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ON TWO-TO-ONE FUNCTIONS 

J. MIODUSZEWSKI 

Wroclaw 

A function/: X -> Yis said to be two-to-one if it is continuous and assumes every 
value in exactly two points. The space of arguments X is assumed to be metric and 
locally compact. In order to exclude the triviality we assume that Yis Hausdorff. It is 
known (CIVIN [1]) that such functions do not exist if X is an n-cell, where rz _ 3 
(the problem for n > 3 is open). The investigation of the two-to-one functions is in 
a natural manner equivalent to the investigation of an involution (p, where (p(x) is the 
element o f /~ 1 / ( x ) different from x. This involution is, in general, discontinuous, but 
it is semicontinuous, i. e. for every x e l w e have 

Ls (p(£) c x u (p(x) u p , 
S-+x 

where p is the point adjoined to X by one-point compactification of X (here Ls denotes 
the topological limit superior in the sense of [2]). Civin showed that the investigation 
of <p on compact manifolds, or, if/ is closed, on locally compact manifolds, is equi
valent to the investigation of some continuous involution. 

We do not assume that X is a manifold, or, if X is not compact, t ha t / i s closed. 
We consider the problem of behaviour of (p on neighbourhoods or on so called pseudo-
neighbourhoods of euclidean points or so called pseudoeuclidean points. According to 
this generality it is possible to obtain some results concerning the non-existence of 
two-to-one functions on some non locally connected continua (see [3]). We give some 
examples. One of them shows that there exist two-to-one functions on euclidean 
H-spaces for r? _ 2 (the problem raised by Civin [1]). 

1. The general properties of involution (p. Denote by C((p) the set of all continui
ty points of (p. It is an open and dense subset of X. The discontinuity point x of 
involution (p is said to be weakly essential (in short, x is a W-point of (p or x e W(q>)) 
if <P(x) = x u cp(x). It is said to be strongly essential (in short, x is an S-point of (p or 
x e S((p)) if <P(x) contains p. A point x e X is said to be pseudoeuclidean if there exists 
a neighbourhood H of x in X such that the closure of the component of x in H is an 
euclidean solid sphere. We shall call such components H the euclidean pseudoneigh-
bourhoods. 

Theorem 1. A pseudoeuclidean point x e X cannot be a W-point of q>\ A, 
where A is the closure of an euclidean pseudoneighbourhood of x in X. 
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In the proof we use a theorem of NEWMAN [4] concerning continuous involutions 
on closures of subdomains of compact manifolds and a theorem of KURATOWSKI [2], 
according to which, upper semicontinuous multi-valued functions are of the 1-st 
Baire class. 

Theorem 2. Let R cz X be a manifold such that for every x e R there exists a 
pseudoneighbourhood of x in X which is a neighbourhood of x in R simultaneously. 
If (p \ R has no S-points then the function 

~(^ _h(0 for £eC(cp\R) 
n C j ~ { £ for £ e R - C(cp | R) 

is continuous and one-to-one. If, in addition, cp(R) <= R, then cp is an involution on R 
and it cannot be the identity on open subsets of R. 

2. The case of locally compact manifolds. According to Theorem 1, involution 
<p has no JV-points if X is a manifold. However, if X is only a locally compact mani
fold then there can exist S-points. Consider the function cp : X — S(cp) -> X defined by 

W j \ £ for £ e X - C ( < p ) - S ( » . 

Theorem 3. If X is a locally compact manifold without boundary then cp is a 
continuous involution on X — S(cp), and it cannot be the identity on open subsets of 
X - S(<p). 

A homeomorphic image of the closed interval 0 ^ t ^ 1, given by a homeo-
morphism h such that h(0) = x and h(t) e X — S(cp) for t 4= 0, is said to be a path 
to the point x. A point x e S(cp) is said to be strongly accessible from X — S(cp) if 
there exists a path to x such that lim cp h(t) = p. 

f->0 

Theorem 4. If X is a locally compact manifold, x is an S-point of cp, and U is 
an open neighbourhood of x in X, then there exist S-points of cp in U, being strongly 
accessible from X — S(cp). 

The proof is similar to that of Theorem 1. Some corollaries are given in [3]. 
We quote here a simple one if X is the straight line, then cp has at most two S-points. 
From this, in an elementary way, we obtain that there do not exist two-to-one funct
ions on the straight line. 

3. Examples. Note first that it is possible to define two-to-one functions on some 
(infinite) dendrites. A more complicated example is an example of two-to-one function 
on a continuum being the closure of a plane simply connected domain, whose bound
ary is an irreductible cut of the plane into two domains (see for description [3]). This 
is in contrast to the non-existence of two-to-one functions on 2-cell. Both of these 
examples may be used in the proof that 

Theorem 5. There exist two-to-one functions on euclidean spaces En for n ^ 2. 
The outline of construction is as follows. We consider En as Sn — C, where C is 

a continuum such that there exist two-to-one functions on it. Let f be one of them and 
let cp be the associated semicontinuous involution on C. Denote by C* the image of C 
18 Symposium 
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by the antipodism on S", and assume that C* n C = 0. In order to define two-to-one 

function on Sn — C, it is sufficient to define a suitable involution. This involution, ky 

is given by 

X( \ = { x* for xєS" - C - C* 
W ~ \ (<p(x*))* for xєC* . 
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