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ACTA FACULTATIS REBUM NATUBALIUM UN1VERS1TATIS COMENIANAE 
MATHEMATICA XVII - 1907 

THE £P>X SPACES AND APPLICATIONS TO THE THEORY 
OF PARTIAL DIFFERENTIAL EQUATIONS 

GUIDO STAMPACCHIA, Pisa 

§ 1. The &P>X spaces. 

In this lecture I propose to expose some results about the spaces S£P>X and 
some of their applications to the theory of differential equations of elliptic 
type. 

The theory of the £PP>X spaces permits us to unify in "a single family the 
spaces of Holder continuous functions and the spaces LP. 

For some particular values of X these spaces were already introduced some 
time ago by C. B. MORREY [16] and were used in the theory of differential 
equations of elliptic type both linear and non — linear. 

Let/(#) be a function defined, for simplicity on a cube Q0 oiRn and belonging 
to LP(Q0) (p > 1). The function f(x) is said to belong to the space of Morrey 
LP>X if there exists a constant K such that 

(1.1) f\fx)\Pdx^K\Q\^-xm 
Q 

for every subcube Q of Q0 w
rhose sides are parallel to those of Q0. 

We denote by \Q\ the n-dimensional measure of Q. 
If X ;> 0 one obtains a Banach space defining the norm as follows: 

i i/i .£••*= ^p m^-1 f\f(x)\pdx. 
QcQo Q 

The condition that X > 0 is essential because if X < 0 then one would 
find that the only function belonging to LP>X is the function 0. For X = n 
evidently we have LP>n = LP and for X = 0 we have LP>° = L™ for all p :> 1. 

More recently [13], [14], [1], [21] the spaces Z£P>X were introduced in the 
following manner: a function of LP(Q0) is said to belong to S?P>X if there exists 
a constant K such that 

(L2) f\f(x) - fQ\P dx <; KP\Q\*-*l\ 
Q 
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for every subcube Q of Q0 with sides parallel to those of Q0, where / Q denotes 
the (integral) mean value of / on Q. Let us set 

( L 3 ) \f?<»9 x = SUP I G I ^ - 1 / \f(x) - fQ\P dx 
~PV' Q^Qo Q 

and 

In this manner | \f\ J ^ . will be a norm of the Banach space ££P>X while 

[/] (/? x is on the other hand a norm if we identify two functions which differ 

by a constant. 

We observe tha t a function / belongs to &P>X if and only if there exists 
a constant K and for each subcube Q <^ Q0 a, constant JQ such tha t 

(1.5) f \f(*) - h\* dx < KP\Q\*-xm 
Q 

for any subcube Q of Q0 with sides parallel to those of Q0. We obtain a semi-
norm equivalent to [/] x if we take 

sup inf \Q\xm~lf \f(x) - JQ\P dx 
QcQo Q 

where the infinum is taken over all the constants JQ associated to / and Q. 

If q > p and - ^ < — then &<*>'* c &P>X. 
q p 

If A > 0 the two spaces 3?P>X and LP>X coincide and hence one can assume 
JQ = 0 in (1.5). But the spaces LP>° and 3fP>Q are different. In fact, while 
the first coincides with the space of all (essentially) bounded functions the 
second coincides with a space studied by F . J O H N and L. N IRENBERG [13] 
which consists of functions of bounded mean oscillation find wre denote this 
space by S0. 

The space cf0 consists of functions f(x) for which there are two constants 
H and /? such tha t 

meas {x; \f(x) - fQ\ > a} <He~^\Q\ 

for every subcube Q of Q0. 
This is equivalent to say tha t there exist two constants & and K such tha t 

f e*\m-U]dx<K\Ql 
Q 

for every cube Q contained in Q0. 

For p < 2. < 0 the space 2?P>X coincides with the space of Holder continuous 
A 

functions C0m where the exponent oc is given by a = . In fact, setting 
Jr 

130 



[/Jo,a-*<.%„ x'-x'r ' 
the two norms [f]0,a and [/] ^ ., after identifying two functions which differ 

by a constant, are equivalent. This result was proved (independently) by S. 
CAMPANATO [1] and N. MEYERS [14]. 

I t is important to observe that the role played by the cubes Q in the previous 
definitions can be substituted by any family of sets {E} which are "regular" 
in the sense that for each set E of the family there exists two cubes Q' <~ Q" 
such that 

Q'cEczQ", v-i<,^<:v 

where v is a constant independent of the particular set E considered. 
Thus one can remark that the property that a function / belongs to a space 

<£P>X is not altered by a change of variables which is bilipschitzian. 
In a manner analogous to what one does in the case of the LP spaces one 

can introduce also the weak &P>X spaces. A function f{x) is said to belong 
to the space <£P>X — weak if there exists a constant K such that for each cube 
Q c= Q0 with sides parallel to those of Q0 we have 

meas {xeQ; \f(x) -fQ\ >a } <; (^ . \Q\W. 

The introduction of the spaces <£P>X permits us to rediscover and to generalize 
a classical result of C. B. MORREY. 

Let u(x) e H1>P(Q0Y
1) and suppose that for each subcube Q of Q we have 

/ \UX\P dx < J^ICI1-*'*- 0 < % <. n, 
Q 

with a constant K independent of Q; that is to say ux e LP>X. Then, if p < X 
the function u belongs to J^P>X — weak where 

J ^J l^ 1_ 
p~ p A 

and 

( K\P 
— I \Q\x~xln-

V We denote by H^P(Q) the completion of the functions ^t which together with their 
first derivatives are continuous in Q with respect to the norm 

M// 1 ^}) = Wi*i ]> + E K-IL»C >) 

while H\*P(Q) denotes the closure in H1*P(Q) of the functions with compact support. 
We will write, in the following, H 1 and Hi instead of H1*2 and HJ»2. 

9* 131 



If, instead, p = A, then u e J2?1-0 = $0 and 

M^i ,o -^ Z -

Finally if p > A then „ e J271*" with // = 1; that is u e C0, ? where 

P 
These results for A = n take a weak form of the well known Sobolev ine­

quality. 

§ 2. In te rpo la t ion in the spaces J§?P»A. 

The problem of interpolation in the spaces JS?-9^ presents itself in an 
nteresting manner. To this end we shall introduce the following J definitions: 

Definition (2.1) — A linear operation T on functions f defined over Q0 is 
said to be of strong type ££[p, (q, fi)] if there exists a constant K, independent 
of / , such that 

(2.1) [Tf]^a>ll<K\\f\\Lv, 

the smallest of the constants K in (2.1) is called the strong £?[p, (q, //)] norm of T. 

We now introduce the following expression: 

0Ju, a) = sup [IQI'1'"-1 meas {xeQ; \u(x) — uQ\ > or}]. 
Qc(? 0 

Definition (2.2) — A linear operation T on functions defined over Q0 is said 
to be of weak type J?[p, (q, ft)] if there exists a constant K, independent off, such 
that 

(2.2) w.^(_ffl£),
! -

the smallest of the constants K in (1.5) is called the weak ££[p, (q,[i)] norm of T. 

Theorem (2.1) [21] — Let [pi, qi, pi] be real numbers satisfying the conditions 

Pi > 1, Pi < qt (i = 1, 2); px ?_ p2 and qx =£ q2. 

For 0 < t < 1 let [p(t), q(t), fi(t)] be defined by the relations 

(2.3) 
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/ / T is a linear operation which is simultaneously of weak types S£[pu (qu ^)] 
with respective norms Ki (i = 1,2) then T is of strong type ££[p9 (q, p)] for 
0 < t < 1 and 

[Tf]<?(«,») <JTK <!-<> K{\\f\\LPm 

where X* is a constant, independent of f9 but depending on t, pi9 qi, m and it is 
bounded for t away from 0 and 1. 

An useful corollary of theorem (2.1) is the following. 

Corollary (2.1) — Any time a linear operation T maps LPt into a space of 
Holder continuous functions and^ LPz into a (weak) L^% — space, then exist there 
a special p such that T maps LP into the space $0. 

For generalizations of this theorem see [8], [9], [18]. 

Theorem (2.2) [5] —- Let [pu {qu f*i)] be real numbers such that pu qt > 1 
(i = 1, 2). If T is a linear operation (in general on complex valued function 
on Q0) which is simultaneously of strong types S£[p%9 (qu f*i)] with respective 
norms Ki (i = 1,2) then T is of strong type <£f[p9 (q, p)] where p9 q9 fi are defined 
for 0 < t < 1 by (1.6) and further the following estimate'holds 

[u]j?q,f*<K?-»KiWuWLp. 

The previous theorems generalize respectively the theorems of interpolation 
of MARCINKIEWICZ and of RIESZ—THORIN. 

Another theorem of interpolation is found to be very useful; it completes 
the theorems above. For this purpose we shall introduce the spaces NP. 

We shall denote by S the family of systems S of a finite number of subcubes 
Qi no two of which have an interior point in common and having their sides 
parallel to those of Q0 (u Qi = Q0). 

i 

For any (real or complex valued) function u e Ll(Q0) and for any 1 < 
< p < +oo we consider the expressions of the form 

I\f\u~uQi\dx\P\Qi\V-P) 
i Qi 

where Qi runs through a system S e S. 
For 1 < p < +oo set 

[U]NP = sup {2 I / In ~ uQi\ dx\P \Qi\(
1-P))llP 

{Qi} =SeS i Q* 

and the following. 

Definition (2.3) — A function u is said to belong to NP 1 < p < +oo if 
[U]NP < +oo. We observe that [U]NV defines a semi-norm in NP and we obtain 
a Banach space by taking 
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IMIJV = I M I L - + [«]/»» 

as the norm in NP. 
If q>p, then N« <= NP. 
If u e LX(Q0) then we have 

lim [U]NP - \u]a,xo = S0 

i.e. we may set N°° = J2?<M> = cf0. 
In connection with these spaces NP the following result due to F. JOHN 

and L. NIRENBERG holds [13]. 

If ue N^ with p > 1 then there exists a constant C such that, for any cube 

Q c : #o> w e have 

meas {xeQ;\u(x)-uQ\>a}^c(W^y. 

Conversely, one can show that if u is a measurable function satisfying the 
condition 

meas {x eQ; \u(x) —- UQ\ > a} < °m 
for each cube Q ^ Q0 where K(Q) are constants wTith the following property: 

for any system {Qt} = S e S, introduced above, and for some r <_p we 
have 

then u e NP and we have 

ZlK(W<:iK(<2)r, 

In fact, we have 

MN»^{P_1)1ІP-K-

j \u(x) - uQ\ dx _ {p

2*{®lv Wl1- 1* 

Q 

from which it follows that for {Qt} = S e S, 

_p 2P 
-—ЩQ^rЩQ^P-r^-

Г JГ 

2 ^1~P I J" M*> ~ *«'! d a ;l r ^ ^-i \K@i)\r \K(Qi)\p~r < r ^ \K@)\p-
Qi 

Admitting this result we have the following theorem of interpolation. 

Theorem (2.3) [22] — Let T be a linear operation defined on the class $F of 
(real valued) simple functions on QQ such that 
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[T«]^(i.o)^AMl t tll^" 

[Tu]N*a <, Kz\\u\\LPt 
where pv p2, q2 > 1 with q2 >. Pv -7 J>» 9 -^ - are defined by 

{2A) ~p~~~ pi Pi' 9~V2 
then 

\\Tu-(Tu)Qt\\L<><rf'Kl{-t)K{\\u\\LP for ue& 

where Jf is a constant which is bounded if t is away from 0 and 1. 
The theorem is valid also for px = + co. 
Before giving some applications of this theorem we observe that if/ e Lv — 

weak and 

meas {x eQ; \f(x)\ > a} < ( ^ j 

and if there exists an r < p such that 2 \K(Qt)\r <, \K(Q)\r, then 

["/V< const \K(Q)\. 

In fact, then there exists a constant C(p) such that 

meas {x eQ; \f(x) - fQ\ > a}<,C(p) ( ^ f ' 

In particular, the assumption is satisfied provided / e Lp with K(Q) = 
= f\f\vdx. 

Q 
We deduce from theorem (2.3) the following results: 

Theorem (2.4) —- Let T be a linear operation defined on the class & of simple 
functions on Q0 such that 

[ ^ ] ^ M ^ *III«HL* ; I W I L * <> K2\\U\\LP> , 

where pv p2, q2 > 1 with q2 ]> p2. Then 

\\Tu\\La^X-K(\^)Ki\\u\\Lp9 

where 3C is a constant which is bounded if t is away from 0 and 1 and p and q 
are given by (2.4). 

The theorem is valid also for px = + oo. 
Theorem (2.4) can be extended in the following way-
Theorem (2.5) — Let T be a linear operation defined on the class 3F of simple 

functions on Q0 such that 

[Tu^^^K^uW^ 
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meas {\Tu\ > a} ^ (ElM^J 

where px > 1, p2 > 1, q2 > 1. Then 

\\Tu\\L*<3rK\-*.K2\\u\\Lv 

where X is a constant which is bounded if t is away from 0 and 1 and p and q 
are given by (2.3). 

The theorem holds also for px = + oo. 
We are going to sketch the proof of this theorem making use of a trick 

introduced by CAMPANATO in giving a new proof of theorem (2.4) [4], 
Let 8 a fixed system of a finite number of subcubes Qi no two of which have 

an interior point in common and having their sides parallel to those of Q0. 
Set 

F(u) = ~ - | J \Tu - (Tu)Qi\ dx in Qi. 

Qt 

The map -T(u) is sub-linear and satisfy 

ll^(tt)||L«:£tfill«IUft 

meas {|^"(«)| > a} /KáiNi^y 

The first inequality is obvious; the second one can be proved easily. In fact 
if we denote by QI the cubes of 8 for which one has 

/ \Tu - (Tu)Ql\ dx > a\Ql\, 
QI 

it follows 

*2 m <^z f \Tu\dx<;2(i- ^-LJ) K2INU». (2 i ^ 1 ) 1 1/(ř2> 
and then 

meas {\f(u)\ > a} = ^ \Qi\ < {2(1 - ^^)K2\\U\\LV^O^\ 

Applying the theorem of MARCINKIEWICZ it follows that 

W(u)\\L*<tfK\-tK{\\u\\& 

where p and q are given by (2.3) and 3T is a constant which is bounded if t 
stay away from 0 and 1. 

But, from the definition of S"(u), we have 

{I I f \Tu - (Tu)Qt\ dz|* |Q«|W}i/ff < XK\-*. K{\\u\\Lv9 
i Qt 
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and thus, since S is arbitrary 

[Tu]N* < X*K{-tK{\\u\\LP 

therefore, applying the lemma of F. JOHN and L. NIRENBERG, 

meas {\Tu - {T«M > „> S ( ^ " ' f " - " " ) ' . 

Then making use again of the theorem of MARCINKIEWICZ one has 

\\TU - (ril)gllLf < JT" . XI"* . Ki\\u\\Lv 

and from this the conclusion of the theorem follows easily. 
It would be interesting to know whether the theorem (2.5) holds for q2 = 1. 
Theorem (2.5) can be considered as a generalization of the theorem of 

MARCINKIEWICZ where the space S0 replaces usefully the space 2/°. 
From the corollary (2.1) and theorem (2.5) the theorem of interpolation 

follows: 

Theorem (2.6) — Let T be a linear mapping such that, continuously 

T : L*>i->C0>* 

T : JL>2 -> LQ2 (weak), q2 > 1, p2 <, q2 

then,for — = ~~ H , 0 < t < \,set & = a/(a + —I 
P Pi P* \ qj 

T.LP 

n CM, for 0<t<&, (3 = (1 - t) a t 

#0 , for t = & 

U, for # < « < ! , - = - {(l + ~?-2) t - «A 
q q2[\ n) n) 

The previous results on interpolation show that the l£v>x spaces form 
a family of spaces of interpolation with respect to special families of spaces, 
the Lv — spaces. There might be more general families of spaces than the 
L? spaces with respect to which the spaces J§?-M are spaces of interpolation 
(see [19]), but, on the other side, the spaces J5?-M are not spaces of interpolation 
with respect to the family of the spaces 3?v>1 themselves. E. M. STEIN and 
A. ZYGMUND [24] have indeed proved this fact adapting an example given by 
H A R D Y and LITTLEWOOD [11]. They have proved that there exists a linear 
mapping T which maps continuously C°*a into CM, L2 into L2 but it does 
not map $0 into S0. 

Thus, it is interesting to find families of operations which leave the spaces 
JSP-M invariant. One of these families of operators has been found by J. P E E T -

RE [17]. 
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This family includes the singular integral transform of CALDERON—ZYG-

MUND. 

A consequence of theorem (2.4) is the following. 

Theorem (2.6) — // the operator T leaves the spaces &*>x invariant for a fixed 
p and for 0 < A < n, then T leaves invariant the spaces Lv for all q >p. 

In fact, one has 

T : L™ ->60 

T : LP ->Lv 
and, thus, from theorem (2.4);*follows 

T: L*->L<i for q >p. 

Making use of the interpolation theorem (2.4) it is possible to give an easy 
proof of a theorem by HORMANDER [12], (see [23], [19]). 

Consider the translation invariant mapping 

Tf=$K(x-y)f(y)dy 

and assume that the Fourier transform K of K, as distribution, satisfies: 

\K(x)\ < A. Moreover assume that 

/ \K(x - y) - K(x)\ dx < A. 

w >m J 

Then Tf maps L2 into L2 because of the first assumption. It can be proved 
that T maps L™ into S0 [23], [19]. 

I t follows, from theorem (2.4) that Tf maps 2> into Lv for p > 2. 
By a duality argument the same conclusion holds for p > 1. 
The proof that T maps L™ into «f0 is easy and we are going to sketch it 

here. 
L e t / be a bounded function (\f(x)\ < 1) and wrrite u(x) = Tf. Fix a cube 

Q, which we may assume centered at the origin. Let us split / = /i + /2 

where fx(x) = f(x) in the sphere S* of diameter twice that of Q and having 
the same center that Q; fx(x) = 0 outside this sphere. Write ui(x) — T(ft) 
(i = 1,2); u(x) = ux(x) + u2(x). 

Now 
J \u±(x)\2 dx<A2j \Mx)\2 dx <: A2 c\Q\. 

Q S 

U2&) = J K(x - y)f2(y) dy. 

u>Q = SK(y)f2(y)dy. 

: J \K(x-y)-K(y)\<:A. 
vts 
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Let 
щ(x 

Therefore 

\u2(x) • -UQ\ 



Combining the informations above we get 

^~ f\u(x)-uQ\*dz<£A*(l+c) 
Q 

i.e.: u e60. 

§ 3. Applicat ion to the theory of differential equat ions . 

C. B. MOBBEY has extensively used the spaces ££2>x for 0 < A < n in the 
theory of differential equations of elliptic type linear and non-linear [16]. 
Some of his results can be extended making use of the spaces 1£2>X either 
for positive or negative values of A. We mention the following theorem which 
generalizes a theorem by MOBBEY [15]. It can be proved essentially in the 
same way. 

Let aij(x) (i, j = 1, 2, . . . , n) be bounded measurable functions in an open 
set Q, satisfying 

2 M * ) &f/ > H£)2 v = const > 0, £ e Rn 

ij 

and let ft be n functions of L2(Q). Let u be a function of Hl(Q) which, with 
the usual convention on the sum, satisfies 

(3.1) f atj(x) uX{Vxi dx = J fiVxi dx for all v e H\(Q). 
a a 

The following theorem holds 
Theorem (3.1) —- There exists a constant A0, 0 < A0 < 2 such that, for fi e 

e ££2>x with A0 < A < n, one has, in any Q' with Q' <=• Q, uxi G L2>X and, 

consequently u eJ?2>x <= jSfM-2 where — ==— — for A > 2, and u eJ?2>x~2 

q 2 X 
for A < 2. 

In [15] this theorem is proved assuming A0 < A < 2; with such a limitation 
the function u is Holder continuous. 

From theorem (3.1) and using the interpolation theorem (2.4) it is 
possible to deduce some estimates found in [20]: 

If heLP, p > 2, then (i) UBLP* where —z = for p < n (ii) 
J J * p* p n J * x / 

u G S0 for p = n, (Hi) u is Holder continuous for p > n. 
When in (3.1) the coefficients a^(x) are assumed to be Holder continuous 

more informations can be obtained for u. 
CAMPANATO [2] has proved the following theorem. 
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Theorem (3.2) — Let ft be in J£2>x, with — 2 < A < n, and let Q' be a open 
set such that Q' <-= Q. 

(i) If the coefficients ay are continuous and 0 < A < n, then, uxi e J£2>x in Q'. 
(ii) If ay are Holder continuous in Q and A = 0 then, in Q', uxi e <f 0. 
(Hi) / / atj e C<W/2 and — 2 < A < 0 then uxi e &2>x s= C°.-*/2. 
If Q is "smooth" and u e H\(Q), then the same conclusions hold in Q. 

This theorem unifies CACCIOPPOLI—SCHAUDER estimates with MORREY'S 

estimates. 
The proof of this theorem does not make use of the potential theory. 
From theorem (3.2) and the interpolation theorem (2.4) it follows that 

when/^ e Lv(Q), p > 1 one has uxi e Lv(Q). This method has been used in [6]. 
It should be mentioned that a generalization of the spaces &v>x, with respect 

to a different norm in Rn, has been considered. This generalization turns out 
to be useful in dealing with parabolic and quasi elliptic differential equations. 
See [7], [3], [10]. 
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