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We consider the flow of a one-dimensional reaction diffusion 

equation 

u t - uxx + f ( u ) ( 1 ) 

on the interval x€ (0,1) with Neumann boundary conditions 

u ( t , 0 ) = u ( t , l ) = 0 . (2) 

Given two stationary solutions v, w of (l),(2) (i. e. solutions of 

v" + f(v) = 0, v(0) = v'(l) = 0 ) (3) 

we say that v connects to w if there exists a solution u(t,x) of (1), 

(2) for t 6 (- «,,») such that 

lim u(t,.) = v, lim u(t,.) = w. (4) 
t->-«> t̂ °° 

For ordinary differential equations trajectories connecting sta

tionary points have been studied in the context of shock waves [3,10] 

and travelling waves [l0], For(l),(2) the principal motivation for 

studying connections is somewhat different. As argued by Hale [4] the 

flow on the maximal compact invariant set A displays the essential qua

litative features of the flow of (1),(2). Since (1),(2) is a gradient 

system, under mild growth conditions on f at infinity A consists of 

stationary solutions and connecting trajectories. Therefore, determi

ning all stationary solutions and their connecting trajectories, we 

know the essential part of the flow. 

For special classes of nonlinearities the problem of identification 

of pairs of stationary solutions admitting connections has been studied 

by Conley and Smoller [2, 10] and Henry [5, 6] who solved the problem 

completely for f satisfying f (0 ) = O and being qualitatively cubic-like. 

In [l] we have given an almost complete answer to the following question 

concerning equation (1 ) with Dirichlet boundarv conditions for general 

f: 
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(Q)Given a stationary solution v, which stationary solutions does it 

connect to? 

Similarly as in [l], to distinguish the w's to which v connects 

we introduce a scalar characteristics of the complexity of stationary 

solutions. However, while in [l] this is the maximal number of sign 

changes (called zero number, z), in our case its role will be played 

bv the lap number 1 introduce by Matano [7]. For a given function v on 

(u, l] l(v) is, by definition, the minimal number of intervals I. into 

which [0, l] can be partitioned so that v is strictly monotone on each 

I. and l(v) = 0 for v constant. 

For v stationary we define the instability (Morse) index i(v) as 

the number of negative eigenvalues of the problem 

y" + fC(v(x))+>) v = 0 (5) 

y"(0) = y"(l) = 0. (6) 

Bv a Sturm-Liouville separation of zeros argument one obtains for v*cnst 

l(v) < i(v) < l(v) +1. (7) 

The stationary solution v is called hyperbolic if A = 0 is not an eigen

value of the problem (5),(6). 

Given v hyperbolic, for 0 < k < l(v) we denote by v,(v, ) the sta

tionary solution v (v) satisfvina l(v) = k with smallest v(0)> max 

Range v ( l(y) = k with largest v(0) c Range v, respectively). By ft(v) 

we denote the set of stationary solutions which v connects to. The 

following theorem is an almost complete answer to (Q): 
2 

Theorem. Let f be C and let 

Tim f(s)/s < 0 (8) 

Is I — 

Let v be a hyperbolic solution of (3). 

(i) If v is constant or i(v) = l(v) then 

fi(v) = {vk, yk: 0 < k < i(v)} 

(ii) If v(0) = max v / min v and i(v) = l(v) + 1 then 

ft(v) = ft. u ft~ u ft-,, 
where 

and either 

{vk: 0 <k <i(v)} , 

{v, : 0 <k <i(v) - 1} 

{v, : k = i(v) - 1} 

or ft_ consists of one or several stationary solutions w with Range w c 

Range v and i(w) < i(v). 
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Note that from [7] it follows that there are no other cases 

possible excent of (i) - (ii ). 

The proof of this theorem proceeds along the lines of the proof of 

the analogous theorem of [l] for the Dirichlet case. Therefore, the de

tails of its outline given below can easily be completed from [l]. 

To establish connections we focus on the case f(0) =0, v 0 here 

for s i m p l i c i t y . Let the zero number z(u(t,,)) denote the number of sign 

changes of x \— u(t,x), 0 < x < l - cf, [l], Then z(u(t,. ) ) is decreasing 

with t [7, 8] and we may define the dropping times 

and 

inf (t > 0: z (u(t. ) ) < k} < «> 

tanh tR € [0, l]. 

... < tQ. If t, < t, , , the sign 

ak = sign u(t,0), tR < t < t k - 1 

is independent of t. ?7e collect all this information in the map 

y = (yQ, . .. , yk, ...) where 

^To ~- °o(1 " V 
x-/2 

*k ~- °k(Tk-l " Tk } . 

Taking n = i(v) - 1 and a small sphere 

turns out to be a continuous and essential mapping into the standard n-

sphere S . In particular, y is surjective. Therefore, for any 0 < k < 

i(v) , o € {-1, 1} there exists a uQ e W (v) such that y(un) = a
e
k where 

e, denotes the k-th unit vector. Hence the trajectory u(t) through ufi 

connects v to a stationary w with 

z( w - v) = k and sign (w(0) - v(0) = o . 

The fact that w = v, for o = l and w = v for o - -1 (the latter in 

case (i) follows from the following two lemmas: 

Lemma 1. The stationary solution v does not connect to w if there is a 

w stationary with w(0) between v(0) and w(0) such that 

z(v - w) <z(w - w). 

Lemma 2. For stationary solutions v, w 

l(v) >1 if Range w c Range v 
z(v - w) = { (9) 

0 if Range v o Range w - 0 

Note that up to interchange of v and w all possible cases are taken 



care of in Lemma 2. 

The proofs of these lemmas can easily be obtained by adapting 

those of the corresponding lemmas from [l]. The first one is based on 

the maximum principle, the second employs the phase plane portraits of 

(v, v')and(w, w'): one notes that between two successive local extrema 

of v there is precisely one intersection point of v and w in case 

Range w C Range v. 

Concluding we note that v, and v, can easily be identified from 

the global bifurcation diagram of the parametric equation 
? 

u. = u + a* f (u) t xx J 

as given e. g. in [9]. Also, we note that by further analysis we can 

identify the members of ft more precisely. 

Figure 1 illustrates the Theorem for a particular f. Points on one 

curve represent stationary solutions with the same lap number which 

increases from curve to curve by one from left to right starting with 

1 = 1 . Case (i) applies to v in the left part of Figure 1 with l(v)=0, 

i(v) = 3. Case(ii) applies to v in the right part of Figure 1. In this 

case l(v) = 8, i(v) = 9 , vfi <£ ft_ and all candidates for ft~ not exclu

ded by (ii) are marked bv "?". By further analvsis we are able to show 
i 

that connections do exist to those solutions marked by "i" and do not 
exist to those solutions marked by "x". 
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