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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

THE #7.* SPACES AND APPLICATIONS TO THE THEORY
OF PARTIAL DIFFERENTIAL EQUATIONS

GUIDO STAMPACCHIA, Pisa

§ 1. The Z».* spaces.

In this lecture I propose to expose some results about the spaces .Z».* and
some of their applications to the theory of differential equations of elliptic
type.

The theory of the #?.* spaces permits us to unify in-a single family the
spaces of Holder continuous functions and the spaces L2.

For some particular values of 1 these spaces were already introduced some
time ago by C. B. MorRrEY [16] and were used in the theory of differential
equations of elliptic type both linear and non — linear.

Let f(x) be a function defined, for simplicity on a cube @, of R” and belonging
to L?(Q,) (p = 1). The function f(x) is said to belong to the space of Morrey
L».+ if there exists a constant K such that

(L.1) C[|fm)|1o dz < K|Q|1-4In

for every subcube @ of @, whose sides are parallel to those of Q,,.
We denote by |@| the n-dimensional measure of Q.
If 2 > 0 one obtains a Banach space defining the norm as follows:

|If[324 = sup [Q[#n-1 [|f(z)? da .
Q<Qo Q

The condition that 4 > 0 is essential because if A < 0 then one would
find that the only function belonging to L?-* is the function 0. For A =n
evidently we have L?.#» = L? and for A = 0 we have L7, = L® for all p > 1.

More recently [13], [14], [1], [21] the spaces #?-* were introduced in the
following manner: a function of L?(@,) is said to belong to #7.* if there exists
a constant K such that

(1.2) Qf If(@) — fol? dz < KP|Q|*~4/n,
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for every subcube @ of @, with sides parallel to those of ¢y, where fo denotes
the (integral) mean value of f on . Let us set

(1.3) [Pepps = S0P !QI“"“IQf |f(@) — fol? dz
and
(1.4) 1l gop,i = Iz + [f] g

In this manner ||f]| @pi will be a norm of the Banach space .#?-* while
[f1 o is on the other hand‘a, norm if we identify two functions which differ

by a constant.

We observe that a function f belongs to #7-* if and only if there exists
a constant K and for each subcube @ < @, a constant fq such that

(1.5) J V@) — Tol? dz < KviQp=in

for any subcube @ of @, with sides parallel to those of @o- 'We obtain a semi-
norm equivalent to [f] | o if we take

sup inf [QI'/n1[ |f(x) — Fql? dz

Q<@ @
where the infinum is taken over all the constants jg associated to f and Q.
If g >p and —’;— < ;}— then #o1 < Fri,

- If 2 > 0 the two spaces .#P-* and LP* coincide and hence one can assume
fe@ = 0 in (1.5). But the spaces L?:-? and .#P?:0 are different. In fact, while
the first coincides with the space of all (essentially) bounded functions the
second coincides with a space studied by F. Jon~ and L. NIRENBERG [13]
which consists of functions of bounded mean oscillation And we denote this
space by &,.

The space &, consists of functions f(z) for which there are two constants
H and j such that

meas {z; |[f(z) — fol > o} < He |Q)

for every subcube @ of @,
This is equivalent to say that there exist two constants & and K such that

[ etif@-tfel dx < K|Q),
Q

for every cube @ contained in @,.
For p << 4 < 0 the space #7-* coincides with the space of Hélder continuous

functions C,,, where the exponent « is given by a« = — ;};— . In fact, setting
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lu(e’) — w(x")|
a — SU e
[f]ﬂ a x'.x"?Oo  —z Ia

the two norms [f]y,, and [f] .10 after identifying two functions which differ

by a constant, are equivalent. This result was proved (independently) by S.
CampanaTo [1] and N. MEYERS [14].

It is important to observe that the role played by the cubes ¢ in the previous
definitions can be substituted by any family of sets {£} which are ‘‘regular”
in the sense that for each set E of the family there exists two cubes Q' < Q"'
such that
Q']

o ="
where » is a constant independent of the particular set £ considered.

Thus one can remark that the property that a function f belongs to a space
Fp.% is not altered by a change of variables which is bilipschitzian.

In a manner analogous to what onc does in the case of the L? spaces one
can introduce also the weak #7.* spaces. A function f{x) is said to belong
to the space #P-* — weak if there exists a constant K such that for each cube
Q < @, with sides parallel to those of @, we have

P
meas ['c €Q; |f(x) — fo| > 0’} < (!g) . |Q~41n,

The introduction of the spaces #?4 permits us to rediscover and to generalize

a classical result of C. B. MoRREY.
Let u(x) e H1.2(Q,)® and suppose that for each subcube @ of @ we have

[ luz|p do < KP|Q|1—4/n, 0<i<mn,
Q

QI c E c II’ v._l S

with a constant K independent of Q; that is to say u, € LP:*, Then, if p < A
the function » belongs to #».*# — weak where

1_1 1
p p A
and
meas {x e@; |u — wg| > o} < (_l;_)l’ Q14

1) We denote by H1,2(Q2) the completion of the functions » which together with their
first derivatives are continuous in 2 with respect to the norm

‘lu;lylﬂ’( y = {Iu!ll,’( b)Y + b Ilut;IlL’(- 1))
i

while H}»(Q) denotes the closure in HL2(Q) of the functions with compact support.
We will write, in the following, H! and H} instead of H%? and H}.2.
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If, instead, p = A, then u € #1.9= &, and
[u]_gl,o < K.

Finally if p > 4 then u e £ with u = % — 1; that is u e Gy, ; where

A
=1——.
4 p

These results for 1 = n take a weak form of the well known Sobolev ine-
quality. .

§ 2. Interpolation in the spaces #».i
The problem of interpolation in the spaces #?:* presents itself in an
nteresting manner. To this end we shall introduce the following 'definitions:

Definition (2.1) — A linear operation T on functions f defined over @, is
said to be of strong type L[p, (¢, u)] if there exists a constant K, independent
of f, such that :

(2.1) [Zf] g < KIIflle?;

the smallest of the constants K in (2.1) s called the strong Z[p, (¢, u)] normof T.

We now introduce the following expression:
D, (u, 0) = sug [|Ql*/»—1 meas {x € Q; |u(x) — ug| > o}].
Q<@

Definition (2.2) — A4 linear operation T on functions defined over Q, is said
to be of weak type ZL[p, (¢, u)] if there exists a constant K, independent of f, such
that

(22) a,1, o) < (KI2)",

I

the smallest of the constants K in (1.5) is called the weak ZL[p, (¢, u)] normof T.
Theorem (2.1) [21] — Let [pi, gi, :] be real numbers satisfying the conditions
pizl, pi<q (=12) p#p, and ¢ #q,
For 0 < t < 11et [p(t), q(t), u(t)] be defined by the relations
1_@-H ¢t 1 _(a-y ¢t
D 2% q % %’
=1 —t)fry b
%

9.

(2.3)

QR o
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If T is a linear operation which is simultaneously of weak types ZL[py, (gi, uy)]
with respective norms K; (i = 1,2) then T is of strong type ZIp, (g, u)] for
0<t<land

[Tflgemn < A K G Ki||fllLreo

where A~ is a constant, independent of f, but depending on t, py, qi, u; and it is
bounded for t away from 0 and 1.
An useful corollary of theorem (2.1) is the following.

Corollary (2.1) — Any time a linear operation T maps LP: into a space of
Hoélder continuous functions and LP; into a (weak) LI — space, then exist there
a special P such that T maps LP into the space &,.

For generalizations of this theorem see [8], [9], [18].

Theorem (2.2) [5] — Let [pi, (91, #1)] be real numbers such that p;, q; > 1
(=1, 2). If T is a linear operation (in general on complex valued function
on Q,) which is simultaneously of strong types L[pi, (qi, p1)] with respective
norms Ky (i = 1, 2) then T is of strong type ZL[p, (¢, p)] where p, q, p are defined
for 0 <t <1 by (1.6) and further the following estimate” holds

[u]g@an < K {0 Kb||ul|Lo.

The previous theorems generalize respectively the theorems of interpolation
of MArcINKIEWICZ and of Riesz—THORIN.

Another theorem of interpolation is found to be very useful; it completes
the theorems above. For this purpose we shall introduce the spaces N2,

We shall denote by S the family of systems S of a finite number of subcubes
@Q; no two of which have an interior point in common and having their sides
parallel to those of @, (U @: = @)

For any (real or complex valued) function % e L'(Q,) and for any 1 <
< p < +o0 we consider the expressions of the form

31 In— uau daf? Q-

where @; runs through a system S e S.
For 1 <p < 40 set

[ulve = sup {2 [ |u— uq dajp |Q -2} /P
{Q4} =8e8 i Q
and the following.

Definition (2.3) — A function w is said to belong to N? 1 <p < +o0 if
[uly? < +00. We observe that [u]n® defines & semi-norm in NP and we obtain
a Banach space by taking
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[ullx? = |{u||Lt + [w]v?
as the norm in NP.
If ¢ > p, then N2 < ND,
If uwe LYQ,) then we have
lim [u]ND = _[u] 1,0 =& 0

p>+oo
i.e. we may set N° = L 1,0 = &,.
In connection with these spaces N? the following result due to F. Jouwn
and L. NIRENBERG holds [13].
If we N? with p > 1 then there exists a constant C such that, for any cube
Q < Q,, we have

meas {z €Q; |u(z) — ug| >0} <C (%IY:Q)”'

Conversely, one can show that if » is a measurable function satisfying the
condition

meas {z €Q; |u(r) — ug| > o} < C ( (Q))

for each cube @ < @, where K(Q) are constants with the following property:
for any system {@;} = S eS8, introduced above, and for some r < p we
have

2 K@) < K@),

then w € N» and we have

2
[u]Np S Wﬁ I(.

In fact. we have

f lu(m) - qu de < .(?2_;!{(]?)_3,5 IQll_llp

from which it follows that for {@;} =S e S,

Z Qi | f |u(x) — ugi| dx|" <;—1 7 (K@l K@) @ir..

Admitting this result we have the following theorem of interpolation.

. Theorem (2.3) [22] — Let T be a linear operation defined on the class F of
(real valued) simple functions on Q, such that
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[Tu]‘g(l,o) = I{IH'“'HL”l ’

[Tuln® < Kollul|zes
where py, Py, gy > 1 with ¢y =P If P, 9 =1 are defined by

1_(1—t, ¢t 1t
(24) P p P’ q ¢
then

ITu — (Tu)gyllzr < XK G0y ullr for ueF

where A" is & constant which s bounded if t is away from 0 and 1.
The theorem is valid also for p, = + 0.

Before giving some applications of this theorem we observe that if f e L —
weak and

meas {z €Q; |f(x) > o} < ( (Q))

and if there exists an r < p such that > |K(Q)|" < |K(Q)I", then

[flne < const |[K(Q)|.
In fact, then there exists a constant C(p) such that

K
mens {z ;1) — fal > 7} = 0p) (X2
In particular, the assumption is satisfied provided fe LP with K(Q) =
= [ az.
We deduce from theorem (2.3) the following results:

Theorem (2.4) — Let T be a linear operation defined on the class F of simple
Junctions on Q, such that

[Tu]gl,o < K, ||ul|z2:; [1Tu||Le < Kol|ul|L2s '

where py, Ps, 43 > 1 with gy > p,. Then
| Tul|Le < " KG-VKS||ul|ze,

where X is a constant which is bounded if t is away from 0 and 1 and p and q
are given by (2.4).

The theorem is valid also for p, = + .
Theorem (2.4) can be extended in the following way

Theorem (2.5) — Let T be a linear operation defined on the class F of simple
Sfunctions on Q, such that

[Tu] g o < Kyllullzos
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g
meas {|Tu| > o} < (—Igz—”%”l‘—m) :

where p; > 1, pp, > 1, g3 > 1. Then
| Tullpe < o K3~ . Ky|ul|ze

where A" is a constant which is bounded if t is away from 0 and 1 and p and g
are given by (2.3).

The theorem holds also for p, = + 0.

We are going to sketch the proof of this theorem making use of a trick
introduced by CAMPANATO in giving a new proof of theorem (2.4) [4].

Let 8 a fixed system of a finite number of subcubes @; no two of which have
an interior point in common and having their sides parallel to those of @o.
Set

T (u) 2757 f |Tu — (Tu)g;] dx in Q.
i Qs
The map 7 (u) is sub-linear and satisfy
|7 (u)l [z < K,ylullLm
’ q
meas {|7 (u)| > o} < (E%H—Z"L—”) ’

The first inequality is obvious; the second one can be proved easily. In fact
if we denote by Q; the cubes of S for which one has

Qf, [Tu — (Tu)qi] dz > o/Qjl ,

it follows
1 1-1/q,
D=2 [ mhaw<se(i— o) Kt (O )
(¥]214
and then

%
meas (70 > 0} = > 101 = {2(1 — L) Ko

Applying the theorem of MARCINKIEWICZ it follows that

17 (u)llLe < o Ki~t K| |ul|re

where p and ¢ are given by (2.3) and J¢ is a constant which is bounded if ¢
stay away from 0 and 1.

But, from the definition of J (u), we have
(5 | [ 1w — (Tujad dale Q*-s}11e < o K3 . KYjull,
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and thus, since S is arbitrary
[Tulye < X KI-tKE)|u||Le

therefore, applying the lemma of F. Joun and L. NIRENBERG,
(f ‘Kit Kéllullur)“
5 .

meas {|Tu — (Tu)g| > 0} <

Then making use again of the theorem of MARCINKIEWICZ one has
[1Tu — (Tw)ellee < ™ . Ki~*. KillullLe

and from this the conclusion of the theorem follows easily.
It would be interesting to know whether the theorem (2.5) holds for ¢, = 1.
Theorem (2.5) can be considered as a generalization of the theorem of

MarciNkIEWICZ where the space &, replaces usefully the space L.
From the corollary (2.1) and theorem (2.5) the theorem of interpolation

follows:
Theorem (2.6) — Let T be a linear mapping such that, continuously
T : L#, > C0n '
T . Lp: - L3, (weak), g, > 1, p, < g,
n

1 —
t+—t—,0<t<1,set0=a/(a+—)
Y21 y 2 92

1
then, for — =
f p

co%,  for 0<t< 9, f3=(1—-t)a——§'~t
2
T:L?~ &, fO?‘ t =19
La, for dP<it<, %-_——_!_{(1..]_5?_2);_@_2}

s n n
The previous results on interpolation show that the #».* spaces form
a family of spaces of interpolation with respect to special families of spaces,
the L? — spaces. There might be more general families of spaces than the
L? spaces with respect to which the spaces %7, are spaces of interpolation
(see [19]), but, on the other side, the spaces £?.4 are not spaces of interpolation
with respect to the family of the spaces .Z?:* themselves. E. M. STEIN and
A. ZyeMUND [24] have indeed proved this fact adapting an example given by
Harpy and LrrrLEwooDp [11]. They have proved that there exists a linear
mapping 7' which maps continuously C%* into €%, L? into L? but it does
not map &, into &,
Thus, it is interesting to find families of operations which leave the spaces
#».2 invariant. One of these families of operators has been found by J. PEET-

RE [17].
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This family includes the singular integral transform of CALDERON—ZyG-
MUND.
A consequence of theorem (2.4) is the following.

Theorem (2.6) — If the operator T leaves the spaces LP:* invariant for a fixed
p and for 0 < A < n, then T leaves invariant the spaces L2 for all ¢ > p.
In fact, one has
T: L6,
T:Lv - L»
and, thus, from theorem (2.4),“follows

T: L1 La for q =>p.

Making use of the interpolation theorem (2.4) it is possible to give an easy
proof of a theorem by HoRMANDER [12], (see [23], [19]).
Consider the translation invariant mapping

Tf = | K@= — y) fly) dy
and assume that the Fourier transform R of K, as distribution, satisfies:
II/% (x)] < A. Moreover assume that
[ K@ —y)— K@) dv < A.

x| =2(y}

Then Tf maps L2 into L2 because of the first assumption. It can be proved
that T maps L= into &, [23], [19].

It follows, from theorem (2.4) that Tf maps L? into L? for p > 2.

By a duality argument the same conclusion holds for p > 1.

The proof that 7' maps L® into &, is easy and we are going to sketch it
here.

Let f be a bounded function (|f(x)] < 1) and write u(z) = Tf. Fix a cube
@, which we may assume centered at the origin. Let us split f=f, + f,
where fi(x) = f(x) in the sphere S’ of diameter twice that of @ and having
the same center that @; fi(x) = 0 outside this sphere. Write u(x) = T'(f;)

(0 = 1,2); u(x) = uy(x) + uy(®).

Now
Qf [uy ()2 Ao < Azg lfi@)|2 dx < 42%¢|Q)].
Next
uy(x) = [ K(x — y) foly) dy.
Let
ug = [ K(y) fo(y) dy.
Therefore

lug(x) — ugl < [ |K(x — y) — K(y)| < A.
Y¢S
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Combining the informations above we get

T(;T f [u(x) — ug|2dv << A%(1 +¢)
Q

ie.: ued,

§ 3. Application to the theory of differential equations.

C. B. MorreY has extensively used the spaces #%4 for 0 < 2 < n in the
theory of differential equations of elliptic type linear and non-linear [16].
Some of his results can be extended making use of the spaces %% either
for positive or negative values of 2. We mention the following theorem which
generalizes a theorem by MorRREY [15]. It can be proved essentially in the
same way.

Let ay(z) (1,7 =1, 2, ..., n) be bounded measurable functions in an open
set Q, satisfying '

L...n
Z ay(x) &&= v(&)? v = const > 0, EeRn

iq
and let f; be n functions of L2(2). Let u be a function of H(2) which, with
the usual convention on the sum, satisfies

3.1) [ a(%) Uzvgy do = [ fogedz  forall e HYQ).
2 2

The following theorem holds

Theorem (3.1) — There exists a constant Ay, 0 < 2y << 2 such that, for f; e
€ P24 with Ay < A<<m, one has, in any Q' with 2’ < Q, uy € L?* and,
consequently u € Lt = L2A-2 ywhere %=———% Jor 2> 2, and u e L2242
for 2 <2,

In [15] this theorem is proved assuming 1, < 4 < 2; with such a limitation
the function » is Hoélder continuous.

From theorem (3.1) and using the interpolation theorem (2.4) it is
possible to deduce some estimates found in [20]:
If fieLp, p>2, then () uweLv* where Ffﬁ:%—% jor p < m (i)

u €&, for p = n, (its) u is Holder continuous for p > n.

When in (3.1) the coefficients aj(x) are assumed to be Holder continuous
more informations can be obtained for u.

CampaNATO [2] has proved the following theorem.
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Theorem (3.2) — Let f; be in L2, with — 2 < A < n, and let 2’ be a open
set such that Q' < Q.

(¢) If the coefficients ay are continuous and 0 < A <<n, then, uz € F2*in ',
(12) If ay are Hilder continuous in Qand 2 = 0 then, in ', Uy € &,.

(¢42) If ayy e C%—412 and —2 < 1 < O then uy € L4 = C0—4/2,

If Q is “smooth’” and u € HY(Q), then the same conclusions hold in Q.

This theorem unifies CaccioPPOLI—SCHAUDER estimates with MORREY’S
estimates.

The proof of this theorem does not make use of the potential theory.

From theorem (3.2) and the interpolation theorem (2.4) it follows that
when f; € L?(£2), p > 1 one has uz; € LP(Q). This method has been used in [6].

It should be mentioned that a generalization of the spaces .#?-*, with respect
to a different norm in R%, has been considered. This generalization turns out
to be useful in dealing with parabolic and quasi elliptic differential equations.

See [7], [3], [10].
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