Toposym 2

Jurij Michailov Smirnov
Proximity and construction of compactifications with given properties

In: (ed.): General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the
second Prague topological symposium, 1966. Academia Publishing House of the Czechoslovak
Academy of Sciences, Praha, 1967. pp. 332--340.

Persistent URL: http://dml.cz/dmlcz/700873

Terms of use:

© Institute of Mathematics AS CR, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/700873
http://project.dml.cz

332

PROXIMITY AND CONSTRUCTION
OF COMPACTIFICATIONS WITH GIVEN PROPERTIES?)

YU. M. SMIRNOV

Moskva

A. A topological non-compact space X may have many compactifications. For
example, if X is an infinite countable discrete space then it can be completed into
a compactification ¢X = X U N by an arbitrary separable compact space N. On the
other hand, not every space N can be the remainder ¢X \ X for a fixed space X.
In fact, a disconnected space N cannot be the remainder of a half-line or of an
Euclidean space E" with n = 2. And therefore it is natural to ask this question: how
the properties of a space X determine which spaces N can complete the space X into
a compactification and which not? The following question, interesting in itself, is
connected with it: how the properties of a space X, as a subspace of a fixed compac-
tification c¢X, determine whether or not the remainder N, = c¢X \ X, has some
considered properties?

We shall deal with the first question in the following form:

Problem I. Find necessary and sufficient conditions R4, at least for the class
of spaces with a countable base, for each space X of this class to have at least one
remainder N = ¢X \ X with some given topological property 2.

The second question is essentially a question on a duality of some topological
properties of N, with some properties of its complement X, = C \ N, (in a given
compact space C). However, not quite: first, C is an arbitrary compact space and need
not be a manifold, secondly, the set X is not arbitrary (it is dense in C), thirdly, the
sought for properties of X, are not simply topological, but “proximal”. For example,
in a closed ball, a boundary point N, a closed arc N; of a meridian and a closed
disc N, of the boundary sphere have homeomorphic complements. What does the
word “proximal” mean??)

B. It is well-known that every compactification c¢X of a space X defines, in
a quite natural way, a binary relation A c B (4 is proximal to B) between subsets

%) A short communication on this theme was presented in August 1966 at the International
Congress of Mathematicians in Moscow. A detailed publication will appear in Matematiéeskif
Sbornik.

2) The reader familiar with the theory of proximity spaces may pass immediately to
Section C.
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of X, by the formula:
(¢) Ac B« A°n B+ 0.%)
It is easy to verify that the following conditions are satisfied:

(s) AcB=BcA,

(m)A'> A, AcB=A"¢cB,

(a) (AvA)cB=AcBor A'cB,

(i) xeX = {x}c{x},

ORXD &y

(1) A= A< {x}cA implies x € A.

If ¢X is a Ty-space, respectively, a T,-space, then

(0,) {x}e{x'} =x=x,
respectively,

(o)) If AC B then there exist sets A’ and B’ such that A¢ B', A'¢ B and
A VB =X.

A binary relation c, satisfying conditions (s),(m),(a), (i) and (0) on an abstract
set X, is said to be a proximity relation, or shortly a proximity, and the set X

together with the proximity relation c is said to be a proximity space (or a general
proximity space).”)

It is easy to see that any proximity ¢ induces, in accordance with formula (7),
a topology on a set X. Conditions (0,) and (o) are of character of separating axioms
(for points or, respectively, for sets).

The main theorem of the theory of proximity spaces asserts that the correspondence
¢ : {cX} > {c}, defined by formula (c), is an isotonic®) one-to-one mapping of the
set of all compactifications cX of a given space X onto the set of all proximities ¢
inducing the topology of the space X (see [23], theorems 10 and 11).

Here, and in the sequel, it is natural to consider Hausdorff compactifications c¢X
and hence completely regular spaces X only and proximity spaces (proximities) are
considered only those satisfying the separating axioms (0,) and (o).

The inverse correspondence ¢~ can be obtained in various ways. For example,
using maximal centred systems of sets (the “ends”, see [23] p. 551 —552), having
appeared in the papers of P. S. Alexandroff [2], Freudenthal [10] and Carathéodory
[7], using Gel’fand-Kolmogoroff-Silov’s theory of rings of functions (see [9] and
[27]) or, finally, in the following way:

3) @ is the void set, A€ is the closure of 4 in cX.

4) AT B denotes that A and B are distant (i.e. non-proximal), A is the closure of 4 in X.

5) The origins of the theory of proximity spaces can be found in the papers of Riesz [6],
[18], Wallace [33] and, of Efremovi¢ [8], who introduced the important axiom (o,) on separation.
A sufficiently elaborated theory of proximity spaces has appeared in the papers [23], [24], [25],
[26].

5) Ie. order-preserving in both directions.
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Let X, and Y, be proximity spaces with proximities ¢ and d. A mappingf: X —» Y
is called proximally continuous (*“‘6-mapping”, see [23], p. 550) if the images of
proximal sets are proximal, i.e. if A ¢ B => fA d fB.

Given a proximity space X,, consider the set C(X,) of all real-valued bounded
proximally continuous functions f, : X — I, (I, is a minimal segment of reals con-
taining the image f,X). Then the canonical mapping f:X - [[I, (where f(x) =
= {fx)}) of X, into the cartesian product of all 1,’s, endowed with the Tychonoff
topology, is one-to-one and proximally continuous in both directions, i.e. it is
a proximal embedding of the space X, into the Tychonoff cube [[I,, and the closure
of fX in this cube is a compactification of the space X inducing (by formula (c))
the given proximity c (see [26]).

C. It follows that a property of the proximity space X, corresponding to
a compactification cX, to have a remainder N, = cX \ X with a given topological
property P is a proximal property (i.e. it is invariant under proximal homeo-
morphisms). Now the first question may be put in the proximal form: Find necessary
and sufficient conditions R, for every space X of a considered class to possess at
least one proximity c, such that the space X, has a given proximal property 2.
Therefore the second question is nothing else but a question of a “translation” of the
language of topological properties of the remainder N, into the language of proximal
properties of the space X,:

Problem II. Find, at least for the class of the spaces with a countable base,
necessary and sufficient conditions 24 for the remainder N, = ¢X \ X to have
a given topological property P, for each proximity space X of this class.

D. The present report is devoted to solving these two problems for some
topological properties 2.

First, notice that Problems I and II have relatively simple solutions for the
following properties, in the class of all completely regular spaces (respectively, all
proximity spaces: 2, — compactness, P, — consisting of n points (n = 0, 1,2,...),
P, — connectedness. Problems I and II have non-simple solutions for the following
properties: 23 — Lindeldf property,’) Py, — dimension at most n.?)

It is interesting that the properties 25, and %, coincide and they are of purely
topological character:

Ry, — for each compact subset K’ of the space X (respectively, X,) there exist
a compact subset K and a countable system of neighbourhoods U, of K such that
K’ = K and if O is a neighbourhood of K then U, = O for some n.

7) See Isbell [13], Smirnov ([21], p. 446—447).

8) For n = 0 see Freudenthal [11], [12], Morita [16], Skljarenko [20]. For arbitrary n see
Aarts [1] and Smirnov [28], [30] (They got independently different solutions of different degree of
generality).
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This property Z,, will be called a compact axiom of countability. The class S
of all spaces satisfying the compact axiom of countability is rather wide: it contains
all locally metrizable and all locally complete (in the sense of Cech) spaces.®)

Remark 0. The solutions of Problems I and 11 presented here for the properties
P i1y Prm> Py and Py (see below) has been obtained for this class S only.
This fact, for the sake of brevity, will not be further referred to and, in the sequel,
all given spaces are assumed to belong to the class S.

E. Now, let us formulate properties 2y, and Z;:

Puwy — the n-dimensional cohomology group of the space N is a given
group H.'°)

Py — the space N is “II-like”, wherell is a polyhedron or a system of polyhedra
(see [15]).

Let us explain it in detail. Let @ be an open cover of a space X. A mapping
f:X — Yis called an w-mapping if for each point y of Y there exists a neighbour-
hood Oy such that the inverse image f~ !0y is contained in some element of w,
Further, let IT be a family of polyhedra.'!)

Definition I1. A space X is called II-like if for each open cover w of X there
exists a continuous w-mapping of X onto one of the polyhedra of the family II.

Definitions fIT and fH. The properties P sy and P sy are defined in the same
way as the corresponding properties Py and Py with the only difference that
finite covers, or, respectively, compact polyhedra are considered only. The
property P,y will be called, accordingly, flI-likeness.'?)

Notice that all the above mentioned properties P, ..., 2, are special cases
of IT-likeness; they all except 2, and 25 are special cases of fII-likeness. In fact, to
obtain 2, we take as IT the family of all finite polyhedra, for 2,,, — the polyhedron
consisting of n points, for 2, — the family of all connected polyhedra, for 2; — the
family of all countable polyhedra, for 2,,, — the family of all at most n-dimensional
polyhedra.

F. The following definition appeared to be useful for a solution of Problems I
and II in the case of properties () and 2 ;.

9) The class © was proposed by me to E. G. Skljarenko, my aspirant at that time, for
a final general solution of Problem I with respect to the property 9”4(0). For properties of this
class see [31], § 6 and [4].

10y we consider the cohomology groups based on locally finite covers (over some group of
coefficients).

11y Not necessarily compact (finite).

12) This definition was preceded, historically, by ‘“‘treelikeness” (IT is the family of all
‘“trees”, i.e. one-dimensional acyclic polyhedra) and ‘‘snakelikeness” (I7 is a segment) for the case
of compact metric spaces (see [34], [5]).
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Definition 1f. A system {I'y, ..., I's} of open sets of a proximity space X is
called an extensionable fringe if the set K =X \ I'y \ ... \ I'y is compact and
for every neighbourhood O of K the system {O, Ty, ..., Iy} is a proximal cover!?)
of the space X, (see [28]).

Definition 1°. A system of sets I'y, ..., I, will be called non-compact if the closure
of each non-void intersection of these sets is not compact.

It can be shown that the system of all extensionable fringes is a directed set with
respect to the relation “o refines . Therefore, analogously to the construction of
spectral (Cech) cohomology groups H"(X) which uses covers, we can define, over
a given group of coefficients, spectral groups F'(X,) of a proximity space X.,
using extensionable fringes.

Theorem 1. The group H"(Nc) of the remainder N, is canonically isomorphic
to the group F'(X,) of the space X.'*)

Corollary. The remainder N has the property Py if and only if the group
F'(X,) (over some group of coefficients) is isomorphic to the given group H.

Now, we shall say that a family IT is hereditary if it contains, with each poly-
hedron, any of its subpolyhedra. We shall say that the number of components of
a family II is finite if the number of components of each polyhedron of the family IT
is not greater than some number k(IT), k(IT) < co.

Let IT be a system of (compact) polyhedra P;. Choose, for each i, any triangula-
tion K; of the polyhedron P; and denote by K;; the complex which is the j-th bary-
centric subdivision of K.

Theorem 2. The remainder N possesses the property P (whereH is a heredit-
ary family or the number of components of I1 is finite) if and only if every extensio-
nable fringe of the space X, may be refined by a non-compact'®) extensionable
fringe the nerve of which is one of the complexes K;;.

Thus Problem II is solved for the properties we are interested in.

G. To solve Problem I, we need the following, according to our opinion natural,
definitions:

Definition 2. A4 fringe of a (completely regular) space X is every extensionable
fringe of the proximity space X, where B is the maximal proximity.'®)

13y A system of sets Gy, ..., Ggof a proximity space X, is called a proximal cover (*d-cover™)
if there exist sets Hy, ..., Hgsuch that X = H; U ... U Hgand H;¢ X \ G; for each i (see [23],
p. 559).

14y This also holds for groups based on infinite covers and, respectively, infinite fringes (see
below).

15y This need not be requested if the family IT is hereditary.

16y 1t is induced by the maximal (Cech) compactification BX.
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If X is normal then the definition may be simplified:

A fringe of a normal space X is a system {I'y, ..., [';} of open sets such that the
complement X \ I'y \ ... \ Iy is compact.

Definition 3. A system of fringes of a space X is called a structure of fringes if,
for any two fringes of this system, there exists a fringe of this system which is
a star-refinement of each of them.

Definition 4t. A system X of fringes of a space X is called topological if for
each point x of X and each neighbourhood Ox of x there exist a neighbourhood U
of x and a fringe y from the given system X such that St, U < Ox (*“‘base property”,

see [28]).

Theorem 3. A space X has at least one at most n-dimensional remainder N if
and only if there exists a topological structure of fringes of X with order <n + 1;
moreover, we can achieve the weight of the compactification ¢cX = X U N to be
equal to the weight of the space X.'7)

It is to be noted that (in spite of my assertion in [28], Theorem 5), for n = 1,
a maximal compactification among all compactifications with at most n-dimension-
al remainders need not exist. B. LevSenko proved that it does not exist for any
Euclidean space EN with N = 2 in any dimension n, where 1 < n < N — 1.

Let us remark that Theorem 3 does not hold, in general, with property 2,
replaced by any fII-likeness.'®) In the general case, it is necessary to consider struc-
tures X of more special type.

For this purpose, observe that every structure X of fringes of a space X
generates, in the following natural way, a (general) proximity cy:

(2) AczB<> AN B =0and AnSt,B =0 for some y from X.

If the structure X is topological then the proximity cy also satisfies the separat-
ing axioms and induces the topology of the given space X. Hence, every topological
structure X of fringes of a space X defines uniquely some compactification cyX of
the space X and also the remainder N_(with a given property). That is what the main
idea of the proof of here obtained results consists in.

Definition 4p. A structure X of fringes of a space X is called proximal if any
binary extensionable fringe {I'y, I',} of the proximity space X, _, generated by the
structure X, has some refinement from X.

cxs

17y For details see [31]; for a short exposition see [28], [29], [30].

18) Unless we require the property £ to be, in a certain sense, ‘“‘countably monotonic”
(If the sum of countably many compact sets is a subset of a compact space with the property &
then it also possesses the property #). However, there are, apparently, very few such properties,
different from Z,,.
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Theorem 3. A space X has at least one fI1-like remainder N (where the family IT
is hereditary or the number of components of Il is finite) if and only if there exists
a proximal structure of non-compact'®) fringes in X, the nerves of which are the
complexes K ;; (see Section F).

As mentioned above, it cannot be required here, in general, the sought for
structure of fringes to be topological only. But it is always possible if the space X
is locally compact and then the weight of the compactification cX = X U N can be
achieved to be equal to the weight of the space X.

Theorem 4. A space X has at least one remainder N with property 2 ry, if and
only if there exists a proximal structure X of fringes such that the spectral group
F'(X), constructed (over some group of coefficients) by means of fringes of this
structure,'®) is isomorphic to the group H.

H. To obtain analogous results for properties #;; and #y,,, it is necessary, first
to use arbitrary (not only finite) fringes and secondly to replace proximal structures
of fringes by uniform ones. The following procedure is used:

Definition 1. A system y of open sets I', of a proximity space X, is called an
extensionable fringe if the set K = X \ UTI', is compact and for every neighbour-

a

hood O of K there exist sets I, ..., Iy, of the system 7y such that the system
{0,I,,,....,T,} is a proximal cover (compare with Definition 1f).

Definition 4u. A structure X of fringes of a space X is called uniform if every
extensionable fringe of the proximity space X ,, generated by the structure X, has
some refinement from X.

By fringes of a space X, extensionable fringes of the proximity space X, are
understood. Definition 3 for infinite fringes is the same. Theorems 1 and 3 also hold
for arbitrary fringes in the same formulations. Let us turn our attention to one more
theorem.

Theorem 5. The limit space of the projection spectrum?®) consisting of nerves
of all star-finite extensionable fringes of a proximity space X., with canonical
projections arising by refining, is canonically homeomorphic to the remainder N..
The limit space of the projection spectrum consisting of nerves of all finite exten-
sionable fringes of the space X, is canonically homeomorphic to the Cech compacti-
fication BN, of the remainder N..

19y 1t is constructed by means of fringes of the structure X in the same way as the group
F"(X,) by means of extensionable fringes.

20) In the sense of Alexandroff-Svedov (see [3] and [19]). The main difference from the
projection spectra considered in the report of Alexandroff-Ponomarev (see page 25) consists in
the fact that the projcctions are multivalued.
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I. We win some more generality if we are not interested, in Problems I and II,
in the properties of remainders but in the properties of compactifications themselves.
However, in applying to properties 2y, and 2, such a formulation does not
yield much new information: we obtain analogous answers with the only difference
that it is necessary to take proximal covers instead of extensionable fringes and
open covers instead of fringes (Remark O will be, of course, unnecessary). For
example, we have the following.

Theorem 6. A space X has a compactification ¢X with dimension at most n if
and only if there exists a topological structure,”') in X, of normal covers*?) of
order <n + 1, moreover, we can achieve the weight of cX to be equal to the weight
of X.

As corollaries, we obtain well-known theorems of Hurewicz [14] and Skljarenko
[22] on existence of compactifications with the same dimension and weight as the
original space. Finally, let us mention the following modification of an interesting
Orevkov’s theorem [17]:

Theorem 7. Let a countable collection of families II, consisting of finite poly-
hedra be given; let each family IT, be either finite or have a finite number of compon-
ents. If a normal space X is fII,~like for each k then it has a compactification of the
same weight as X and it is also fII,-like for each k.
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