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SURJECTWTTY AND BOUNDARY VALUE 
PROBLEMS 
V. ŠEDA 
Faculty of Mathematics and Physics, Comenius University 
Mlýnská dolina, 842 15 Bratislava, Czechoslovakia 

In the paper we shall deal with an initial and a boundary problem 

for the functional differential equation with deviating argument x'(t)= 

= f[t,x , J in a Banach space whereby the functions of the state space 

are defined in the interval (-°°,Ol as well as with the generalized 

boundary value problem for a system of differential equations in R .The 

main tool for proving the existence of a solution to these problems 

will be some theorems on surjectivity of an operator. 

1. Surjectivity of an operator. 

Let (E, | . | ) be a real Banach space, <J> # X C E and S : X - E. We 

recall that S is compact if S is continuous and maps bounded sets into 

relatively compact sets. Similarly T : X - E is said to be a condensing 

map if T is continuous, bounded (i.e. maps bounded sets into bounded 

sets) and for every bounded set A C x which is not relatively compact 

we have a(T(A)) < a(A) where a is the Kuratowski measure of noncompact-

ness. A simple example of a condensing map is one of the form U + V 

where U : X -* E is a strict contraction and V : X -*• E is a compact map. 

Let G * <f> be an open subset of E and denote by G the closure of G. 

Let T : G - E be a condensing map, a £ E. If the set A = {x G G : x -

- T(x) = a} is compact (possibly empty), then the degree deg(I - T,G,a) 

is defined in the sense of Nussbaum [ 6l whereby I is the identity. 

Notice that A will certainly be compact if G is bounded and T is such 

that x - T(x) * a for all x G 8G (boundary of G) ( [ 6 l , p. 744). If T is 

compact, then the degree above agrees with the classical Leray-Schauder 

degree. 

Denote B the real Banach space of all continuous functions 

x : [0,°° ) - E such that there exists lim x(t) = x(°°) (G E) for t - °°. 

The norm in B is defined by H I x I II = sup{|x(t)| : 0 < t < °°} for each 

x G B. Let, further, U(r) = {x £ E : |xl < r}. Using the degree theory 

for condensing perturbations of identity, the topological principle in 

[8l , p. 241, can be generalized as follows (for proof, see [9],[10]). 

Theorem 1. Let g : E - B be a continuous mapping. Denote by g(x,t) 
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t h e v a l u e of g( x) G B a t t h e p o i n t t G [0,°°l (g(x,«>) = l im g ( x r t ) f o r 
t •* °°),iAssume t h a t 

( i ) v (x ) = i n f { | g ( x , t ) | : 0 < t < <*>} - «> for JXJ - 0 0 . 

(ii) the mapping I - g{.,t) is condensing for each t G [0,°°l ; 

(iii) for each y G E there is an rQ> 0 such that 

deg(g(.,0) - y, U(r ),0) * 0 ; 

(iv) g(x,.) is continuous in t, uniformly in x G U(r) for each 

r > 0. Then for each t G [0,°°l 

g(E,t) = E. 

Proof. Let y G E, tQ G [ 0,°°] . By (i) , there is an r > 0, |y| < 

< rQ, such that y £ g(aU(rQ),t) for each t G [0,«>] # Hence the mapping 

G : U(rQ) X [0,°°l - E defined by G(x,t) = x - g(x,t) + y is continu

ous and G(x,t) * x for x G 3U(r ), t G [ 0 , ° ° l , By (ii), G(.,t) is a 

condensing map for t> G [0,°°] and (iv) implies that G(x,.) is continu

ous in t, uniformly in x G U(r ). Hence, by Corollary 2 in [ 6] , p.745, 

and (iii), for each t , 0 < tn < °°, 

deg(I - G(.,tQ), U(rQ),0) = deg(I - G(.,0), U(rQ),0) = 

= deg(g(.,0) - y, U(rQ),0) * 0. 

As to the set S = (x G U(r ) : g(x,t ) - y = 0}, either it is not 

compact or in case it is compact we can use Proposition 5 from [6l , 

p. 74 4, and hence, in both cases it is nonempty. 

Corollary 2 as well as Proposition 5 from [ 6l can be applied to 

the case tQ = °°, too, since then t = tg j s maps [0,1] continuously on 

[0,°°] and instead of the function G(x,t) we consider G (x,s) = 

= G(x,tg j s), x G U(rQ), s G [0,1] . 

Remark. Clearly the assumption (iii) is satisfied if g(x,0) = x 

for each x G E. 

On the basis of the Schauder theorem on domain invariance ([ 2l , 

p. 72) the following result can be proved ([ 10l ). . 

Theorem 2. Let T : E - E be such that 

(a) lim |T(x) I = °° • 
lxl-°° 

(b) I - T is compact; 

(c) T is locally one-to-one, i.e. for each point x G E there is a 

neighbourhood N of tr.io point such that Tl is one-to-one. Then T(E)=E. 
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Proof. The assumptions (b), -(c) imply that T is an open mapping, 

i.e. it maps open sets onto open sets. Hence T(E) is an open subset of 

E. Let {y } C T(E) be a convergent sequence and yrt = lim y . Then we n 0 «« n 

can find a sequence {xR} such that T(xn) = yR. Assumption (a) is 

equivalent to the statement that the inverse image of a bounded set at 

the mapping T is a bounded set. Hence the sequence {x } is bounded 

together with the sequence {yR}. By ( D ) , there is a subsequence {xm} 

of {x } and a point x„ G E such that x - y = x - T(x ) - x_ as 1 n 0 m m m m O 
m -> °°. Then lim x = y + x , and by continuity of T, T(x + y ) = y . 

m-*°° 
Thus yQ £ T(E) and T(E) is closed. As E is connected, T(E) = E. 

Corollary 1. Let T : E - E be such that 

(a) lim |T(x) I = °° ; 
|xl-°° 

(b) I - T is compact; 

(c) T is one-to-one. 

Then T is a homeomorphism of E onto E and there is a compact mapping 
-1 -1 

Tj_: E -> E such that T = I - T-_ where T is the inverse mapping to T. 

Proof. By Theorem 2 and its proof we have that T(E) = E and the 

mapping T is continuous. Hence T is a homeomorphism. For T we 

have the identity I - T'1 = (T - I) o T_1
t By (a), T"

1 is a bounded 

mapping and thus, by (b), I - T""1 = T is compact. 

If E = Rn, then Theorem 1 is true without assuming assumptions 

(ii),(iv) and in Theorem 2 instead of the assumption (b) it suffices to 

assume the continuity of T. Choosing properly the mapping g : R - B (B 

now means the Banach space of all continuous functions x : [0,1] -*• R 

with the supnorm, I.I is the euclidean norm in Rn and (. , . ) the scalar 

product in this space) we get the following 

Corollary 2. Let T : R -> R be a continuous mapping such that 

(i) lim lT(x) I = oo ; 
Ixl-*00 

(ii) either there is an x n
e R such that 

T(x)-x = k(x-xrt) implies k > 0 for each x € R
n, x 4= x , 

0 0 0 
or 

there is an r > 0 such that (x,T(x)) > 0 for all x G R f 
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or 

T is locally one-to-one. 

Tnen 

Proof, a. Consider the first case that there is an x G Rn such 

that 

(a) T(x) - x0 = k(x - xQ) implies k > 0 for each x G R
n, x * xQ . 

Without loss of generality we may assume that xn = 0. Let the mapping 
n ^ 

g : R - B be defined by 
g(x,t) = tT(0). for x = 0, 0 < t < 1, 

g(x,t) = [ (l - t)|x| + t|T(x)|] .[ 1(1 - t)x + tT(x)|]~1. 

[(1 - t)x + tT(x)] for x * 0, 0 < t < 1, 

g(x,t) = T(x) for x * 0, t = 1. 

By (a) the mapping g is well defined. Further g(x,.) is continuous in 

[0,1] for each x G R and thus, g maps R into B. Clearly 

($) g(x,0) = x, g(x,l) = T(x) for each x e R . 

Now we prove that g is continuous. Let x * 0 be an arbitrary but fixed 

point from R and y be a point sufficiently close to x. Then 

|q(x t) - q(y t)| < 1(1 •" .U*,-+ t T < x ) (l - t)y + tT(y) I 
ig^x,t; g^y,t:;. s | | ( 1 _ fc)x + t T ( x ) , ,(1 _ t ) y + tT(y) | | • 

. [(1 - t)|x| + t|T(x)|] + 

+ 1(1 - t)(|x| - |y|) + t(|T(x)| - |T(y)|)|, 0 < t < 1. 

Clearly the second term on the right-hand side is less or equal to 

(Y) (1 - t)|x - yl + t|T(x) - T(y)|, 0 < t < 1. 

As to the first term, there is a constant k > 0 such that this term is 

less or equal to 

k | (1 - t)y + tT(y)r1.|[(l - t)x + tT(x)] • 1(1 - t)y + tT(y) | -

- [ (1 ~ t)y + tT(y)] .1(1- t)x + tT(x)| | < 

< k|(l - t)y + tT(y)|"1 . |[(1 - t)(x - y) + t(T(x) - T(y))] . 

. 1(1 - t)y + tT(y)| + [ (1 - t)y + tT(y)] . [ |(l - t)y + tT(y)|-

- 1(1 - t)x + tT(x)|]I. 

Hence the first term is less or equal to 

(6) 2k[(l - t)|x - y| + t|T(x) - T(y)|], 0 < t < 1. 

The inequalities (Y) and ( 6 ) give 
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|g(x,t) - g(y,t)| < (2k + i)[ (1 - t)lx- y| + t|T(x) - T(y)11 , 

0 < t < 1, 

which proves the continuity of g at x * 0. In a similar way it can be 

shown that g is continuous at 0. 

Now we derive properties (i), (iii) of g from Theorem 1 and this 

will complete the proof of this part of Corollary 2. As |g(x,t)| = 

= (1 - t)|x| + t|T(x)| > min(|x|,|T(x)|), clearly (i) is satisfied, 

(iii) follows from (3). 

b. Suppose that there is an r > 0 such that 

(x) (x,T(x)) > 0 for all x G Rn, |x| > r . 

Consider the mapping g which is defined for each x e Rn, o < t < 1, by 

g(x,t) = (1 - t)x + tT(x). 

Clearly g : Rn - B and g is continuous. Further g satisfies ($). By (x), 

lg(x,t)|2 > (l - t) |xl2 + t2|T(x)|2 > | [(l - t)|x| + t|T(x)|]2. 

Hence g satisfies assumption (i) as well as (iii) of Theorem 1. By 

this theorem the result follows. 

c. The statement of Corollary 2 in case that T is locally one-to-

one follows directly from Theorem 2. 

2. Functional Differential Equations With Deviating Argument 

First we formulate the initial-value problem for these equations 

which includes the problem from [12],[4] and is related to one in [l], 

[3]. For details and proofs, see [9]. We shall employ the notations: 

(E,I,I) is a real Banach space. 

The state space C is the Banach space of all continuous and 

bounded mappings x : (-°°, 0] -* E with the sup-norm II . II . 

^ : [0,°°) •* (0,°°) is a nondecreasing continuous function. 

The deviation u» : [0,°°) - R is a continuous mapping such that 

u>(0) = 0. 

f : [ 0 , ° ° ) X c - E i s a continuous mapping. 

a = max (a,0) for each a € R, sgn 0 = 0 , sgn a = 1 for each a > 0, 

Finally, if x : (-00,00) "̂  E is a continuous mapping which is boun

ded in (-°°,0] and u € R, then x is the function defined by 

x (s) = x(u + s) for all s, -°° < s < 0. 

Clearly xuG c. 

Tkz Initial-VCLIUQ, pioblzm in the case that h G C is uniformly 

continuous in (-°°,0] 

(1 ) x' (t) = f-t,xM(t)] 

(2) xQ= h 
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means the problem to find a function x which is continuous in ( - 0 0 , 0 0 ) , 

x ( t ) - h(t) for all t <E (°°,0l, x is differentiable in [ 0 , ° ° ) and it 

satisfies (1) at each point from [ 0 , ° ° ) . Since w, f are continuous and 

h is uniformly continuous, the problem (1 ),(2) is equivalent to the pro

blem: To find a continuous solution of the integral equation 

( 3) x(t) = h(0) + / f [ s , x / _ J d s (0 < t < °°) 
0 

which satisfies (2). 

Consider the following assumptions: 

(Al ) The function / |f(s,0)lds is (^-bounded in [0,°°), i.e. I / |f(s,0)| 

0 0 
dsl/ <|>(t) (0 < t < °°) is bounded. 

(A2) There exists a nonnegative, locally integrable in [0,°°) real func

tion n such that 

I f (t r ZJL ) - f(t,z 2)| < n(t) Hz 1- z 2 II 

for every z^z e c and t G [0,°°). 

(A3) The function / n(s)ds is ^-bounded in [ 0,°°) . 
0 

(A4) There exists a q, 0 < q < 1, such that 

/fc n(s) sgn w + (s H [ u) + ( s ) 1 ds < qc|(t) (0 < t < °°) . 
0 

(A5) There is a K > 0 such that / If(s,Olds < K for all t, 0<t<°°. 
0 

t 
(A6) There is a q, 0 < q < 1, such that / n(s)ds < q, 0 f. t < °° . 

0 

The existence of a unique ^-bounded solution to (1),(2) is 

guaranteed by 

Lemma 1. If the assumptions (A1)-(A4) are satisfied, then there e-

xists a unique (^-bounded in [0,°°) solution x(t) of (1),(2), i.e. Ix(t)| 

/4>(t) is bounded in [0,°°). 

Proof. Let D be the vector spa.ce of all continuous mappings 

x : (-00,00) * E which are bounded in (-°°,0j a.nd ̂ -bounded in [0,°°), 

D h = (x € D : x(t) = h(t), -oo < t ^ 0} . Let F be the Banach space of 

all continuous and ^-bounded mappings x : [ 0 , 0 0 ) - E with the norm 

llxl^ = sup |x(t) I /<Jj(t). Then in view of the assumptions of the lemma 

the mapping T defined by 

T(x)(t) = h(t), -°° < t < 0, 

T(x)(t) = h(0) + } f[s,x w ( s )lds, 0 < t < °°, 

maps D, into D. or considering only the restriction of functions from 

D to [0,°°) , T : G -> G where G = (x e F : x(0) = h(0)} is a closed 
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s u b s e t of F . By (A2) and (A4) | T ( x ) ( t ) - T(y) ( t ) | /<|,( t ) < 

" I n ( s ) i X o ) ( s ) ~ yuts)ld3'*m * l l x " y ' 1 ! / n ( s ) sgn u + ( s ) . 
(i>[a3 + ( s ) l d s / u > ( t ) < qllx - y B i . The Banach f i x e d p o i n t tneorem g i v e s t h e 
r e s u l t . 

By considering the bounded solutions ol the 

problem (1), (2) we can prove 

Lemma 2. If the assumptions (A1)-(A4) are satisfied and cl> is boun

ded, then for the unique bounded solution x(t) of (1 ) , (2) there exists 

lim x(t) = c (G E). 
t-*°° 

Proof. tBy (3) and (A2), for 0 < t i < t2 < ~ W e h a v e | x ( t ) . 

- x(t1)| < /
2|f(s,0)|ds + £2 n(s)lxu(s)lds. In view of (Ai), (A3) and 

the boundedness of <|,, by the Cauchy-Bolzano criterion the result 
follows. 

Denote this unique bounded solution of (1 ) , (2) as x(t,h). Then the 

continuity of the bounded solution of (1 ) , ( 2 ) in h is proved in 

Lemma 3. Suppose that (A2),(A5) and (A6) are satisfied. Then for 

any h- ,h^ £ C, h , h~ are uniformly continuous in (-°°, 0] and h1(0) = 

= h2(0) = 0 

lxt(.,h2) - xt(.,h1)H < In - h1lv(t), 0 < t < °° , 

where v(t) is the unique real bounded continuous solution of 

(4) v(t) = 1 + ^ n(s) v [ a i + ( s ) l d s , 0 < t < °° . 

Proof. Denote u(t) = lxt(.,h2) - xt(.,h1)ll, 0 < t < «». By (3) and 
(A2) it follows that 

1S 

|x(t,h2) - x(t,h1)| < |h2(0) - h1 (0) I + / n(s)u[w
 + ( s ) l d s , 

0 0 < t < °°, 

and hence u(t) < llh2 - h1l + ^ n(s)u[ 03
 + ( s)] ds, 0 < t < 00, since u i 

bounded and continuous, by the generalized Gronwall lemma the result 

follows. 

Lemma 4. Assume that (A2),(A5) and (A6) are satisfied. Let h G C, 

h(0) = 0 and let h be uniformly continuous in (-°°,0l , Let {zk} , zk^ E, 

k = 1,2,..., be a sequence with lim Iz I = °°. Denote m = inf{|x(t,h + 

+ zk)I : 0 < t < ~ ] . Then 
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lim mv =. °°. 
k-*°° K 

Proof. It is similar to t h a t of Lemma 3 in 1 81 , p. 240. 

By using Theorem 1 where g(x ,t) = x(t,h + x ) the following 

boundary VOLIULZ pnoblzm for (1 ) can be solved. An arbitrary point x GE 

and an initial function h € c, h is uniformly continuous in (-°°,01 , 

h(0) = 0, are given. To find a point x £ E such that 

(5) lim x(t,h + xQ) = x1 . 
t-*°° 

Theorem 3. Assume that (A2),(A5),(A6) as well as the assumption: 

(A7) There exists a q , 0 < q < 1, such that for the bounded continu

ous solution v(t) of the equation (H) the inequality 

v(t) < 1 + q , 0 < t < °° , 

is true, 

are satisfied. Let x £ E and let h G c, h be uniformly continuous in 

(-°°,C 

true. 

(-°° ,0 l , h(0) = 0. Then there exists exactly one x €• E such that (5) is 

Proof. Define a mapping g : E -* B in this way. Given an xn ̂  E, 

let g(xQ,t) = x(t,h + xQ) for 0 < t < °° and let g(x0,°°) = 

= lim x(t,h + x n ) . Lemma 1 and 2 guarantee that g is well defined. 
t-*°° 

By Lemma 3 g is continuous and Lemma 4 implies that the condition (i) 

in Theorem 1 is satisfied. Clearly (iii) in that theorem holds. Let 

r > 0, t1 < t, |x2l < r. Then |g(x2,t) - g(x2,t )| < J |f(s,0)|ds + 

+ / n(s)llx + ,.(., h + x9)»ds < / |f(s,0)|ds + J n(s) [M, + 
t1 w ts; z t l tl 

+ (llhll + r)K Ids, where M = sup II x +f ,(.,0)11, K1 = sup v(w (s)). 
1 1 0<s<°° w {S) X 0<s<°° 

If t < t , we get a similar inequality. Th i s implies t h a t (iv) is 

satisfied. 

Consider t h e mapping U = I - g(.,t) for a fixed t G [ Q ,<*>] . Then 
by Lemma 3 and (A7) |U(x_) - U(y )| < J n(s)llx ., . - y ., Jlds < 

0 J0 o co + (s) •fo3 + (s) 

< lxQ - yQl(v(t) - 1) < q-̂ lxQ - yQ I . Hence U is a strict contraction 

and t h u s a condensing mapping. By Theorem 1, g(E,t) = E for e a c h 

t e to,00!. Since U is a strict contraction, |g(x ,t) - g(y ,t)| > 
0 J0 

-- (1 " gi^'xo ~ y0' wtlich imPlies t h a t g(.,t) is a homeomorphic mapping 
of E onto itself. 

Remarks, i. In case E = Rn, Theorem 3 is valid w i t h o u t assuming 

Of course uniqueness of xn need not be true. 

2. Theorem 3 extends t h e main result from [ 8] , p. 239, 
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and in the case w(t) = t, 0 < t < °°, is stronger than Theorem I in 

[ 111 , p.3. 

3. Generalized Boundary Value Problem for Differential Systems 

The generalized boundary value problem for a differential system 

(6) x' = f(t,x), t € if x e Rn , 

and a given continuous mapping T (not necessarily linear) of the space 

C(ifR ) of all continuous n-dimensional vector functions defined in i 

into R can be defined as a problem of finding a solution x(t) of the 

system (6) on the interval i for which T(x) is a given vector r in Rn
f 

i.e. 

(7) T(x) = r . 

The topology in C(ifR ) is given in two different cases. If i = [afb] 

is a compact interval, then we consider the topology of uniform conver

gence, while in case i is a noncompact interval, e.g. i = (a,°°) , then 

we use the topology of locally uniform convergence. 

Theorem 4. Let f = f(t,x) be a continuous function on i X Rn and 

let the equation (6) have the following properties: 

(a) There is a point tn^ i such that for each vector xfi£ R there 

exists a unique solution x(t) on i to the initial-value problem (6), 

(8) x(tQ) = xQ 

and either: 

(b) For each solution x of (6), (8) the following implication is 

true: 

If T(x^ = kx(tn), x(t0) * 0, then k > 0 , 

or? 

(c) The problem (6), (7) has at most one solution for each r e Rn. 

Then in the case (a),(b) a sufficient condition and in the case (a),(c) 

a necessary and sufficient condition that there exist at least one 

solution of the problem (6), (7) for each r € Rn is that the following 

compactne.6* condition be satisfied: 

(d) If {x^} is a sequence of solutions of (6) on the interval i 

such that {T(x, )} is bounded, then there is a subsequence {x (~ .} such 

that {x n . } is converging in C(i,Rn). 

The proof is based on Corollary 2 and the Kamke convergence lemma. 
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