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Convergence in fuzzy topological spaces 

R. Lowen 

Brussels 

It is shown that if I is the unit interval and X a set then there 

exists a filtertheory in the lattice I which deviates in a remar

kable way from the theory of filters on X, but which nevertheless 

makes it possible to define a concept of convergence in a fuzzy 

topological space similar to convergence of filters in topology. 

If a fuzzy topological space is topologically generated [L1] rela

tions are found between fuzzy convergence and topological conver

gence . 

Using this notion of convergence characterizations are given of 

fuzzy compactness [L1] and of fuzzy continuity. 

We shall only give a summary of the most important results, an 

extended version with proofs will appear elsewhere. 

X 
1. Filtertheory in I . 

The definition of a i<llttK, a ^tltdKba&t or a gdntKattng faamtZy ^on 

a ^lltdK In tkt lattldt I X can be found f.i. in [Bo]. Let us recall 

that a pKlmt ^ilt&K in I X is a filter ££ such that if y,v € ix
 a nd 

p v v G ^ then y G ^ or v £ "3-. 
y 

For any a £ I and A ^ X the function in I which assigns the value 

a to x if x € A and 0 if x ,2 A is denoted by ax. 
VA" 

The definition of infimum and supremum of a family of filters in 
X 

I , and the definition of a coarser or a finer filter are straight

forward generalizations pf those for filters on X and can also be 

found f.i. in [Bo]. 

Given a filter ^ in I we shall want to Know to what extend *# is 

"uniformly bounded away from 0". To make this precise we introduce 

the characteristic set of ^ 

C (») * {a G I , v v € 3 J x ^ x s.t. v(x) > a} 

and characteristic value ĉ . - sup C(^). 

C(*S) can be any of the following <t>, {0}, [0,c[ for some c € I 

or [0,c] for some c £ l\ {1 } . 

If FCX) denotes the family of all filters on X and 3&K(X) the 
X family of all filters in I with characteristic set K then we define 

the following mappings 
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ùү : П= CX) -* З D K ( X ) 

F + { p : VK Є K, u 1 K , 1 ] Є F } 

i : U 3) , (X) + Пr ( X ) 
к к o к

 к 

- 1 { u ] K , 1 ] : K Є K, u Є 3 } 

It is easily verified that \ v i^S) is indeed a filter on X and that 

with characteristic set K. u>KCF) i s i n d e e d a f i l t e r i n 

These functions establish a natural relationship between ultra-
V 

filters on X and prime filters in I as is shown in the next 

theorem. 

Theorem 1.1. 

If U is an ultrafilter on X then w f U ) is a prime filter in I and K

 x 
moreover it is maximal in QD^tX), and if ̂ ctis a prime filter in I 

then, for all K C C{U), \ v (U) is an ultrafilter on X. 

X 
In the same way as for filters on X a filter 3 in I is completely 

X 
determined by the family P(QS) of primefilters in I which are finer 

than "3» i.e. 

3 =
 n
 U. 

Û P(3) 

Contrary to the situation for filters on X, P(3) can be reduced to 

a smaller subfamily with analogous properties. Indeed the next 

theorem can be shown 

Proposi tion 1.2. 

The family PC$) is inductive in the sense that each descending 

chain in it has a lower bound. 

This result enables us to replace P (v$) by 

P
m
(3) « ( U : U £ PCS), U minimal} 

while maintaining the fact that 

*3 = n <*£. 
niGP (3) 

m 

It is the family P {%) rather than P(^) which with regard to ̂ S 

plays the role of the family of ultrafiIters finer than F with 

regard to F. 
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This is made precise in the following theorem, but first we need to 

introduce another concept. 

Let v£be a filter in I and F a filter on X. Then ^ and F are said 

to be compatible iff for all u ^ ^ and F G F y dees not vanish 

everywhe re on F. 

It is clear that ifv$ and F are compatible then 

C3,F) » (y e i x
 : 3 v C 3 , A e F uCx) > vCx) vx e A} 

is a filter in IX. 

We now come to the important result. 

Theorem 1.3. 

Let 3 be a filter in I then *& £ P (*J) iff there exists an ultra-
m 

filter U on X, compatible with ^ such that C\$-U) = V,, i.e. 

P (v£) = {C*3,Ci) : U ultrafilter compatible with 3 ) . m 

2. Convergence in fuzzy topological spaces. 

Let us recall that a fuzzy topological space, FTS for short, is a 

set X together with a family A of functions from X to I (so called 

fuzzy subsets of X) which fulfills properties, similar to those of 

the open sets in a topological space. 

For a precise definition of a FTS and related notions which are 

used in what follows we refer to [L1] and [L2]. 

Let now \3 be a filter in I , which for consistency we shall call a 

fuzzy filter then we define the aiuie^ence 0 & 3 to t.e the fuzzy set 

adh 3 : X -> I 

x -> i n f u C x ) 
y C S 

w h e r e y i s t h e f u z z y c l o s u r e [ L 1 J o f y . 

The lir\«Lt 0 £ ?S i s t h e f u z z y s e t 

l i m 3 : X •+ I 

x -> i n f a d h U ( x ) 

m 

Remark that if one had taken P C#) instead of V CvJ) in this defini-
m 

tion the limit of any fuzzy filter in any fuzzy topological space 

would Le zero. 

Proposi tion 2.1. 

Let K£ and (& be fuzzy filters then 

Ci) if 3 D ® , adh 3 <: adh (§> 
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( i i ) 1 i m 3 S a d h 3-

( i i i ) i f (£ i s p r i m e , limG-v = adh CJ£ 

Remark that there need oe no relation between the limits of compa

rable fuzzy filters. Anticipating on the result of the next theorem 

this is shown by the following counterexample. 

First though we recall that given a topology I on X the associated 

fuzzy topology on X consists of the family of all lower semiconti-

nucus functions (open fuzzy sets) from (X,T) to the unit interval 

equipped with the usual topology. This associateG fuzzy topology is 

denotec. u: (7 ) . By means of the icentification (X,T) ^ ( X , w ( T ) ) the 

category of topological spaces becomes a full subcategory of that 

of fuzzy topological s p a c e s [ L 1 ] . 

Lojntere xanp1e 

Lot (X,T) be a non-Hausdorff topological space and let ( X , w ( T ) ) be 

the ussociateo F- TS 

Let F ana G be filters on X such that F J G and lim F J lim G j- </>. 

Finally let K V K' be characteristic sets. It is easily seen that 

tt.Ar) is finer than a.., ,((•») but it follows from the next thee rem 

that their limits are incomparable. 

T n e o r e rr 2.2. 

If (X,7) is a topological space, F a filter on X and K some charac

teristic set then in the associated FTS ( X , w ( T ) ) we have 

(i) adh w,(F) = (sup K) 

( І І ) 1 І П i 03 ( ř ) = ( s u p K ) 

ІЧ 

зdh F 

4im F 

3 . C h a r acterization of fuzzy compactness and of f uj^zy cont i n u i t y . 

A fTo (X,A) is fuzzy compact [L1] iff for all family of open fuzzy 

sets A C A, for all a t_
:
 I such that sup \x >. a, and for all b < a, 

y € A 
there exists a finite subfamily A n C A such that sup u ^ b. 

It was shown in [L1] and [L2] that this definition is a good 

extension of the notion of compactness. Indeed a topological space 

is compact iff the associated FTS is fuzzy compact. 

Fuzzy compactness, in a similar but more elaborate way as compact

ness can be characterized by means of convergence of fuzzy filters. 

T hi e following theorem can be shown. 



258 

Theorem 3.1. 

The fuzzy topological space (X,A) is fuzzy compact iff one of the 

following equivalent properties holds 

(i) for each fuzzy filter vS for which the characteristic value 

c is strictly positive 

sup a d h t£ ( x) >, c^, 
x̂ x 5 

(ii) for each prime fuzzy filter U f o r which the characteristic 

value c~, is strictly positive 

sup lim*lt(x) >, c 
xЄx U 

A function f from a FTS (X,A) to a FTS (Y,ft) is fuzzy continuous 

[ W] iff for all u
 e
 fi f (u) £ A where f (u) is defined as uof. 

Given a fuzzy filter & on X, its image through f is defined 

f (3) • {u : 3 v € 3 s.t. \i * f (v) }. 

The image of a fuzzy set is defined as follows, let v G I then 

f(v) • min {£ e I Y : £cf .> v}. 

Both image and primage of fuzzy sets are straightforward generali

zations of the corresponding notions for sets. 

The following results are obtained. 

Theorem 3.2. 

A function f : X,A -*• Y,ft is fuzzy continuous iff one of the follo

wing equivalent conditions holds 

(i) for each fuzzy filter v£ on X 

adh f(S) >, f(adh3) 

(ii) for each prime fuzzy filterUon X 

lim f(U) >, f(limU) 

It is worthwhile to remark that whereas in topology the result (ii) 

is trivial, here it is not and the technique of the proof is entire

ly different. It rests among other things, on the important result 

which says that if ̂  is a fuzzy filter then 

adh \& * sup adh U . 
U€P m(3) 
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