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ON THE ZEROS OF SOME SPECIAL 
FUNCTIONS: DIFFERENTIAL EQUATIONS 
AND NICHOLSON TYPE FORMULAS 
M. E. MULDOON 
Department of Mathematics, York University 
North York, Ontario M3J1P3, Canada 

1. Introduction. There are many results in the literature on special 

functions concerning the way in which a zero of a function changes with respect to 

one of the parameters on which the function depends. Methods based on differential 

equations, in particular Sturmian methods, are often useful in these discussions. 

Other methods are related to integral representations for the functions and seem to 

be provable, though not easily discoverable, by differential equations methods. 

Among these are methods based on Nicholson's formula [13, p.444] 
OB 

(1) J ^ ( z ) + Y^(z) = -| J KQ(2z sinh t ) cosh 2vt dt , He z > 0 > 
TT 0 

and a companion formula 
00 

(2) J (z)<7 Y (z)/0v - Y ( z ) OJ (z) /6V = - % f Kn(2z sinh t)e~2vt dt , Re z > 0 , 
V V V V T T J f v U 

from which it follows [13, p.508] that 
00 

(3) dc/oV = 2c f Kn(2c sinh t)e~2ut dt . 
J0 ° 

Here J and Y are the usual Bessel functions, Kn is the modified Bessel v v ' 0 

function and, in ( 3 ) , c = c ( i s ,k ,a ) is an x-zero of the linear combination 

C (x) = cos a J (x) - sin a Y (x) . 

Formula ( 1 ) was used by L. Lorch and P. Szego [9] to show some remarkable 

sign-regularity properties of the higher k-differences of the sequence ( c ( v , k , a ) } 

in the case \v\ > -y . Beyond its obvious use to show that c increases with v , 

( 3 ) has been used to get further information about these zeros; see [10,11] for 

references. A. Elbert has used ( 3 ) to show that j ,(=c( .u»,k,0)) is a concave 

function on v on ( - k , « ) . Elbert and A. Laforgia have used ( 3 ) in several recent 
2 

papers. They proved, for example, that j , is a convex function of v on (0,°») 

3 3 [6] and they have shown recently (personal communication) that d j ifdi/ > 0 , 

0 < v < «• . 

2. Other Nicholson-type formulas. The usefulness of ( 1 ) , (2 ) and ( 3 ) suggests 

the desirability of having similar formulas for other special functions. L. Durand 

[3,4] has given results analogous to ( 1 ) for some of the classical orthogonal 

polynomials. The simplest of these, for Hermite functions, is [3, p.371] 



156 

r.A+1 
(4) e-* [H2(x) + G2(x)] = 2 r<*+1> f e " ( 2 A + 1 ) t + X t a n h \ c o s h t sinh t ) " 1 ' 2 dt . 

"0 

Durand does not use differential equations but points out [3, p.355] that, once the 

results are known, they can be checked by differential equations methods. In fact 

J.E. Wilkins, Jr. [14] (see also [12, pp.340-341]) proved (1) by showing that both 

sides satisfy the same third order differential equation and have the same 

asymptotic behaviour as z -» +°° . I [10] did the same for equation (2) using a 

third-order nonhomogeneous equation. 

More recently, I have tried to discover whether there is a natural way in which 

these formulas arise in a differential equations setting. I present such a setting 

here for Bessel functions but it is not clear to me yet whether the method applies 

to a general situation of which the Bessel function case would be a particular 

example. It turns out to be convenient to consider the more general formulas 

[2,7,13] 

(5) J^(z)Jy(z) + Y/i(z)Yi;(z) = - ^ I V A I ( 2 Z S i n h t ) f e ( / i 4 ' l ' ) t + e"(M+v)tcos(n-t/)ic]dt , 
IT U 

oo 

(6) J (z)J (z)+Y (z)Y (z) = 2-5 I K (2z sinh t ) [ e ( / ^ ) t c o e vn + e" ( / i"v ) tcos /itf]dt, 

00 

(7) J (z)Y (z) - J (z)Y (z) = K sin(/i-i/)ir f K (2z sinh t)e" ( lH" / i ) tdt 
** ^ 7T 0 M 

00 

(8) J, (z)Y ( z ) -J (z )Y | (z) = \ f K. f i(2z sinh t) [ e ^ ^ s i n im - e ^ ^ s i n i/ir]dt. 
fj. v v ft o " 

These are all valid for Re z > 0 with |Re(/i + v) \ < 1 in (6) and (8) and 

|Re(i> - n)\ < 1 in (5) and (7). 

Clearly (1) is got from (5) by setting u = v while, as pointed out in [2], 

(2) (and hence (3)) is got from (7) by dividing by n - v and letting n -> v . 

Dixon and Ferrar [2, p.142] find an analogue of (2) based on a similar treatment of 

(8). 

The corresponding analogue of (3) is 
00 

dc/dV = -(2c/w) J K2 (2c sinh t) [2t sin vn - tr cos i*r]dt , c > 0 , \v\ < -- , 

but this is both more complicated and has a smaller range of validity then (3). 

3. A differential equations proof of (6). The proofs of (5), (7) and (8) are 

quite similar to that which we will give for (6). We may clearly suppose that M 

and v are real and that z is real and positive and we write z = e so that (6) 

becomes 

O) Ve*)JK(e6> + Ve8)Yp(e
8) 

00 

= h I 1 W 2 e e - i n h t>l e ( M~" ) tco8 inr + e - ^ ^ c o s ,*]dt . 
* 0 ^ 
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The functions J (e* ) , Y (e$) satisfy [13, p.99] 

d
2
y/de

2
 + (e

26
 - v2)Y = 0 

so that the left-hand side of (9) is a solution of [13, p.146] 

(10) L
fl
u s (D

2
 - b 2 ) ( D 2

 - a 2 ) u + 4e28
(D

fl
 + l ) (D f l + 2)u = 0 

where a = fi + v t b = fji-v. There is a standard method [1; 8, Ch. 8] for finding 

an integral representation 

(11) u(Є) = k(Є,t) v(t) dt J *<••* 
for a solution of ( 1 0 ) . We try to find a linear differential operator 

a 

a linear 

M. = 2 mjft) D k 

* k=0
 K % 

and a function *c(e,t) such that 

(12) L
fl

 k ( e , t ) = M
t
 x ( e , t ) . 

We then determine v ( t ) as a solution of M. v = 0 where H. is the adjoint of 

M
t
 , i.e. 

M
t
 v = 2 ( - 1 ) K D^[m k (t)v] . 

dз) [" k ; 1 н) ł
Ч v) ( t , . ( w - i ) i / 

lk=l <=0
 к

 I 

Then (11) is a solution of L
fl
 u = 0 provided a and fi are chosen so that 

J
a 

(The differentiations in (13) are with respect to t . ) Most of the standard 

applications of the method are to second order equations and with « = k and its 

success depends on being able to solve the equation M. v = 0 . In the present 

case, if we choose 

(14) k ( e , t ) = K
ft
(2e

a
 sinh t ) 

we have the convenient "factorization" 

(15) L
fl

 k ( e , t ) = (D2
 - b 2 ) ( D 2

 - a 2 ) k ( e , t ) 

which is Of the form (12) with 

K(8,t) = (D
2
 - a 2 ) K (2e* sinh t ) = 4e2

* sinh
2
t K (2e

6
 sinh t ) 

V a a 

and M
t
 = M

t
 = D

2
 - b

2
 . Thus we get v ( t ) = Cj e ^ ^ + c

2
 e'(ti^/)t

 and it is 

easily shown that (13) holds if we choose a = 0 , fi = • . To determine c, and 

c
2
 we use [13, Ch.7] 

J(x) J p ( x ) + Y (x) Y i /(x) = ̂  cosi--^ + -\{*-v2) s i t ^ ^ + 0(x""
3
) , x ̂  «> , 

wx 

and, using [12, Ch.9] , 
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f K (2x sinh t ) e A t dt = -, ? ,AN x
 l + fl .^* ,*N x

 2 + 0(x 3 ) , x -» « . 
JQ a ' 4 cos(ira/2) a sin( ira/2) 

Then, by comparing coefficients, we get c, = cos i/ir , c„ = cos /iir so ( 9 ) , and 

hence ( 6 ) , is proved. 

The key to the success of the method in the present case is the factorization 

(15) arising from the choice (14) for the kernel k ( 0 , t ) . The choice of a function 

of the form f(2e sinh t ) may be motivated by the fact that for a polynomial P 

we have P(De) f(2e* sinh t ) = P(tanh t D t) f(2e* sinh t ) . We see from (10) that 
Q 

Lg f(2e sinh t ) can be expected to take on a relatively simple form if we choose 

f to satisfy 

(D2 - a 2 ) f(2ee sinh t ) = 4e28 sinh2t f(2e8 sinh t ) 

But this is the modified Bessel equation satisfied by f = K . 

4. Another Nicholson-type formula. Here we give a differential equations 

proof of 
00 

(16) J 2 ( x ) + Y^(X) = i^ ̂  ( 4 x ) " J K (2x sinh t ) ( c o s h t)2v (sinh t ) " dt 
IT 0 

CO 

4 r(v) ,xs
V f v , w 2 _, -vî -1/2 v . n 1 

= ~J fTSTy (Z> J0 *v
(xu)ixi + 4 ) / u d u , x > 0 , y > - 5 , 

the special case n = 0 of [3, p.368, (42)]. It is convenient to write this 

formula in the form 
00 

(17) j2(x) • y2(x) = f k (xt) (t^ 2 • 4 ) - ( a + 4 ) / ( 2 a + 4 ) t^ 2' 1 dt , x > 0 , a > 0 
a a J ~ a 

where we have adopted an ad hoc notation for the generalized Airy functions: 

j , y are appropriately normalized solutions of a a 

(18) 

where a = -2 - \/v , while k is a suitable solution vanishing at +» of 

a 

(19) y" - xay = 0 . 

In the special case a = 1 (u = -1/3) , (17) becomes « 

Ai2(-x) + Bi
2(-x) = 2 4 ( 2/ 3 ) V 6 J t-^Ct 8

 + A)*** Ai(xt) dt , x > 0 . 

J* r(\/s) Jo 
In order to prove (17) we note that, using (18) and [13, p.145] its left-hand side 

satisfies 

L u * (D3 + 4xa D + 2axa~1)u = 0 
X v X X and, using (19), we find that 

Lx ka ( x t ) = Mt ̂  ka ( x t ) 

where 
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M t = (t
a + 3 + 4t)Dt + a(t

a + 2 + 2) 

and 

Mt = -(t
a + 3 + 4t)Dt + (2a - 4 - 3t

a + 2) 

Now M. v = 0 has the general solution 

v(t) = ct^ 2" 1 (t a + 2 + 4)-(
a + 4 )/( 2 a + 4> 

We note that the condition (13) is also satisfied with a = 0 , fi = » leading to 

(17) apart from a constant factor. To evaluate the constant we return to the form 

(16) and use 

J2(x) + Y2(x) = -? + 0(x"2) , x -* « 
•v 

and, using [12, Ch.7], 

f K (xu)(u2 + 4 ) ^ 1 / 2 vť au = i 2V~1 *r{2v)/r{v) + 0(x 2 ) , x -> <» . 
J n V X 

5. Zeros of generalized Airy functions. M.S.P. Eastham (private 

communication) raised the question of showing that the smallest positive zero x 

a 

of a solution of (18), satisfying y(0) = 0 , decreases as a increases, 

0 < a < «• . This, and more, has been proved by A. Laforgia and the author (to be 

published) using results (due to Elbert and Laforgia) based on (3) and the 

well-known connection between (18) and the Bessel equation. It would be nice to 

show this using (18) directly. The Sturm comparison theorem is not applicable in 

any obvious way because x is not monotonically increasing in a for each x in 

an interval (0,b) , b > 1 . This raises the question of whether one can find an 

analogue of (3) (other than the awkward formula got by transforming (3) itself) for 

dx /da . What we need in effect is a result that bears the same relation to (17) as 
(3) does to (1). One way to approach this problem would be to find an integral 

representation for j ym - j m y which satisfies a known fourth order differential <x p p o. 

equation. 

A perhaps more tractable problem would be to find the appropriate 

generalization of (4) for 
_ 2 
e X [HA(x) G^(x) - GA(x) H/x)] . 

This would give, in particular, a formula for the derivative with respect to A of 

a zero of a Hermite function. 
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