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Abstract. This paper is concerned with the study of some nonlinear n-th
order differential equation

u(n)(t) = f(t, u(t), u′(t), ..., u(n−1)(t)),

with two-point boundary conditions, via upper and lower solutions.
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1 Motivation

Consider the n-th order nonlinear differential equation

u(n)(t) = arctanu(n−2) (t)− [u (t)]2k+1
[
u(n−1) (t)

]2
, (1)
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t ∈ [0, 1], k ∈ N, and the two-point boundary conditions

u(i)(0) = 0, i = 0, ..., n− 3,
a u(n−2)(0)− b u(n−1)(0) = A,

c u(n−2)(1) + d u(n−1)(1) = B.

(2)

We observe that the results contained in the work [7] for higher order nonlinear
differential problems cannot be applied to study the above problem. In fact, there,
the equations involve nonlinearities that do not depend on the (n− 1)-th order
derivative of the solution. More precisely, [7] concerns equations of the following
type

u(n)(t) + f(t, u(t), u′(t), ..., u(n−2)(t)) = 0.

Motivated by the above facts, we study the equation

u(n)(t) = f(t, u(t), u′(t), ..., u(n−1)(t)), (3)

with the boundary conditions (2), where f : [0, 1] × Rn → R is a continuous
function, a, b, c, d, A, B ∈ R and a, b, c and d satisfy b, d ≥ 0, a2 + b > 0 and
c2 + d > 0. Then we apply it to solve problem (1)–(2). The arguments used follow
some ideas contained in [1] and [4], for second order problems, and [2] for third
order.

In Section 2, we establish an existence result for problem (3)–(2) relying on
the existence of upper and lower solutions. The function f is supposed to satisfy
some Nagumo-type conditions. We sketch briefly the proof and refer [3] for details.
In Section 3, we consider the problem (1)–(2), with a, b, c and d non-negative
constants. We exhibit an upper and a lower solution for this problem and show
that f(t, x0, ..., xn−1) = arctan (xn−2) − (x0)

2k+1 (xn−1)
2 satisfies Nagumo-type

conditions. Then an existence result is derived by applying the theorem of Section
2. We end Section 3 with more one applied problem.

2 Existence Result

We begin by defining lower and upper solutions for problem (3)–(2) and Nagumo-
type conditions.

Definition 1. (i) A function α(t) ∈ Cn(]0, 1[)∩Cn−1([0, 1]) is a lower solution of
problem (3)–(2) if

α(n)(t) ≥ f(t, α(t), α′(t), ..., α(n−1)(t)) (4)

and
α(i)(0) = 0, i = 0, ..., n− 3,

a α(n−2)(0)− b α(n−1)(0) ≤ A,

c α(n−2)(1) + d α(n−1)(1) ≤ B.
(5)
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(ii)A function β(t) ∈ Cn(]0, 1[) ∩ Cn−1([0, 1]) is an upper solution of problem
(3)–(2) if

β(n)(t) ≤ f(t, β(t), β′(t), ..., β(n−1)(t)) (6)

and
β(i)(0) = 0, i = 0, ..., n− 3,

a β(n−2)(0)− b β(n−1)(0) ≥ A,

c β(n−2)(1) + d β(n−1)(1) ≥ B.

(7)

Definition 2. Let E ⊂ [0, 1]× Rn. A continuous function g : E → R satisfies the
Nagumo-type conditions in E if there exists a real continuous function hE : R+

0 →
]0,+∞[, such that

|g(t, x0, ..., xn−1)| ≤ hE(|xn−1|), ∀(t, x0, ..., xn−1) ∈ E, (8)

with ∫ +∞

0

s

hE(s)
ds = +∞ . (9)

The following lemma will play a crucial role in establishing a priori estimates
for the solutions of (3)–(2).

Lemma 3. Let f : [0, 1]× Rn → R be a continuous function verifying Nagumo-
type conditions (8) and (9) in

E = {(t, x0, ..., xn−1) ∈ [0, 1]× Rn : γi(t) ≤ xi ≤ Γi(t), i = 0, ..., n− 2} ,

where γi(t) and Γi(t) are continuous functions such that, for each i and every
t ∈ [0, 1],

γi(t) ≤ Γi(t).

Then there is r > 0 (depending only on hE , γn−2 and Γn−2) such that every
solution u(t) of (3)–(2) and verifying

γi(t) ≤ u(i)(t) ≤ Γi(t),

for i = 0, ..., n− 2 and every t ∈ [0, 1], satisfies∥∥∥u(n−1)
∥∥∥
∞
< r.

The following theorem contains an existence result. Some information about
the location of the solution and its i-derivatives, with i = 1, ..., n−2, is also given.

Theorem 4. Let f : [0, 1] × Rn → R be a continuous function. Suppose that
there are lower and upper solutions of (3)–(2), α(t) and β(t), respectively, such
that, for t ∈ [0, 1],

α(n−2)(t) ≤ β(n−2)(t) (10)
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and that f satisfies Nagumo-type conditions (8) and (9) in

E∗ =
{
(t, x0, ..., xn−1) ∈ [0, 1]× Rn : α(i)(t) ≤ xi ≤ β(i)(t), i = 0, ..., n− 2

}
,

where by α(0) and β(0) we mean α and β. If f verifies

f(t, α(t), ..., α(n−3)(t), xn−2, xn−1) ≥ f(t, x0, ..., xn−1) ≥
≥ f(t, β(t), ..., β(n−3)(t), xn−2, xn−1),

(11)

for every (t, x0, ..., xn−1) ∈ [0, 1] × Rn such that α(i)(t) ≤ xi ≤ β(i)(t) with i =
0, ..., n − 3, then the problem (3)–(2) has at least a solution u(t) ∈ Cn([0, 1])
satisfying

α(i)(t) ≤ u(i)(t) ≤ β(i)(t),

for i = 0, ..., n− 2 and t ∈ [0, 1].

Remark: If the function f(t, x0, ..., xn−1) is decreasing on (x0, ..., xn−3) then (11)
is satisfied.

Proof. We sketch briefly the proof. For i = 0, ..., n− 2 define the auxiliary contin-
uous functions

δi(t, xi) =


β(i)(t) if xi > β(i)(t)
xi if α(i)(t) ≤ xi ≤ β(i)(t)
α(i)(t) if xi < α(i)(t).

For λ ∈ [0, 1], consider the homotopic equation

u(n)(t) = λ f(t, δ0(t, u(t)), ..., δn−2(t, u(n−2)(t)), u(n−1)(t))+
+u(n−2)(t)− λ δn−2(t, u(n−2)(t)),

(12)

with the boundary conditions

u(i)(0) = 0, i = 0, ..., n− 3,
u(n−2)(0) = λ [A− a δn−2(0, u(n−2)(0)) + b u(n−1)(0)+

+δn−2(0, u(n−2)(0))],
u(n−2)(1) = λ [B − c δn−2(1, u(n−2)(1))− d u(n−1)(1)+

+δn−2(1, u(n−2)(1))].

(13)

Take r1 > 0 such that for every t ∈ [0, 1],

−r1 < α(n−2)(t) ≤ β(n−2)(t) < r1 ,

f(t, α(t), ..., α(n−2)(t), 0)− r1 − α(n−2)(t) < 0,

f(t, β(t), ..., β(n−2)(t), 0) + r1 − β(n−2)(t) > 0
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and ∣∣A− a β(n−2)(0) + β(n−2)(0)
∣∣ < r1,∣∣A− a α(n−2)(0) + α(n−2)(0)
∣∣ < r1,∣∣B − c β(n−2)(1) + β(n−2)(1)
∣∣ < r1,∣∣B − c α(n−2)(1) + α(n−2)(1)
∣∣ < r1.

The proof is based on the following steps (see [3] for details)

Step 1.Every solution u(t) of problem (12)–(13) satisfies∣∣∣u(i)(t)∣∣∣ < r1, ∀t ∈ [0, 1],

for i = 0, ..., n− 2 and independently of λ ∈ [0, 1].

This statement follows easily by using the definitions of upper and lower solu-
tions combined with the condition (11).

Step 2. There is r2 > 0 such that, for every solution u(t) of problem (12)–(13),∣∣∣u(n−1)(t)
∣∣∣ < r2, ∀t ∈ [0, 1],

independently of λ ∈ [0, 1].

This assertion can be derived by using Step 1 and the auxiliar Lemma 3.

Step 3. For λ = 1, problem (12)–(13) has at least a solution u1(t).

This statement follows by applying Leray-Schauder degree theory.

Step 4. The function u1(t) is a solution of (3)–(2).

By using the definitions of upper and lower solutions and condition (11), it can
be shown that every solution of the problem (12)–(13) lies between α and β, and
therefore is a solution of (3)–(2).

By integration one can easily deduce the location result that concerns the
derivatives of u1(t).

3 Applications

Application 1. Consider the differential equation (1) and the boundary conditions

u(i)(0) = 0, i = 0, ..., n− 3,
a u(n−2)(0)− b u(n−1)(0) = A,

c u(n−2)(1) + d u(n−1)(1) = B,

(14)

for A,B ∈ R, a, b, c, d ≥ 0 such that a+ b > 0 and c+ d > 0.
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The function

f(t, x0, ..., xn−1) = arctan (xn−2)− (x0)
2k+1 (xn−1)

2

is continuous and decreasing on x0. If A and B are such that |A| ≤ a and |B| ≤ c
then functions α, β : [0, 1]→ R defined by

α(t) = − tn−2

(n− 2)!
and β(t) =

tn−2

(n− 2)!

are, respectively, lower and upper solutions of the problem (1)–(14).
Moreover, the function f satisfies the Nagumo-type conditions (8) and (9) in

E =
{
(t, x0, ..., xn−1) ∈ [0, 1]× Rn : |x0| ≤

tn−2

(n− 2)!

}
,

for hE : R
+
0 → R+ given by hE(x) = π

2 + x2. As conditions (10) and (11) are
satisfied then, by Theorem 4, there is at least a solution u(t) for (1)–(14) such
that

− tn−2−i

(n− 2− i)! ≤ u
(i)(t) ≤ tn−2−i

(n− 2− i)! ,

for i = 0, ..., n− 2.
Observe that in this case the estimation for u(n−2) does not depend on n since

by the above inequality −1 ≤ u(n−2)(t) ≤ 1.

Next application shows a non-uniform estimation for u(n−2).

Application 2. For n ≥ 2, consider the equation

u(n)(t) = arctan
(
u(n−2)(t)
(n− 2)!

)
k

√(
u(n−1)(t)

)2 + 1− arctan(u(t)), (15)

with k ∈ N, and the boundary conditions (14).
If A,B ∈ R are such that |A| ≤ a(n − 2)! and |B| ≤ c(n − 2)!, then functions

α, β : [0, 1]→ R given by

α(t) = −tn−2 and β(t) = tn−2

are, respectively, lower and upper solutions for (15)-(14), verifying (10).
The function

f(t, x0, ..., xn−1) = arctan
(

xn−2

(n− 2)!

)
k

√
(xn−1)

2 + 1− arctan(x0)

is continuous. Moreover, it satisfies (11) and the Nagumo-type conditions (8) and
(9) with

h(x) =
π

2
+
π

2
k

√
(x)2 + 1,
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in every subset E ⊂ [0, 1]× Rn.
So, by Theorem 4, there is at least a solution u(t) for (15)–(14) such that, for

every t ∈ [0, 1],

−(n− 2)...(n− i− 1) tn−2−i ≤ u(i)(t) ≤ (n− 2)...(n− i− 1) tn−2−i,

with i = 0, ..., n− 3, and

−(n− 2)! ≤ u(n−2)(t) ≤ (n− 2)!.
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