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ON NONPARASГГE SOLUПONS 
P. KRBEC 
Aeronautical Research and Test Institute 
199 05 Prague 9, Czechoslovakia 

1. I n t r o d u c t i o n 

We shall investigate the differential relation 

(1) x G F(t,x), x(0) = x 

where F : U -> K, U = < 0, 1> X B±r K is the set comprising nonempty, 

compact subsets of some ball in R , B is the unit ball in R
n
. Jarnik 

and Kurzweil [2] proved that if F(t,x) is convex then we can suppose 

F to be Scorza-Dragonian. These authors and many others (see e.g. I ll , 

[ 2l , [ 3l , [lOl , [ 12]) have studied the convex case very thoroughly. 

The nonconvex r.h.s. has been attacked too, certain very strong 

results being obtained e.g. by Olech [ 7] , Tolstonogov [ 10] , [ 1.1] , Vr-

koc [12]. It is easy to see that to obtain some reasonable existence 

theorem in nonconvex case it is necessary to suppose F to be continu

ous. It is a well known fact that the solutions of x G F are then 

dense in the set of all solutions of x G conv F, see e.g. Tolstonogov 

[9] . 

It is tempting then to use the Filipov respectively Krasovskij 

operation to define generalized solutions of x G F(t,x), F being 

possibly nonconvex. To be more specific, we can define the solution 

of x G F(t,x) through the relation x G G(t,x) where 

G(t,x) = H n £olrv F(t,B,(x) - N) or 
6>0 y(N)=0 

G(t,x) = n conv F(t,B (x)) . 
6>0 6 

The main problem is that introducing even the solution of x = f(x), f 

discontinuous real valued function, through Filippov or even Krasovskij 

operation we can obtain certain meaningless solutions. 

2. Example 1. (Sentis [8]) 

Let f : R - R, f(x) = -1 for x > 0, f(x) = +1 for x < 0. 

Then x(t) = 0 is a (unique) Filippov solution of the Cauchy problem 

x = f(x), x(0) = 0, tG<o,l>. This type of solution is called sliding 

motion and there are good reasons to consider it to be the solution. 
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On the other hand let f(x) = 1 for x > 0, f(x) = -1 for x < 0. 

Then the Cauchy problem x = f(x), x(0) = 0 has the Filippov solution 

x ( t ) = t , x ( t ) = - t and x (t) = 0 for t e < 0, |al> , x (t) = 
+ ' a ' ' a 
= sgn a.(t - lal) for t > la I. All the x (.) solutions are physically 

a 

meaningless, they are called parasite solution. For the exact defini

tion of sliding and parasite solution see [ 4] or Sentis [ 8l . 

3. Generalized solutions 

Our aim is to define the solution of x £ F(t,x) in such a manner 

that all the sliding solutions are retained and all parasite are 

expelled. The first definition of this type was given by Sentis [8l in 

1976 and it was as follows: 

Definition 1. Function y(.) : < 0, 1> -» R is a g-solution of the 

differential relation x € F(t,x), x(0) = x on <0, 1> iff there exists a 
oo oo 

sequence (y } _-, of piecewise linear functions and a sequence {nj-Jn=i 
of divisions such that (denote v (h ) by x and v(h ) by v ) 

- n n n n n 
i) lim Ih I = 0 , 

_™ n 

A ' A 0 

ii) xn = XQ 

iii) for every positive integer n and k = 0,1,...,v there are 
k <- - . / - . k k N , k r- „ n , _̂, . k + 1 k , k , , k + l , k x , a G F(h , x ) and e € R such t h a t x = x + a ( h - h ) + n n n n n n n n n 

+ e* 

and y ( . ) i s l i n e a r on e v e r y < h , h + ) , k = 0 , 1 , . . . , v J n J n ' n n 
v n v 

i v ) l i m I He II = 0 
n-x« k = i n 

v) lim y = y uniformly on <0,1> . 
n 

Sentis introduced this definition to cover the case (cl stands for 

closure) 

F(t,x) = H n cl f(B (t,x) - N) and his definition works 
6>0 NCRn+l 

H(N)=0 

well for such right-hand sides. He proved that any classic solution of 

x€F(t,x) (i.e. any absolutely continuous function x(.) such that 

x(t) € F(t,x(t)) a.e.) is a g-solution, any g-solution of x € F(t,x) is 

a classic solution of x £ conv F(t,x) and there are no parasite solu

tions. 

4. Example 2. 

For R = R set Fj[(t,x) = {-1} for x < 0 and every t, F,(t,x) = 



135 

= {-1,1} for -X = Q and every t and F1(t,x) = {l}for x > 0 and every t, 

F?(t,x) = F (t,x) for t dyadically irrational and every x. For t = 

= (k/2m), k odd, set F (t,x) = F (t,x) for x £ <-l/2m, l/2m> and 

F2(t,x) = {-1,1} for x e <-l/2
m,l/2m> . Then both F and F2 are u.s.c. 

mappings and y{t € <0 , l> I3(F (t,x) * F (t,x))} = 0. 
x -• -• 

The function y(.), identically equal to zero on <0 , 1> is not a 

g-solution of x C F1(t,x), x(0) = 0 but it is a g-solution of the 

relation x C F2(t,x), x(0) = 0 on < 0, 1> . 

This example shows that even for F u.s.c. the solution does 

depend on values which F obtaines on a set whose projection on t-axis 

is of measure zero. In the sequel we shall modify the definition of 

the g-solution to avoid this discrepancy. 

5. Regular Generalized Solutions 

Let F be Scorza-Dragonian. Denote GMF = {(t,x,y)|y €. F(t,x), 

t £ M} i.e. GMF is the graph of the partial mapping F|/<0 i> _M) XB ' 
We set G*F = n cl G F and define a multivalued mapping F* through 

y(M)=0 M 

Mc< 0,1> 
its graph i.e. we set graph F*= G*F. It is possible to prove that there 

exists a set MQ C <0,1> , y(MQ) = 0 and G*F = cl G F, so our definit

ion is meaningfull. The set G*F is closed hence F* is u.s.c. If the 

mapping F is u.s.c. too then F* C F because 

graph F* = cl G M Q F C cl GF = GF and {t G <0,1> I 3(F*(t,x) + F(t,x))}C M Q 

i.e. its measure is zero. We define the solution of x £ F(t,x) through 

the Sentis g-solution of x C F*(t,x)j resulting type of solution being 

called rg-solution. It retains all the nice properties of Sentis g-so

lution and is independent on behaviour of F on a set of measure zero 

(in t). If the mapping F is supposed to be only Scorza-Dragonian we 

have only graph F* C cl GF and F*(t,x) D F(t,x) for t £ Mfl, nonetheless 

the rg-solution can be defined too. There is following characterisation 

of rg-solution: 

Theorem 1. Let F be a Scorza-Dragonian mapping. Then a function 

y(.) is an rg-solution of x C F(t,x) iff for every M C <o,1> , y(M)= 0 

there are sequences {y }°° , and (h }°° , such that all conditions of 
n n= l n n= l 

Definition 1 are fulfilled and U h O M = (J). 
n=l n 

To prove the theorem we will use the following trivial lemma. 

Lemma. Let us suppose a G F*(t,x), M C [0,1], y(M) = 0. Then 

there are sequences C(t fX )} 1 and [
a
n^n=l

 s u c n t n a t a
n
G ^^n^n^' 
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t 9- M, lim (t ,v,a ) = (t,x,a). 
n n-**00 

Proof. From a G F*(t,x) we obtain as a consequence of the 

identity GF* = G*F and of Lemma 1 that (t,x,a) G GF* = cl GM U MF, 

u(ML U M ) = 0. Hence there exists a sequence (t ,x ,a } - (t,x,a) such 

that t G Mn U M and a G F(t ,x ). Since F " ( T , U = F(x,0 for T f NL 
n 0 n n n 0 

the proof is complete. 

Proof of the theorem: Since (t G [ 0 , l l l 3 F*(t,x) = F(t,x)} C M . , 
xeRn U 

y(MQ) = 0, the "only if" part of the theorem follows immediately. To 
prove the "if" part let y(.) be an rg-solution and M C [0,1], y(M) = 0. 

Then there is a sequence (y } -*• y and the sequence {h } such that the 

conditions (i),...,(v) from Definition 1 are fulfilled with F* instead 

of F. Condition (iii) written explicitly has the following form: 

yn<
hn+1> = yn

(hn> + an ( hn + 1 ~ hn> + 4' an £ ** (hn^n<hn> > • 
k k k As a consequence of Lemma we obtain that y ,h ,a and e can be 

— ,-k —k —k ^ n ' n ' n n 
replaced by y ,n ,a ,e such that 

* 2 Jn' n' n n 
n 1 V n + 1 

(2) E = (0 = E < E x <...< h = 1} n M = 0 
n n n n 

v 
for every n = 1,2,3, . . . ,hk < h k + 1, (hk - hk) < l/(n . v ), Z HekH - 0 

n n n n n ^ _ ^ n 
as n - °° and 
(3) y (E k + 1 ) = y (Ek) + a k ( E k + 1 - Hk) + 7 k , ak G F* (Ek ,y (Ek)) 

n n n n n n n n n n n n 
We can proceed for example as follows. For every n = 1,2,... we 

set E° = h° = 0, y (E°) = xn, E ^ = 1, y ( 1) = y (1), a0 = a0. Let 
n n J n n O n Jn ^n n n _ k 

us denote l/(nv ) by p. As a consequence of Lemma we can choose hnr 
ak and <^r such that (2) is fulfilled and lh

k - hkI < p, ̂  G B (y (h )) n n n n n p -- --
ak Gr* ̂ k,c|; k), ak G B (ak) holds for k = 1,2,...,vn. We set yn(h*) = 

4> and choose such ek that (3) is fulfilled. Then 

~n = Y(^ + 1) - yn(K*> - S(h*
+1 - 1#> n - * n n a n n n n n 

and 

117*11 s l lyn(hn
+ 1) - yn(hn

+ 1) l l + llyn(hM - yn(h*)» + i S j - an» . 

• » h n + 1 - h n l l + HaMdh^-hf1! + l h * - h * l ) + 

+ » Y X + 1 > " * X > " a n< h n + 1 " *n>» * 3P + 2 P + I - J l . 

Hence lim EII7̂ II = 0. Similar ly we obta in lim y n = y uniformly on [ 0, ll 
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and the proof is complete. 

It means that using division to construct a solution we can avoid any 

set of measure zero. 

6. Gauge approach 

To define rg-solution we need F to be Scorza-Dragonian (due to the 

definition of F") but by means of avoiding the sets of measure zero we 

can define the rg-solution for quite a general system. In the sequel, 

using gauge approach, we introduce another procedure to define solut

ions. Let us remind that a gauge is an arbitrary real valued positive 

function and a division A = {t } is subordinated to a gauge 6 (or A is 

6-fine, A < 6) iff t. 1~ t.< 6(t.). We shall say that a set 12 is a 

gauge set iff for every positive constant c there exists a 6 C Q such 

that sup 6(t) < c and for every 6 ,...,6 C Q there exists a 6 C Q such 

that 6 < min(6i,...,6 ). 1 ' n 
There is a well%known theorem about 6-fine divisions saying that 

for every 6 there is a 6-fine division which is finite, see Kurzweil 

[ 6] . In our case this theorem doesn't hold because we operate with so 

called left divisions. But a similar theorem holds with a countable di

visions. Let us note that using general division instead of left one we 

don't succeed in rejecting parasite solutions. 

Let Q be a gauge set. We shall say that y is an ^-solution of 

x C F(t,x), x(0) = x iff all items of Definition 1 are fullfiled with 

6-fine division, 6 £ Q i.e. 

V V 3 3 3 3 (leAl < e, ly - x I < e) . 
e>0 6eft A<6 eA Â XA 
The following theorem can be proved. 

Theorem 2. Let F be bounded and let Q be a gauge set. Then there 

exists an ^-solution. 

Proof; Let p > 0 be such that llyll < p for all y C F(t,x), 

(t,x) G [0,1] X Rn and let K be the set of all x(.) C C(<0,1>) such 

that 

a) |x(t)| < p for every t C [0,1] 

and 

b) lH(t1) - x(t'2)l < p|t1 - t2l for every tlft2 e [0,1]. 

The K with the norm max is the compact, metric space. Let 6 C n. We 

shall construct a set £ C K. Let Sc be the set of all functions 
6 6 

fulfilling all the conditions of Definition 1 and such that (see 
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condition iv) E II e . II < sup 6(t). It can be proved, by the method of 
i "*" J 

transfinite sequences (see [ I 3 l ) , that Sfi is non-empty. Every 
function x(.) £ Sc can be modified, by subtracting jumps e. in points 

6 1 

t of division A, to obtain a function y(.) S K. This procedure results 
in a set Sc C K. The set K is compact, hence n S * 0. It is easy to 
see that every function xC.), X € n s is an ft-solutionfwhich 

6eft 

completes the proof. 

Let us denote ttQ= {6( . ) |6> a(6) > 0} , ^r= { 6 ( . ) | 6 ( t ) > a (6) a . e . , 

a(6) > 0}. Then it is possible to prove that Q -solutions are exactly 

the Sentis g-solutions and ̂ -solutions are precisely the rg-solutions. 

Using the results mentioned above we can say that for F u.s.c. the 

gauge set Q is the good one to define a solution. But this is not true 

for F Scorza-Dragonian because Q -solutions are the solutions of x G F", 

F* being u.s.c, F*-3 F a.e. Hence we cannot expect Q -solutions to be 

solutions of x G conv F. So a natural problem arises: 

What is the smallest but sufficient gauge set for Scorza-Dragonian 

right-hand side? 
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