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CONTINUOUS FUNCTIONS ON PRODUCTS 
WITH STRONG TOPOLOGIES 

W. W. COMFORT (1) and S. NEGREPONTIS (2) 

Middletown and Montreal 

This paper is organized as follows. First, the necessary definitions, notation 
and terminology are introduced; next, our result is stated and proved; and last, 
various special cases of the theorem are mentioned together with references to the 
literature where these appear. This indicates the extent to which we are indebted 
to other authors both for ideas and motivation. 

Throughout, we assume that we are given a nonvoid family {Xt}i6l of nonvoid 
(completely regular, Hausdorff) spaces. We write Xj = JJ Xt for each nonvoid 

ieJ 

subset J of /, so that in particular Xr = fj Xt. We set 
iel 

&*(I) = {J c / : J * 0} , 
a n d &>M(l) = {Je0>*(l):\j\<x} 

for each cardinal number x. 
When x is infinite and J e 0>*(l)9 the x-box topology on X3 is that topology which 

has as base all sets of the form U = f j U% with U% open in Xt for each i in J and with 
to/ 

\R(U)\ < x (where we have set R(U) = { i e l : Ut g Xt}). Thus the co-box topology 
on Xj is the usual product topology on Xj. The set Xj with the x-box topology 
is denoted (Xj)„. When x is regular the space (Xj)x has the property that each 
intersection of fewer than x of its open sets is open if and only if each of the spaces 
Xt (i e J) has this property. 

When J e &*(l) the map itj is the projection from Xt onto Xj. It is easily verified 
that for each x with co ^ x9 the map itj when considered as a map from (Xj)x to (Xj)M 

is continuous. For x in Xj9 we write Xj for itj(x). 
For o) ̂  x ^ a, a space is said to be pseudo-(a, x)-compact if, given any a 

of its open sets, each neighborhood of one of its points meets at least x. A pseudo-
(a, <»)-compact is said, simply, to be pseudo-a-compact; and the pseudo-co-compact 
spaces — i.e., those spaces with no infinite, locally finite family of open sets — are 
the familiar pseudocompact spaces. 

Finally, if Y c Xt and / is a function with domain Y, then / is said to depend 
on fewer than a coordinates if there exists J e ^*(/) for which f(x) = f(y) whenever 
x e Tand y e Yand Xj = yj. 
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Theorem. Assume the following: (1) co ^ x < a, a is regular, and fix < a 
whenever /? < a and A < x;(2)Yc (XT)X and nj(Y) = Xjfor each J in &*(I); and 
(3) (Xj)x is pseudo-(<x, x)-compact for each J in &*(f). Then (a) Y is pseudo-(<x, x)-
compact; (b) each continuous function from Y to a metric space depends on fewer 
than a coordinates; and (c) each such function extends continuously over (Xj)x. 

Proof. To prove (a) we will show that if ^l is a family of open subsets of (Xj)x 

with \<%\ = a, then there is a point p of Y each of whose neighborhoods meets at 
least x elements of °U. (This will suffice. For, Y being dense in (Xj)x by (2), any pair 
of intersecting open subsets of (Xr)x have a point in common in Y.) We may suppose 
that each element Uof°U has the form U = \\ U% with each Ux open in Xx and with 

\R{U)\ < n. According to a combinatorial theorem of Erdos and Rado [9], there 
exist a subset if of °U with \r\ = a and a (possibly empty) subset J of I for which 
R(U) n R(V) = J whenever L7 and V are distinct elements of f. If J = 0 then for 
each point /? of y it is true that each neighborhood of p meets each member of ir, with 
fewer than x exceptions. (Indeed, given a H-box basic neighborhood W = J~[ Wi of p, 

ie/ 

each i in R(W) belongs to .R(C7) for at most one U in *T. Thus i?(W) n 2?(17) = 0 
for all 17 in if with fewer than x exceptions, and Wc\ U -# 0 for each such U.) 
If J 4= 0, i.e. if J e ^*(/), then from hypothesis (3) and the fact that a is regular 
it follows that there is a point x of (Xj)x with the property that if Wj is a neighborhood 
in (Xj)x of x then there exists f c % with \r\ = x for which JF, n ns(U) 4= 0 
whenever Uerr. Then for p we choose any point of yfor which nj(p) = x. (The 
existence of such a point p requires not all of hypothesis (2) but the weaker condition 
that nj(Y) = Xj whenever J e &*(!); (2) can be weakened to this, if only conclusion 
(a) is wanted.) Given a a,-box neighborhood W — W3 x WjU of p, where Wj and 
WJ\J are xr-box open in (Xj)x and (XIW)X respectively, let TT CZ % with |TT| = x 
and with Ŵ  n nj(U) 4= 0 for each U in 1T. Since |.R(W/\j)| < x and each element 
of R(Wj\j) lies in R(U) for at most one element U of f, there are x elements 17 of f 
for which R(WjU) n R(U) = 0. Given such U, let gf e W} n TT,(17) if i e J; let q{ e Wt 

if i e R(WIW); let g, e Ut if i e l?(C7) \ J; and let g, be any point of Xt if i el \ 
\ (J u .R(J7) u -R(l7)). Thus g e l ^ n l / , and it follows that W meets (at least) 
x elements of rT. The proof of (a) is complete. 

When (1) is given, statement (b) holds for any dense, pseudo-(a, tt)-compact 
subspace Yof(Xj)x. It suffices to show that iff is continuous on Y to a metric space 
(Af, Q), then for each e > 0 there exists J in &*(l) for which e(/(x), f(y)) S £ whenever 
x and y are in yand TCJ(X) = -Tj(y). Assuming the contrary, one argues by recursion 
to produce, for 0 ^ <* < a, points x* and y* of yand neighborhoods U* and V* of x* 
and y* respectively, basic in (Xj)x, for which: 

(i) K(l/<) = *0*); 
(ii) xf = y\ whenever i e U R(U^); 
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(iii) Q(f(x),f(y)) > e whenever xeU* nY and y eV* n Y; 
(iv) U\ n Vf = 0 whenever U\ * F?. 

This having been done, one uses the fact that Y is pseudo-(a, «)-compact to find 
a point p in Y each of whose neighborhoods meets x of the sets U*. It then follows 
from the fact that for each i in I the relation l/f = Vf is valid for all but at most 
one £ that each neighborhood in (Xf)x of p meets (for some £) both U* n Y and 
F* n y. This contradicts the continuity of / at p and concludes the proof of (b). 

To prove (c) we show that if (2) holds and co ^ x ^ a, then one can extend 
continuously over (Xj)x any continuous function / from Y (to any space whatever) 
for which there exists J in 0>*(l) with/(x) = f(y) whenever xeY, yeY, and Xj = yJt 

Given such/and J, choose for each x in X a point x in Y for which Xj = Xj and define 
gf(x) = /(3c). After checking that g is well-defined and extends / , one verifies the 
continuity of g at each point j c o f l a s follows. Given a neighborhood W of g(x), 
find neighborhoods U and Vofxj and 5cnJ in (Xj)x and (-X^j)* respectively for which 
/ [ ( [ / x F) n y] c fV and let z be any point in the neighborhood 7rJ1(C7) of x. 
Because J u R(F) e &*(l) there exists z' in Y for which zju*(K) = ZjvR(V)> and then 
z ' e l / x K a n d #(z) = f(z')e Wl 

We remark that in the presence of (l), hypothesis (3) can be replaced by the 
hypothesis that each of the spaces Xt has a dense subspace with fewer than a elements. 
For in this case, from (1), each (Xj)x with J e ^*(i) also has such a subspace, hence 
is even pseudo-(a, a)-compact. 

When x = co and Y = X hypotheses (l) and (2) are automatically fulfilled and (3) 
is the statement that each space XF, with F a finite, nonvoid subset of J, is pseudo-
a-compact. The argument we used for (b), a straightforward generalization of one 
presented by Glicksberg [10], shows that in this case there is for each e > 0 and 
each continuous /from Xj to (M, Q) a finite subset F of J for which Q(f(x),f(y)) ^ e 
whenever xeXj and y e Xf and xF = yF; thus each such / depends on countably 
many coordinates. When each Xt is compact, this last assertion is due to Mibu [13] 
and Bishop [1]; when each is separable and metrizable, to Mazur [12] (with an 
additional cardinality hypothesis, but for sequentially continuous functions) and 
Corson and Isbell [5]; when each has Knaster's property (K), to Ross and Stone [16]; 
when each is separable, to Gleason (see Ross and Stone [16] or Isbell [11], pages 
130—132); when each finite product of the X( is a Lindelof space, to Engelking[7]; 
and finally, when X (or each XF with Fe0**(l)) is pseudo-G)+-compact, to Noble 
and Ulmer [15]. Some of these authors consider functions defined on subspaces 
of Y[ Xi, and some impose hypotheses weaker than metrizability on the range space. 

iel 

The argument used to prove (a) was developed by Ulmer [17] to treat (in the 
case x = co) the case where Y is a Z-space in the sense of Corson [4] or a ra-space 
(the natural generalization); other applications are given by Noble and Ulmer 
(loc. cit.). More consequences and equivalents to the Erdos-Rado theorem appear 
in our work [2]. Results related to those of the present paper and [2], dealing with 
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families of disjoint, open sets in various K-box topologies on a product, appear 
in Engelking-Karlowicz [8], Engelking [6], and Mostowski [14], Theorem 13.3.1. 

The case x = co, a = co+
9 of the present theorem was announced by the authors 

in an abstract which appeared in the Notices of the American Mathematical Society 18 
(1971), page 669. Detailed proofs and additional references will appear in [3]. 
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