ( s ) = [ g ( s ) + l] 2. Then define the Banach space ( Z , | - | ~ ) by <j> € Z if 

I 4> I ~ = sup |(f)(s) |/g(s) 
*» -oo<S<0 

exists. This is a Banach space and S is compact in it. 
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PROPOSITION 2 . The set S in the proof of Proposition 1 is con

tained in a*reflexive subspace of Y, 

PROOF. Let Q = L(S) be the linear hull of S (i.e., Q is the space 

formed by taking linear combinations from S . ) . Now Q is a subspace of 

the locally convex metric space Y and so Q is a locally convex metric 

s p a c e . Moreover, as S is closed, Q is closed and c o m p l e t e . Hence, Q 

is a Frechet space and is b a r r e l e d . Q is not compact since Q is un

bounded in the sense of Treves [21; p p . 136-7], However, closed and 

(Treves) bounded subsets of Q satisfy boundedness and Lipschitz condi

tions similar to those of S, and so must be compact. Therefore, Q is 

a reflexive space (cf. Treves [21; p. 373]). This completes the proof. 

Hence, continuity in initial conditions is not guaranteed by the 

separability and reflexivity of the space. 

3. Fading memory. In general, (2) makes sense only when there 

..— 
is a fading memory. Consider the scalar equation 

t 
x1 = A(t)x + J* Cft-s)x(s)ds. 

At the very least we wish to consider all bounded continuous <f> £ Y. 

Since we want <2>(t) to be continuous for t > 0 we need to ask that 

f | C ( u ) | d u < oo. Then by [6] there is a continuous increasing function 
0 
r: [0,«0 -• [1,*) such that r ( t ) -> °° as t + » and J | C ( u ) | r ( u ) d u < oo. 
We take g(s) = r(-s) so that if |(|>(s)| <_ yg(s) for some y > 0, then 

0 
J |C(t - s ) < K s ) | d s £ Y J|C(u)|r(u)du 

t 

and this tends to 0 as t -»• °°. In summary, if we admit bounded <£ then 

we can admit unbounded <j> and the memory of <p fades in <f>(t) as t -> «. 

A similar result holds for nonlinear systems as may be seen in [5]. 

The function g is central to the study of delay equations and its 

role may be seen in [1 - 5] and [8]. For (2) to have meaning we expect 

to be able to require $ to be continuous in t for bounded continuous 

<{>. But in many problems one quickly learns that unbounded <{> are needed; 

however, we show in [5] that if bounded <p make <f> continuous then so do 

certain classes of unbounded <j>. And this gives rise to the function g 

which is the weight for a Banach space (X,|«| ). In order to have a 

unified theory of existence, continuity, boundedness, stability, and 

periodicity we work entirely in this Banach space. The importance of 

that unity is illustrated in [4] . 

In a private communication Kaminogo informs us that he improved 

our Example 1 by using bounded initial functions and has obtained 
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continuous dependence results for bounded initial f u n c t i o n s . 

As a step toward completion of a unified theory we now present a 

result on continuous dependence on initial conditions using unbounded 

initial f u n c t i o n s . In preparation for that result we now suppose that 

for the equation (2) there is a continuous function g: (-°°,0] -• [1,°°) 

which is decreasing, g (0 ) = 1, and g(r) -> oo as r ->- -«>. Form the Banach 

space (X,|-| ) with <j> e X if <j>: (-°°,0] -> Rn is continuous, 

\<p\ d-ff sup |(D(t)|/g(t) 
S -oo<t<_0 

exists, and there is a nonempty subset U c X for which the following 

definition h o l d s . 

DEF. A set U c X is an existence set for (2) if $ £ U implies 

$ ( t ) is continuous for t >_ 0 . 

DEF. Let U be an existence set for (2). Then (2) has a fading 

memory with respect to U if for each <j> £ U, each J > 0, and each e > 0 

there is a 6 > 0, a D > 0, and an M > 0 such that if ty £ U, \^-\p\ < 6, 

and 0 < t <_ J then 
-D 

(a) / |q(t,s,iKs)) - q(t,s,cf)(s)) | ds < e and 

(b) |J q(t,s,iKs))ds| < M. 
- 00 

THEOREM. Let U be an existence set for (2) and let (2) have a 

fading memory with respect to U. Suppose there is a <j> £ U such that 

x(t,0,<j>) is unique on some interval [ 0 , t - , ] . Then x(t,0,(J>) is contin

uous in (j> in the following sense: If {ty } c U and | <J> - ib \ ->- 0 as 

n -> oo ? then |Qcj) - Qip | -*- 0 as n -> « where (Q<()) (t) = x (t + t-. , 0, (J)) for 

-oo < t <_ 0 and x(t,0,^ ) is any solution of (2) with initial function 

PROOF. Let x(t,0,(J>) be defined on [0,t-,] and suppose it is not 

continuous in 4). Then for some e > 0 and for each 6, > 0 there exists 

ty, € U and t, € [0,t ] with | x (t, , 0, <>) - x (t,,0 ,ip, ) | >_ e. We may 

assume t, ->• S ̂  [0,t..] by picking a subsequence if necessary. Moreover, 

we may assume the t, chosen so that {x(t,0,^,)} is bounded on [0,S]. 

Thus, {x' (t, 0 ,i|;, ) } is bounded on [0,S] and so {x(t,0,^,)} is an equi-

continuous sequence with a convergent subsequence, say {x (t, 0 9\p, ) } 

again, with limit n ( t ) . We may write 
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for a n y 1) > 0. Let L. ~> 0 be g i v e n a n a let 0 < t < S. T h e n there is 

a 1) •> 0 such that 

t -1) 
\! J !q(u,s,ij, (s)) - q(u,s,<j)(s))]ds du| < c . 
I)

 K l 

For t h i s 1) > 0, t h e n {i|;, (s)} c o n v e r g e s u n i f o r m l y to <f>(s) on [-D,0]. 

Hence, we may take the limit as k •> °° ana f ind tliat x, (t) -> n(t) and 

П(tj = ф(0) - Г h(s,
n
(s))ds 

t 0 
+ J, f q(u,s,n(s))ds du + ? j q(u,s,4>(s))ds du. 

Thus, n ana x(t,O,0) satisfy the same e q u a t i o n . S ince that e q u a t i o n 

has a un ique s o l u t i o n , n(t) = x(t,0,c|>). This contradicts 

|x(t,,0,(J)) - x (t, , 0, ip, J | > e and completes the proof. 
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