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PROXIMITY AND CONSTRUCTION 
OF COMPACTIFICATIONS WITH GIVEN PROPERTIES1) 

YU. M. SMIRNOV 

Moskva 

A. A topological non-compact space X may have many compactifications. For 
example, if X is an infinite countable discrete space then it can be completed into 
a compactification cX — X u IV by an arbitrary separable compact space N. On the 
other hand, not every space IV can be the remainder cX \ X for a fixed space X. 
In fact, a disconnected space IV cannot be the remainder of a half-line or of an 
Euclidean space En with n ^ 2. And therefore it is natural to ask this question: how 
the properties of a space X determine which spaces IV can complete the space X into 
a compactification and which not? The following question, interesting in itself, is 
connected with it: how the properties of a space Xc, as a subspace of a fixed compac­
tification cX, determine whether or not the remainder Nc = cX \ Xc has some 
considered properties? 

We shall deal with the first question in the following form: 

Problem I. Find necessary and sufficient conditions 01&, at least for the class 
of spaces with a countable base, for each space X of this class to have at least one 
remainder N = cX \ X with some given topological property 0*. 

The second question is essentially a question on a duality of some topological 
properties of IVC with some properties of its complement Xc =-= C \ Nc (in a given 
compact space C). However, not quite: first, C is an arbitrary compact space and need 
not be a manifold, secondly, the set Xc is not arbitrary (it is dense in C), thirdly, the 
sought for properties of Xc are not simply topological, but "proximal". For example, 
in a closed ball, a boundary point IV0, a closed arc Nx of a meridian and a closed 
disc N2 of the boundary sphere have homeomorphic complements. What does the 
word "proximal" mean?2) 

B. It is well-known that every compactification cX of a space X defines, in 
a quite natural way, a binary relation A c B (A is proximal to B) between subsets 

2) A short communication on this theme was presented in August 1966 at the International 
Congress of Mathematicians in Moscow. A detailed publication will appear in Matemati5eskil 
Sbornik. 

2) The reader familiar with the theory of proximity spaces may pass immediately to 
Section C 
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of X, by the formula: 

(c) AcBoAcnBc * 0.3) 

It is easy to verify that the following conditions are satisfied: 

(s) AcB=>BcA, 
(m) A' => A, A c B => A' c B, 
(a) (Au A')cB=> AcB or A' c B, 
(i) x eX => {x} c {x}, 
(0) 0cK , 4 ) 

(t) A = Ao {x} c A implies x e A. 

If cX is a TY-space, respectively, a F2-space, then 

(op) {x} c {x} => x = x', 
respectively, 

(os) If Ac B then there exist sets A' and Bf such that AcB', A' c B and 
A'vB'= X. 

A binary relation c, satisfying conditions (s),(m), (a), (i) and (0) on an abstract 
set X, is said to be a proximity relation, or shortly a proximity, and the set X 
together with the proximity relation c is said to be a proximity space (or a general 
proximity space).5) 

It is easy to see that any proximity c induces, in accordance with formula (t), 
a topology on a set X. Conditions (op) and (os) are of character of separating axioms 
(for points or, respectively, for sets). 

The main theorem of the theory of proximity spaces asserts that the correspondence 
(p : {cX} -> {c}, defined by formula (c), is an isotonic6) one-to-one mapping of the 
set of all compactifications cX of a given space X onto the set of all proximities c 
inducing the topology of the space X (see [23], theorems 10 and 11). 

Here, and in the sequel, it is natural to consider Hausdorff compactifications cX 
and hence completely regular spaces X only and proximity spaces (proximities) are 
considered only those satisfying the separating axioms (op) and (os). 

The inverse correspondence cp"1 can be obtained in various ways. For example, 
using maximal centred systems of sets (the "ends", see [23] p. 551 — 552), having 
appeared in the papers of P. S. Alexandroff [2], Freudenthal [10] and Caratheodory 
[7], using Gel'fand-Kolmogoroff-Silov's theory of rings of functions (see [9] and 
[27]) or, finally, in the following way: 

3) 0 is the void set, Ac is the closure of A in cX. 
4) Ac B denotes that A and B are distant (i.e. non-proximal), A is the closure of A in X. 
5) The origins of the theory of proximity spaces can be found in the papers of Riesz [6], 

[18], Wallace [33] and, of Efremovic [8], who introduced the important axiom (os) on separation. 
A sufficiently elaborated theory of proximity spaces has appeared in the papers [23], [24], [25], 
[26]. 

6) I.e. order-preserving in both directions. 
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Let Xc and Yd be proximity spaces with proximities c and d. A mappingf : X -> Y 
is called proximally continuous ("<5-mapping", see [23], p. 550) if the images of 
proximal sets are proximal, i.e. if A c B => fA dfB. 

Given a proximity space Xc, consider the set C(XC) of all real-valued bounded 
proximally continuous functions fa: X -> Ia (la is a minimal segment of reals con­
taining the image faX). Then the canonical mapping f: X -> J\h (where f(x) = 
= {fa(x)}) of Xc into the cartesian product of all Ias, endowed with the Tychonoff 
topology, is one-to-one and proximally continuous in both directions, i.e. it is 
a proximal embedding of the space Xc into the Tychonoff cube JX^* and the closure 
of fX in this cube is a compactification of the space X inducing (by formula (c)) 
the given proximity c (see [26]). 

C. It follows that a property of the proximity space Xc, corresponding to 
a compactification cX, to have a remainder Nc = cX \ X with a given topological 
property 0 is a proximal property (i.e. it is invariant under proximal homeo-
morphisms). Now the first question may be put in the proximal form: Find necessary 
and sufficient conditions 8%% for every space X of a considered class to possess at 
least one proximity c, such that the space Xc has a given proximal property &. 
Therefore the second question is nothing else but a question of a "translation" of the 
language of topological properties of the remainder Nc into the language of proximal 
properties of the space Xc: 

Problem II. Find, at least for the class of the spaces with a countable base, 
necessary and sufficient conditions 21 & for the remainder Nc = cX \ X to have 
a given topological property 0, for each proximity space X of this class. 

D. The present report is devoted to solving these two problems for some 
topological properties 0. 

First, notice that Problems I and II have relatively simple solutions for the 
following properties, in the class of all completely regular spaces (respectively, all 
proximity spaces: 0Q — compactness, 01(n) — consisting of n points (n = 0, 1, 2, . . . ) , 
0*2 — connectedness. Problems I and II have non-simple solutions for the following 
properties: 03 — Lindelof property,1) 0 ^ — dimension at most n.8) 

It is interesting that the properties «2^3 and ^ 3 coincide and they are of purely 
topological character: 

0t^^ —for each compact subset K' of the space X (respectively, Xc) there exist 
a compact subset K and a countable system of neighbourhoods Un of K such that 
Kr c= K and if 0 is a neighbourhood of K then Un cz 0 for some n. 

7) See Isbell [13], Smirnov ([21], p. 446-447). 
8) For n = 0 see Freudenthal [11], [12], Morita [16], Skljarenko [20]. For arbitrary n see 

Aarts [1] and Smirnov [28], [30] (They got independently different solutions of different degree of 
generality). 
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This property J>^3 will be called a compact axiom of countability. The class & 
of all spaces satisfying the compact axiom of countability is rather wide: it contains 
all locally metrizable and all locally complete [in the sense of Cech) spaces.9) 

Remark 0. The solutions of Problems I and II presented here for the properties 
&fH(n)> &fiii 0*H(n) and 0* n (see below) has been obtained for this class S only. 
This fact, for the sake of brevity, will not be further referred to and, in the sequel, 
all given spaces are assumed to belong to the class S. 

E. Now, let us formulate properties 0H(n) ai1d 2Pn\ 

^H(n) ~~ the n-dimensional cohomology group of the space N is a given 
group H.10) 

&>
n — the space N is "H-like", where 17 is a polyhedron or a system of polyhedra 

(see [15]). 

Let us explain it in detail. Let a* be an open cover of a space X. A mapping 
/ : X ~-> Y is called an co-mapping if for each point y of Y there exists a neighbour­
hood Oy such that the inverse image f~1Oy is contained in some element of co, 
Further, let i7 be a family of polyhedra.11) 

Definition 17. A space X is called H-like if for each open cover w of X there 
exists a continuous co-mapping of X onto one of the polyhedra of the family 17. 

Definitions /IT and fH. The properties 0>fU and 0fH(n)
 are defined in the same 

way as the corresponding properties £Pn and ^H(n) with the only difference that 
finite covers, or, respectively, compact polyhedra are considered only. The 
property 0fn will be called, accordingly, fH-likeness.11) 

Notice that all the above mentioned properties 0>o, ...,04(n) are special cases 
of 17-likeness; they all except £P0 and dP^ are special cases of/il-likeness. In fact, to 
obtain SP0, we take as II the family of all finite polyhedra, for 0i(n) — the polyhedron 
consisting of n points, for 0>2 ~ ^Q family of all connected polyhedra, for 03 — the 
family of all countable polyhedra, for ^4(„) — the family of all at most n-dimensional 
polyhedra. 

F. The following definition appeared to be useful for a solution of Problems I 
and II in the case of properties ^ /H(„ ) and 0fn. 

9) The class © was proposed by me to E. G. Skljarenko, my aspirant at that time, for 
a final general solution of Problem I with respect to the property 0*\t0y For properties of this 
class see [31], §6 and [4]. 

10) We consider the cohomology groups based on locally finite covers (over some group of 
coefficients). 

11) Not necessarily compact (finite). 
12) This definition was preceded, historically, by "treelikeness" (H is the family of all 

"trees", i.e. one-dimensional acyclic polyhedra) and "snakelikeness" (17 is a segment) for the case 
of compact metric spaces (see [34], [5]). 
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Definition If. A system {F1? ..., Fs} 0f open sets of a proximity space Xc is 
called an extensionable fringe if the set K = X \ Ft \ ... \ Fs is compact and 
for every neighbourhood O of K the system {0, Ft, ..., Fs} is a proximal cover13) 
of the space Xc (see [28]). 

Definition 1\ A system of sets Ft,..., Fs will be called non-compact if the closure 
of each non-void intersection of these sets is not compact. 

It can be shown that the system of all extensionable fringes is a directed set with 
respect to the relation "a refines /?". Therefore, analogously to the construction of 
spectral (Cech) cohomology groups Hn(X) which uses covers, we can define, over 
a given group of coefficients, spectral groups Fn(Xc) of a proximity space Xc, 
using extensionable fringes. 

Theorem 1. The group Hn(Nc) of the remainder Nc is canonically isomorphic 
to the group Fn(Xc) of the space Xc.

14r) 

Corollary. The remainder Nc has the property ^fH(n) tf an<^ onh tf ^ie group 
Fn(Xc) (over some group of coefficients) is isomorphic to the given group H. 

Now, we shall say that a family JJ is hereditary if it contains, with each poly­
hedron, any of its subpolyhedra. We shall say that the number of components of 
a family 17 is finite if the number of components of each polyhedron of the family n 
is not greater than some number k(H), k(n) < oo. 

Let H be a system of (compact) polyhedra Pt. Choose, for each i, any triangula-
tion Kt of the polyhedron Pt and denote by Ktj the complex which is the j-th bary-
centric subdivision of Kt. 

Theorem 2. The remainder Nc possesses the property 0fn (wheren is a heredit­
ary family or the number of components of H is finite) if and only if every extensio­
nable fringe of the space Xc may be refined by a non-compact15) extensionable 
fringe the nerve of which is one of the complexes KtJ. 

Thus Problem II is solved for the properties we are interested in. 

G. To solve Problem I, we need the following, according to our opinion natural, 
definitions: 

Definition 2. A fringe of a (completely regular) space X is every extensionable 
fringe of the proximity space Xfi, where /? is the maximal proximity.16) 

13) A system of sets Gt,..., Gs of a proximity space Xc is called a proximal cover ("<5-cover") 
if there exist sets Hx,..., Hs such that X = Hx U ... U Hs and Htc X \ G{ for each i (see [23], 
p. 559). 

14) This also holds for groups based on infinite covers and, respectively, infinite fringes (see 
below). 

15) This need not be requested if the family II is hereditary. 
16) It is induced by the maximal (Cech) compactification /3X. 
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If X is normal then the definition may be simplified: 

A fringe of a normal space X is a system {FL, ..., Fs} of open sets such that the 
complement X \ T1 \ ... \ Fs is compact. 

Definition 3. A system of fringes of a space X is called a structure of fringes if, 
for any two fringes of this system, there exists a fringe of this system which is 
a star-refinement of each of them. 

Definition 4t. A system Z of fringes of a space X is called topological if for 
each point x of X and each neighbourhood Ox of x there exist a neighbourhood U 
of x and a fringe y from the given system I such that Sty U cz Ox ("base property", 
see [28]). 

Theorem 3. A space X has at least one at most n-dimensional remainder N if 
and only if there exists a topological structure of fringes of X with order ^w + 1; 
moreover, we can achieve the weight of the compactification cX = X u N to be 
equal to the weight of the space X.17) 

It is to be noted that (in spite of my assertion in [28], Theorem 5), for n = 1, 
a maximal compactification among all compactifications with at most n-dimension­
al remainders need not exist. B. Levsenko proved that it does not exist for any 
Euclidean space EN with N ^ 2 in any dimension n, where 1 _- n ^ N — 1. 

Let us remark that Theorem 3 does not hold, in general, with property ^4(w) 

replaced by anyfH-likeness.18) In the general case, it is necessary to consider struc­
tures I of more special type. 

For this purpose, observe that every structure I of fringes of a space X 
generates, in the following natural way, a {general) proximity cz: 

(_£) AczBoAnB = 0 and A n Sty B = 0 for some y from I. 

If the structure I is topological then the proximity cs also satisfies the separat­
ing axioms and induces the topology of the given space X. Hence, every topological 
structure E of fringes of a space X defines uniquely some compactification csX of 
the space X and also the remainder NCE (with a given property). That is what the main 
idea of the proof of here obtained results consists in. 

Definition 4p. A structure I of fringes of a space X is called proximal if any 
binary extensionable fringe {Ft, F2} of the proximity space XCL, generated by the 
structure I, has some refinement from I. 

17) For details see [31]; for a short exposition see [28], [29], [30]. 
18) Unless we require the property 0 to be, in a certain sense, "countably monotonic" 

(If the sum of countably many compact sets is a subset of a compact space with the property 0 
then it also possesses the property 0). However, there are, apparently, very few such properties, 
different from ^ 4 ( n ) . 
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Theorem 3'. A space X has at least onefH-like remainder N (where the family 17 
is hereditary or the number of components of 17 is finite) if and only if there exists 
a proximal structure of non-compact15) fringes inX, the nerves of which are the 
complexes Ktj (see Section F). 

As mentioned above, it cannot be required here, in general, the sought for 
structure of fringes to be topological only. But it is always possible if the space X 
is locally compact and then the weight of the compactification cX = X u IV can be 
achieved to be equal to the weight of the space X. 

Theorem 4. A space X has at least one remainder N with property 2PfH(n) if and 
only if there exists a proximal structure I of fringes such that the spectral group 
Fn(Z), constructed (over some group of coefficients) by means of fringes of this 
structure,19) is isomorphic to the group H. 

H. To obtain analogous results for properties 3PTl and ^H(n) it is necessary, first 
to use arbitrary (not only finite) fringes and secondly to replace proximal structures 
of fringes by uniform ones. The following procedure is used: 

Definition 1. A system y of open sets Fa of a proximity space Xc is called an 
extensionable fringe if the set K = X \ \jra is compact and for every neighbour-

a 

hood 0 of K there exist sets Fai, ..., Fas of the system y such that the system 
{O, Fai, ..., FaJ is a proximal cover (compare with Definition If). 

Definition 4u. A structure I of fringes of a space X is called uniform if every 
extensionable fringe of the proximity space XCE, generated by the structure I, has 
some refinement from I. 

By fringes of a space X, extensionable fringes of the proximity space X$ are 
understood. Definition 3 for infinite fringes is the same. Theorems 1 and 3 also hold 
for arbitrary fringes in the same formulations. Let us turn our attention to one more 
theorem. 

Theorem 5. The limit space of the projection spectrum20) consisting of nerves 
of all star-finite extensionable fringes of a proximity space Xc, with canonical 
projections arising by refining, is canonically homeomorphic to the remainder Nc. 
The limit space of the projection spectrum consisting of nerves of all finite exten­
sionable fringes of the space Xc is canonically homeomorphic to the Cech compacti­
fication PNC of the remainder Nc. 

19) It is constructed by means of fringes of the structure E in the same way as the group 
Fn(Xc) by means of extensionable fringes. 

20) In the sense of Alexandroff-Svedov (see [3] and [19]). The main difference from the 
projection spectra considered in the report of Alexandroff-Ponomarev (see page 25) consists in 
the fact that the projections are multivalued. 
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I. We win some more generality if we are not interested, in Problems I and II, 
in the properties of remainders but in the properties of compactifications themselves. 
However, in applying to properties &fH(n)

 an<3 &jw> s u c h a formulation does not 
yield much new information: we obtain analogous answers with the only difference 
that it is necessary to take proximal covers instead of extensionable fringes and 
open covers instead of fringes {Remark 0 will be, of course, unnecessary). For 
example, we have the following. 

Theorem 6. A space X has a compactification cX with dimension at most n if 
and only if there exists a topological structure21) in X, of normal covers22) of 
order ^n + 1, moreover, we can achieve the weight of cX to be equal to the weight 
ofX. 

As corollaries, we obtain well-known theorems of Hurewicz [14] and Skljarenko 
[22] on existence of compactifications with the same dimension and weight as the 
original space. Finally, let us mention the following modification of an interesting 
Orevkov's theorem [17]: 

Theorem 7. Let a countable collection of families TIk consisting of finite poly-
hedra be given', let each family TIk be either finite or have a finite number of compon­
ents. If a normal space X isfnk-likefor each k then it has a compactification of the 
same weight as X and it is also fIIk-likefor each k. 
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23 ) This paper was found by me after the end of the Symposium. 
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