EQUADIFF 6

Pavel Krbec
 On nonparasite solutions

In: Jaromír Vosmanský and Miloš Zlámal (eds.): Equadiff 6, Proceedings of the International Conference on Differential Equations and Their Applications held in Brno, Czechoslovakia, Aug. 26-30, 1985. J. E. Purkyně University, Department of Mathematics, Brno, 1986. pp. [133]--139.

Persistent URL: http://dml.cz/dmlcz/700171

Terms of use:

© Masaryk University, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON NONPARASITE SOLUTIONS

P. KRBEC

Aeronautical Research and Test Institute
19905 Prague 9, Czechoslovakia

1. Introduction
 We shall investigate the differential relation (1) $x \in F(t, x), x(0)=x_{0}$

where $F: U \rightarrow K, U=\langle 0,1\rangle X B_{1}, K$ is the set comprising nonempty, compact subsets of some ball in R^{n}, B_{1} is the unit ball in R^{n}. Jarník and Kurzweil [2] proved that if $F(t, x)$ is convex then we can suppose F to be Scorza-Dragonian. These authors and many others (see e.g. [1], [2], [3], [10], [12]) have studied the convex case very thoroughly. The nonconvex r.h.s. has been attacked too, certain very strong results being obtained e.g. by Olech [7], Tolstonogov [10], [11], Vrkoč [12]. It is easy to see that to obtain some reasonable existence theorem in nonconvex case it is necessary to suppose F to be continuous. It is a well known fact that the solutions of $\dot{x} \in F$ are then dense in the set of all solutions of $\dot{x} \in \operatorname{conv} F$, see e.g. Tolstonogov [9].

It is tempting then to use the Filipov respectively Krasovskij operation to define generalized solutions of $\dot{x} \in F(t, x), F$ being possibly nonconvex. To be more specific, we can define the solution of $\dot{x} \in F(t, x)$ through the relation $\dot{x} \in G(t, x)$ where

$$
\begin{aligned}
& G(t, x)=\cap_{\delta>0}^{\cap} \cap_{\mu(N)=0} \overline{\operatorname{conv}} F\left(t, B_{\delta}(x)-N\right) \text { or } \\
& G(t, x)=\bigcap_{\delta>0}^{\cap} \overline{\operatorname{conv}} F\left(t, B_{\delta}(x)\right) .
\end{aligned}
$$

The main problem is that introducing even the solution of $\dot{x}=f(x), f$ discontinuous real valued function, through Filippov or even Krasovskij operation we can obtain certain meaningless solutions.

2. Example 1. (Sentis [8])

Let $f: R \rightarrow R, f(x)=-1$ for $x \geq 0, f(x)=+1$ for $x<0$.
Then $x(t)=0$ is a (unique) Filippov solution of the Cauchy problem $\dot{\mathbf{x}}=\mathrm{f}(\mathrm{x}), \mathrm{x}(0)=0, \mathrm{t} \in\langle 0,1\rangle$. This type of solution is called sliding motion and there are good reasons to consider it to be the solution.

On the other hand let $f(x)=1$ for $x \geq 0, f(x)=-1$ for $x<0$. Then the Cauchy problem $\dot{x}=f(x), x(0)=0$ has the Filippov solution $x_{+}(t)=t, x_{-}(t)=-t$ and $x_{a}(t)=0$ for $t \in\langle 0| a,\left\rangle, x_{a}(t)=\right.$ $=\operatorname{sgn} a .(t-|a|)$ for $t \geq|a|$. All the $x_{a}($.$) solutions are physically$ meaningless, they are called parasite solution. For the exact definition of sliding and parasite solution see [4] or Sentis [8].

3. Generalized solutions

Our aim is to define the solution of $\dot{x} \in F(t, x)$ in such a manner that all the sliding solutions are retained and all parasite are expelled. The first definition of this type was given by Sentis [8] in 1976 and it was as follows:

Definition 1. Function $y():.(0,1\rangle \rightarrow R^{n}$ is a g-solution of the differential relation $\dot{x} \in F(t, x), x(0)=x_{0}$ on $\langle 0,1\rangle$ iff there exists a sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ of piecewise linear functions and a sequence $\left\{h_{n}\right\}_{n=1}^{\infty}$ of divisions such that (denote $y_{n}\left(h_{n}^{k}\right)$ by x_{n}^{k} and $v\left(h_{n}\right)$ by v_{n})

> i) $\lim _{n \rightarrow \infty}\left|h_{n}\right|=0$,
> ii) $x_{n}^{0}=x_{0}$
iii) for every positive integer n and $k=0,1, \ldots, \nu_{n}$ there are $a_{n}^{k} \in F\left(h_{n}^{k}, x_{n}^{k}\right)$ and $\varepsilon_{n}^{k} \in R^{n}$ such that $x_{n}^{k+1}=x_{n}^{k}+a_{n}^{k}\left(h_{n}^{k+1}-h_{n}^{k}\right)+$ $+\varepsilon_{n}^{k}$
and $y_{n}($.$) is linear on every \left(h_{n}^{k}, h_{n}^{k+1}\right), k=0,1, \ldots, v_{n}$
iv) $\lim _{n \rightarrow \infty} \sum_{k=1}^{v_{n}} \| \varepsilon_{n} k_{\|}=0$
v) $\lim _{\mathrm{n}} \mathrm{y}_{\mathrm{n}}=\mathrm{y}$ uniformly on $\langle 0,1\rangle$.

Sentis irtroduced this definition to cover the case (cl stands for closure)
$F(t, x)=\bigcap_{\delta>0}^{\cap} \cap_{\substack{N \subset R^{n+1} \\ \mu(N)}}^{\cap}$ cl $f\left(B_{\delta}(t, x)-N\right)$ and his definition works
well for such right-hand sides. He proved that any classic solution of $\dot{x} \in F(t, x)$ (i.e. any absolutely continuous function $x($.$) such that$ $\dot{x}(t) \in F(t, x(t))$ a.e.) is a g-solution, any g-solution of $\dot{x} \in F(t, x)$ is a classic solution of $\dot{x} \in \operatorname{conv} F(t, x)$ and there are no parasite solutions.

```
4. Example 2.
For \(R^{n}=R\) set \(F_{1}(t, x)=\{-1\}\) for \(x<0\) and every \(t, F_{z}(t, x)=\)
```

$=\{-1,1\}$ for $x=0$ and every t and $F_{1}(t, x)=\{1\}$ for $x>0$ and every t, $F_{2}(t, x)=F_{1}(t, x)$ for t dyadically irrational and every x. For $t=$ $=\left(k / 2^{m}\right), k$ odd, set $F_{2}(t, x)=F_{1}(t, x)$ for $x \notin\left\langle-1 / 2^{m}, 1 / 2^{m}\right\rangle$ and $F_{2}(t, x)=\{-1,1\}$ for $x \in\left\langle-1 / 2^{m}, 1 / 2^{m}\right\rangle$. Then both F_{1} and F_{2} are u.s.c. mappings and $\mu\left\{t \in\langle 0,1\rangle \mid \underset{X}{ }\left(F_{1}(t, x) \neq F_{2}(t, x)\right)\right\}=0$.

The function $y($.$) , identically equal to zero on \langle 0,1\rangle$ is not a g-solution of $\dot{x} \in F_{1}(t, x), x(0)=0$ but it is a g-solution of the relation $\dot{x} \in F_{2}(t, x), x(0)=0$ on $\langle 0,1\rangle$.

This example shows that even for F u.s.c. the solution does depend on values which F obtaines on a set whose projection on t-axis is of measure zero. In the sequel we shall modify the definition of the g-solution to avoid this discrepancy.
5. Regular Generalized Solutions

Let F be Scorza-Dragonian. Denote $G_{M} F=\{(t, x, y) \mid y \in F(t, x)$, $t \notin M\}$ i.e. $G_{M} F$ is the graph of the partial mapping $F \mid(\langle 0,1\rangle-M) X_{B} \cdot$ We set $G * F=\underset{\mu(M)=0}{\cap}$ cl $G_{M} F$ and define a multivalued mapping $F *$ through Mc (0,1)
its graph i.e. we set graph $F^{*}=G * F$. It is possible to prove that there exists a set $M_{0} \subset\langle 0,1\rangle, \mu\left(M_{0}\right)=0$ and $G^{*} F=c l G_{M_{0}} F$, so our definition is meaningfull. The set $G^{*} F$ is closed hence F^{*} is u.s.c. If the mapping F is u.s.c. too then $F^{*} \subset F$ because graph $F^{*}=\operatorname{cl} G_{M_{0}} F \subset c l G F=G F$ and $\left\{t \in\langle 0,1\rangle \mid \underset{X}{ } \underset{X}{ }\left(F^{*}(t, x) \neq F(t, x)\right)\right\} \subset M_{0}$ i.e. its measure is zero. We define the solution of $\dot{x} \in F(t, x)$ through the Sentis g-solution of $\dot{x} \in F^{*}(t, x)$; resulting type of solution being called rg-solution. It retains all the nice properties of Sentis g-solution and is independent on behaviour of F on a set of measure zero (in t). If the mapping F is supposed to be only Scorza-Dragonian we have only graph $F^{*} \subset c l G F$ and $F^{*}(t, x) \supset F(t, x)$ for $t \notin M_{Q}$, nonetheless the rg-solution can be defined too. There is following characterisation of rg-solution:

Theorem 1. Let F be a Scorza-Dragonian mapping. Then a function $y($.$) is an rg-solution of \dot{x} \in F(t, x)$ iff for every $M \subset\langle 0,1\rangle, \mu(M)=0$ there are sequences $\left\{y_{n}\right\}_{n=1}^{\infty}$ and $\left\{h_{n}\right\}_{n=1}^{\infty}$ such that all conditions of Definition l are fulfilled and $\underset{n=1}{U} h_{n} \cap M=\phi$.

To prove the theorem we will use the following trivial lemma.
Lemma. Let us suppose $a \in F^{*}(t, x), M \subset[0,1], \mu(M)=0$. Then there are sequences $\left\{\left(t_{n}, x_{n}\right)\right\}_{n=1}^{\infty}$ and $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $a_{n} \in F^{*}\left(t_{n}, x_{n}\right)$,
$t_{n} \notin M, \lim _{n \rightarrow \infty}\left(t_{n}, x_{n}, a_{n}\right)=(t, x, a)$.
Proof. From $a \in F^{*}(t, x)$ we obtain as a consequence of the identity $\mathrm{GF}^{*}=\mathrm{G}^{*} \mathrm{~F}$ and of Lemma 1 that $(t, x, a) \in G F^{*}=c l G_{M_{0}} \cup M^{F}$, $\mu\left(M_{0} \cup M\right)=0$. Hence there exists a sequence $\left\{t_{n}, x_{n}, a_{n}\right\} \rightarrow(t, x, a)$ such that $t_{n} \notin M_{0} \cup M$ and $a_{n} \in F\left(t_{n}, x_{n}\right)$. Since $F^{*}(\tau, \xi)=F(\tau, \xi)$ for $\tau \notin M_{0}$ the proof is complete.

Proof of the theorem: Since $\left\{t \in[0,1] \underset{x \in R^{n}}{\exists} F^{*}(t, x)=F(t, x)\right\} \subset M_{0}$, $\mu\left(M_{0}\right)=0$, the "only if" part of the theorem follows immediately. To prove the "if" part let $\mathrm{y}($.$) be an rg-solution and \mathrm{M} \subset[0,1], \mu(\mathrm{M})=0$. Then there is a sequence $\left\{y_{n}\right\} \rightarrow y$ and the sequence $\left\{h_{n}\right\}$ such that the conditions (i),....(v) from Definition 1 are fulfilled with F^{*} instead of F. Condition (iii) written explicitly has the following form:

$$
y_{n}\left(h_{n}^{k+1}\right)=y_{n}\left(h_{n}^{k}\right)+a_{n}^{k}\left(h_{n}^{k+1}-h_{n}^{k}\right)+\varepsilon_{n}^{k}, a_{n}^{k} \in F^{k}\left(h_{n}^{k} y_{n}\left(h_{n}^{k}\right)\right) .
$$

As a consequence of Lemma we obtain that $y_{n}, h_{n}^{k}, a_{n}^{k}$ and ε_{n}^{k} can be replaced by $\bar{Y}_{n}, \bar{h}_{n}^{k}, \bar{a}_{n}^{k}, \bar{\varepsilon}_{n}^{k}$ such that
(2) $\quad \hbar_{n}=\left\{0=\hbar_{n}^{0}<\hbar_{n}^{1}<\ldots<\bar{h}_{n}^{\nu_{n}+1}=1\right\} \cap M=\phi$
for every $n=1,2,3, \ldots, \bar{h}_{n}^{k}<h_{n}^{k+1},\left(\bar{h}_{n}^{k}-h_{n}^{k}\right)<1 /\left(n, v_{n}\right), \sum_{k=1}^{v_{n}}\left\|\bar{\varepsilon}_{n}^{-k}\right\| \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\begin{equation*}
y_{n}\left(\hbar_{n}^{k+1}\right)=y_{n}\left(\hbar_{n}^{k}\right)+\bar{a}_{n}^{k}\left(\hbar_{n}^{k+1}-\hbar_{n}^{k}\right)+\bar{\varepsilon}_{n}^{k}, \bar{a}_{n}^{k} \in F^{*}\left(\hbar_{n}^{k}, y_{n}\left(\hbar_{n}^{k}\right)\right) \tag{3}
\end{equation*}
$$

for $n=1,2, \ldots$ and $k=0,1,2, \ldots, \nu_{n}$.
We can proceed for example ${ }_{\nu}{ }_{n}$ follows. For every $n=1,2, \ldots$ we set $\hbar_{n}^{0}=h_{n}^{0}=0, y_{n}\left(\hbar_{n}^{0}\right)=x_{0}, \bar{h}_{n}^{\nu} n^{+1}=1, \bar{y}_{n}(1)=y_{n}(1), \bar{a}_{n}^{0}=a_{n}^{0}$. Let us denote $l /\left(n u_{n}\right)$ by ρ. As a consequence of Lemma we can choose \bar{h}_{n}^{k}, \bar{a}_{n}^{k} and ψ_{n}^{k}, such that (2) is fulfilled and $\left|\bar{h}_{n}^{k}-h_{n}^{k}\right|<\rho, \psi_{n}^{k} \in B_{\rho}\left(y_{n}\left(h_{n}^{k}\right)\right)$
 $=\psi_{n}^{k}$ and choose such $\bar{\varepsilon}_{n}^{k}$ that (3) is fulfilled. Then

$$
\bar{\varepsilon}_{n}^{k}=\bar{y}_{n}\left(\bar{h}_{n}^{k+1}\right)-\bar{y}_{n}\left(\bar{h}_{n}^{k}\right)-\bar{a}_{n}^{k}\left(\bar{h}_{n}^{k+1}-\bar{h}_{n}^{k}\right)
$$

and

$$
\begin{aligned}
& \left\|\bar{\varepsilon}_{n}^{k}\right\| \leq\left\|\bar{y}_{n}\left(\bar{h}_{n}^{k+1}\right)-y_{n}\left(h_{n}^{k+1}\right)\right\|+\left\|y_{n}\left(h_{n}^{k}\right)-\bar{y}_{n}\left(\bar{h}_{n}^{k}\right)\right\|+\left\|a_{n}^{k}-a_{n}^{k}\right\| . \\
& \quad \cdot\left\|\bar{h}_{n}^{k+1}-\bar{h}_{n}^{k}\right\|+\left\|a_{n}^{k}\right\|\left(\left|\bar{h}_{n}^{k+1}-h_{n}^{k+1}\right|+\left|\bar{h}_{n}^{k}-h_{n}^{k}\right|\right)+ \\
& \quad+\left\|y_{n}\left(h_{n}^{k+1}\right)-y_{n}\left(h_{n}^{k}\right)-a_{n}^{k}\left(h_{n}^{k+1}-h_{n}^{k}\right)\right\| \leq 3 \rho+2 \rho+\left\|\varepsilon_{n}^{k}\right\| .
\end{aligned}
$$

Hence $\lim _{\mathrm{n} \rightarrow \infty} \Sigma\left\|\bar{\varepsilon}_{\mathrm{n}}^{\mathrm{k}}\right\|=0$. Similarly we obtain $\lim \bar{Y}_{\mathrm{n}}=\mathrm{y}$ uniformly on $[0,1]$
and the proof is complete.
It means that using division to construct a solution we can avoid any set of measure zero.
6. Gauge approach

To define rg-solution we need F to be Scorza-Dragonian (due to the definition of F^{*}) but by means of avoiding the sets of measure zero we can define the rg-solution for quite a general system. In the sequel, using gauge approach, we introduce another procedure to define solutions. Let us remind that a gauge is an arbitrary real valued positive function and a division $\Delta=\left\{t_{\gamma}\right\}$ is subordinated to a gauge δ (or Δ is δ-fine, $\Delta<\delta)$ iff $t_{i+1}{ }^{-} t_{i}<\delta\left(t_{i}\right)$. We shall say that a set Ω is a gauge set iff for every positive constant c there exists a $\delta \in \Omega$ such that sup $\delta(t)<c$ and for every $\delta_{1}, \ldots, \delta_{n} \in \Omega$ there exists a $\delta \in \Omega$ such that $\delta \leq \min \left(\delta_{1}, \ldots, \delta_{n}\right)$.

There is a well'known theorem about δ-fine divisions saying that for every δ there is a δ-fine division which is finite, see Kurzweil [6]. In our case this theorem doesn't hold because we operate with so called left divisions. But a similar theorem holds with a countable divisions. Let us note that using general division instead of left one we don't succeed in rejecting parasite solutions.

Let Ω be a gauge set. We shall say that y is an Ω-solution of $\dot{x} \in F(t, x), x(0)=x_{0}$ iff all items of Definition lare fullfiled with δ-fine division, $\delta \in \Omega$ i.e.
$\underset{\varepsilon>0}{\forall} \underset{\delta \in \Omega}{\forall} \underset{\Delta<\delta}{\exists} \stackrel{\varepsilon_{\Delta}^{\exists}}{\exists} \underset{\xi_{\Delta}}{\exists} \underset{x_{\Delta}}{\exists}\left(\left|\varepsilon_{\Delta}\right|<\varepsilon,\left|y-x_{\Delta}\right|<\varepsilon\right)$.
The following theorem can be proved.
Theorem 2. Let F be bounded and let Ω be a gauge set. Then there exists an Ω-solution.

Proof: Let $\rho>0$ be such that $\|y\| \rho$ for all $y \in F(t, x)$, $(t, x) \in[0,1] \times R^{n}$ and let K be the set of all $x(.) \in C(\langle 0,1\rangle)$ such that
a) $\quad|x(t)| \leq \rho$ for every $t \in[0,1]$
and
b) $\quad\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right| \leq \rho\left|t_{1}-t_{2}\right|$ for every $t_{1}, t_{2} \in[0,1]$. The K with the norm max is the compact metric space. Let $\delta \in \Omega$. We shall construct a set $S_{\delta} \subset \mathrm{K}$. Let S_{δ}^{J} be the set of all functions fulfilling all the conditions of Definition 1 and such that (see
condition $i v) \sum_{i}\left\|\varepsilon_{i}\right\| \leq \sup \delta(t)$. It can be proved, by the method of transfinite sequences (see [13]), that S_{δ}^{J} is non-empty. Every function $x(.) \in S_{\delta}^{J}$ can be modified, by subtracting jumps ε_{i} in points t_{i} of division Δ, to obtain a function $y(.) \in K$. This procedure results in a set $S_{\delta} \subset K$. The set K is compact, hence $\cap_{\delta \in \Omega} \bar{S}_{\delta} \neq \phi$. It is easy to see that every function $x(),. x \in \cap_{\delta \in \Omega} \bar{S}_{\delta}$ is an Ω-solution, which
completes the proof.
Let us denote $\Omega_{0}=\{\delta() \mid. \delta \geq a(\delta)>0\}, \Omega_{r}=\{\delta() \mid. \delta(t) \geq a(\delta)$ a.e., $a(\delta)>0\}$. Then it is possible to prove that $\Omega_{0}-s o l u t i o n s$ are exactly the Sentis g-solutions and $\Omega_{r}-s o l u t i o n s$ are precisely the rg-solutions. Using the results mentioned above we can say that for F u.s.c. the gauge set Ω_{r} is the good one to define a solution. But this is not true for F Scorza-Dragonian because Ω_{r}-solutions are the solutions of $\dot{x} \in f *$, F^{*} being u.s.c., $F^{*} \supset \mathrm{~F}$ a.e. Hence we cannot expect Ω_{r}-solutions to be solutions of $\dot{x} \in$ conv F. So a natural problem arises:
What is the smallest but sufficient gauge set for Scorza-Dragonian right-hand side?

References
[1] JARNIK,J. Constructing the Minimal Difoerential Relation with Prescribed Solutions, Casop. pro pěst. matem. 105 (1980), 311-315.
[2] JARNIK,J., KURZWEIL,J., On Conditions on Right Hand Sides of Difherential Relations, とasop. pěst. matem. 102 (1977), 334-339.
[3] JARNIK,J., KURZWEIL,J., Sets of Solutions of Differential Relations, Czech. Math. Journ. 106 (1981).
[4] KRBEC,P., On Nonparasite Generalized Solutions of Differential Relations, Casop. pěst. mat. 106 (1981).
[5] KRBEC,P., On Nonparasite Solutions of Difoerential Relations, to appear.
[61 KURZWEIL,J., Nichtabsolut konvergente Integrale, Teubner-Texte zur Mathematik 26, B.G. Teubner, Leipzig 1980.
[7] OLECH,C., Existence of Solutions of non-convex orientor fields, Difford 1974, Summer School on Ordinary Differential Equations, Brno 1979.
[8] SENTIS,R., Equations differentielles a second membre measurable, Boletion U.M.I. (5) 15-B (1978), 724-742.
[9] T I.stogonov,A.A., O plotnosti i granicnosti mnoziestva resenij differencialnogo ukljucienija v banachovom prostranstve, DAN 1981, No. 2, tom. 261.
[10] TOLSTOGONOV,A.A., K teoremam srounenija dlja differencialnych vkljuc̈enij v lokalno vypuklom prostranstve. I. Susc̃estvovanie resenij, Differencialnye uravnenija 1981, tom. XVII, No. 4, II. Suojstua resenij. Differencialnye uravnenija 1981, tom. XVII, No. 6.
[11] TOLSTOGONOV,A.A., O differencialnych ukljucienijach v banachovych prostranstuach i nepreryunych selektorach, Sibirskij matem. žurnal 1981, tom. XXII No.4.
[12] VRKOČ,I., A new Definition and some Modifications of Filippov cone, Lecture Notes in Math. 703, Equadiff IV Proceedings, Prague 1977, Springer Verlag, Berlin-Heidelberg-New York 1979.
[13] KRBEC,P., Weak stability of Multivalued Differential Equations, Czechoslovak Math. Journal 26 (101), 1976.

