USA 10

David Preiss

Gâteaux differentiable functions are somewhere Fréchet differentiable

In: Zdeněk Frolík (ed.): Proceedings of the 10th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1982. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 2. pp. [217]--222.

Persistent URL: http://dml.cz/dmlcz/701276

Terms of use:

© Circolo Matematico di Palermo, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

GATEAUX DIFFERENTIABLE LIPSCHITZ FUNCTIONS NEED NOT BE FRÉCHET DIFFERENTIABLE ON A RESIDUAL SUBSET

David Preiss

Although a Lipschitz function on a separable Hilbert space is necessarily Gateaux differentiable on a large set (see, for example,[1],[2],[5],[6]), it is not known whether it is Frechet differentiable at least at one point. (See [4].) This problem cannot be solved with the help of the Baire category method, since even on the real line there are Lipschitz functions which are not differentiable on a residual subset. (See [7], where it is proved that for a set $E \subset R$ there is a Lipschitz function f such that E equals to the set of points where f^{\prime} does not exist if and only if E is a $G_{\delta \sigma^{-s e t}}$ of measure zero.) Nevertheless, one may hope that the Baire category method can be used if f is an everywhere Gateaux differentiable Lipschitz function. Here we intend to show that even this is false; we shall construct an everywhere Gateaux differentiable Lipschitz function on a separable Hilbert space which is not Fréchet differentiable on any residual set.

Let H be a real Hilbert space and f a real-valued function on H. Recall that f is said to be Gateaux differentiable at a point x of H if there is an element $d f(x)$ of H such that for all $y \in H$

$$
\lim _{t \rightarrow 0} t^{-1}(f(x+t y)-f(x))=\langle d f(x), y\rangle
$$

and we call $d f(x)$ the Gateaux derivative of f at x. The function f is said to be Frechet differentiable at a point x of H if there is an element $f^{\prime}(x)$ of H such that

$$
\lim _{y \rightarrow 0}\|y\|^{-1}\left(f(x+y)-f(x)-\left\langle f^{\prime}(x), y\right\rangle\right)=0,
$$

$f^{\prime}(x)$ is called the Fréchet derivative of f at x. Clearly, if $f^{\prime}(x)$ exists, then f is also Gateaux differentiable at x and $d f(x)$ $=f^{\prime}(x)$.

Let R denotes the real line and R^{n} the n - dimensional Euclidean space.

We shall first construct Lipschitz functions on R, which are everywhere differentiable with the derivative equal zero on a dense open subset of R, but which are badly approximated by their derivatives. To do this, we use the following consequence of Lemma 7 from [8].

Lemma 1. There is a function $\varphi: R \rightarrow R$ and a constant $C \in R$ such that
(i) φ is everywhere differentiable and $0 \leqslant \varphi^{\prime} \leqslant \mathrm{C}$,
(ii) $\boldsymbol{\varphi}=0$ on $(-\infty, 0], 0<\varphi<1$ on $(0,1)$ and $\varphi=1$ on $[1,+\infty)$, and (iii) $\boldsymbol{\varphi}^{\prime}=0$ on a dense open subset of R .

A simple application of this Lemma gives the following technical result.

Lemma 2. There is a constant $c \in(1,+\infty)$ such that, whenever $\varepsilon, \varepsilon_{n}$ are positive numbers ($n=1,2, \ldots$), there is a sequence of functions $h_{n}: R \rightarrow R$ such that
(i) $\left|h_{n}\right| \leq \varepsilon_{n}$,
(ii) h_{n} is everywhere differentiable and $\left|h_{n}\right| \leqslant c$,
(iii) the derivative of h_{n} equals zero on a dense open set, and (iv) whenever g is a convex combination of two functions h_{n} and h_{m} and $t \in R$, there is $s \in R$ such that $0<|t-s|<\varepsilon$ and $|g(t)-g(s)| \geqslant c^{-1}|t-s|$.
Proof. Let $\boldsymbol{\alpha}_{n}$ be a sequence of positive numbers such that $\alpha_{n}<\varepsilon, \alpha_{n}<\varepsilon_{n}$ and $\alpha_{n+1}<(4 C+4)^{-1} \alpha_{n}$. Let $d(x)$ denote the distance from x to the nearest even integer.

Put $h(x)=\varphi(d(x))$, where φ is the function from Lemma 1. Then $0 \leqslant h \leqslant 1, h^{\prime}$ exists everywhere, $\left|h^{\prime}\right| \leqslant C, h^{\prime}=0$ on a dense open subset of $R, h(x)=0$ if x is an even integer and $h(x)=1$ if x is an odd integer.

Let $h_{n}(t)=\alpha_{n} h_{n}\left(\alpha_{n}^{-1} t\right)$. Clearly $0 \leq h_{n} \leq \alpha_{n}, h_{n}^{\prime}$ exists on $R,\left|h_{n}^{\prime}\right| \leq C$ and $h_{n}^{\prime}=0$ on a dense open subset of R. Whenever $t \in R$, we find $u_{n} \leq t \leq v_{n}$ such that $\left|v_{n}-u_{n}\right|=\alpha_{n}$ and $\left|h_{n}\left(v_{n}\right)-h_{n}\left(u_{n}\right)\right|=$ $\left|v_{n}-u_{n}\right|$. If $g=a h_{n}+(1-a) h_{m}(a \in[0,1], n<m)$, then
$\lg \left(v_{n}\right)-g\left(u_{n}\right)|\geq a| v_{n}-u_{n}\left|-\alpha_{m} \geq\left(a-(4 C+4)^{-1}\right)\right| v_{n}-u_{n} \mid$ and $\lg \left(v_{m}\right)-g\left(u_{m}\right)|\geq(1-a)| v_{m}-u_{m}|-a C| v_{m}-u_{m}|=(1-a(C+1))| v_{m}-u_{m} \mid \cdot$ Hence, if $a(C+1) \geq 1 / 2$, then $\left|g\left(v_{n}\right)-g\left(u_{n}\right)\right| \geq 1 /(4 C+4)\left|v_{n}-u_{n}\right|$, and if $a(C+1) \leqslant l / 2$, then $\left|g\left(v_{m}\right)-g\left(u_{m}\right)\right| \geqslant 1 / 2\left|v_{m}-u_{m}\right| \geqslant 1 /(4 C+4)\left|v_{m}-u_{m}\right|$. Consequently, among the points $u_{n}, v_{n}, u_{m}, v_{m}$ there is at least one point $s \neq t$ such that $\lg (t)-g(s)|\geqslant l /(4 C+4)| t-s \mid$. Since $|s-t|<\varepsilon$, this proves that the Lemma holds with $c=4 C+4$.

We shall also need a special partition of unity in R^{p}.
Lemma 3. Let $G \in R^{p}$ be a nonempty open set. Then there is a
sequence of functions $\boldsymbol{\varphi}_{n}: R^{p} \rightarrow[0,1]$ such that
(i) each, $\boldsymbol{\varphi}_{\mathrm{n}}$ is everywhere Fréchet differentiable, $\boldsymbol{\varphi}_{\mathrm{n}}^{\prime}$ is bounded and $\boldsymbol{\varphi}_{n}^{\prime}=0$ on a dense open subset of R^{p}, (ii) $\operatorname{supp} \varphi_{\mathrm{n}}$ is a compact subset of G and $\operatorname{supp} \boldsymbol{\varphi}_{\mathrm{n}} n \operatorname{supp} \boldsymbol{\varphi}_{\mathrm{m}}=\varnothing$ whenever $|n-m|>1$, and
(iii) the sum of φ_{n} eguals to the charasteristic function of G.

Proof. Let η_{n} be a sequence of continuously differentiable functions with compact supports in G which forms a locally finite partition of unity on G (see, e.g., [3],pp.224-225). Put $\boldsymbol{\psi}_{0}=0$ and, by induction, $\boldsymbol{\psi}_{k+1}=\sum\left\{\eta_{i} ; i \leq k+1\right.$ or $\left.\operatorname{supp} \eta_{i} \cap \operatorname{supp} \psi_{k} \neq \varnothing\right\}$. Then the sequence $\boldsymbol{\rho}_{\mathrm{n}}=\boldsymbol{\varphi}\left(\boldsymbol{\psi}_{\mathrm{n}}-\boldsymbol{\psi}_{\mathrm{n}-1}\right) / \boldsymbol{\Sigma} \boldsymbol{\varphi}\left(\boldsymbol{\psi}_{\mathrm{k}}-\boldsymbol{\psi}_{\mathrm{k}-1}\right)$ (where $\boldsymbol{\varphi}$ is the function from Lemma l) has the desired properties.

We shall construct our example by induction, the induction step being the following lemma.

Lemma 4. Let $G \subset R^{p}$ be an open dense set and let $\varepsilon>0$. Then there is a function $f: R^{p+1} \rightarrow R$ such that
(i) $|f| \leqslant \varepsilon$,
(ii) f^{\prime} exists on $\mathrm{R}^{\mathrm{p}+1}$
(iii) $\left\|f f^{\prime}\right\| \leq c+1$,
(iv) if $x, y \in R^{p}$ and $t \in R$, then $|f(x, t)-f(y, t)| \leq \varepsilon\|x-y\|$,
(v) $f^{\prime}=0$ on a dense open subset of R^{p+1},
(vi) if $x \in R^{p}-G$ and $t \in R$, then $f^{\prime}(x, t)=0$, and
(vii) if $x \in G$ and $t \in R$ then there is $s \in R$ such that $O<\left.\right|_{t}-s \mid<\varepsilon$ and $|f(x, t)-f(x, s)| \geq c^{-1}|s-t|$.

Proof. We may assume $\varepsilon<1$ and $R^{p}-G \neq \varnothing$. Let φ_{n} be a partition of unity on G with the properties from Lemma 3. Let $d_{n}>0$ such that $\left|\varphi_{n}\right| \leq d_{n}^{-1}$ and $\left\|\varphi_{n}^{\prime}\right\| \leq d_{n}^{-1}$. For the given $\varepsilon>0$ and the sequence

$$
\varepsilon_{\mathrm{n}}=\min \left(\varepsilon \mathrm{d}_{\mathrm{n}} 2^{-\mathrm{n}}, \mathrm{~d}_{\mathrm{n}} 2^{-\mathrm{n}} \operatorname{dist}^{2}\left(\mathrm{R}^{\mathrm{p}}-\mathrm{G}, \operatorname{supp} \boldsymbol{\varphi}_{\mathrm{n}}\right)\right)
$$

we construct a sequence h_{n} according to the Lemma. 2 .
Put $f(x, t)=\sum_{n} \boldsymbol{\varphi}_{n}(x) h_{n}(t)$ for $(x, t) \in R^{p} \times R=R^{p+1}$. Then (i) $|f(x, t)| \leqslant \sum d_{n}^{-1} \varepsilon_{n} \leqslant \varepsilon$,
(ii) is clear for (x, t) $\in G \times R$ and for other (x, t) it follows from (vi).
(iii) $\left\|f^{\prime}(x, t)\right\| \leqslant \sum\left|h_{n}(t)\right|\left\|\varphi_{n}^{\prime}(x)\right\|+\sum\left|\varphi_{n}(x)\right|\left|h_{n}^{\prime}(t)\right| \leqslant 1+c$,
(iv) for each $t \in R$ the function $f_{t}(x)=f(x, t)$ is Fréchet differentiable and $\left\|f_{t}^{\prime}(x)\right\| \leq \sum \mid h_{n}(t)\| \| \varphi_{n}^{\prime}(x) \| \leq \varepsilon$,
(v) if D_{n} is a dense open subset of $\left\{x ; \varphi_{n}(x)>0\right\}$ such that
$\varphi_{n}^{\prime}=0$ on D_{n}, H_{n} is a dense open subset of R such that $h_{n}^{\prime}=0$ on H_{n} and $G_{n}=H_{n-1} \cap H_{n} \cap H_{n+1}$, then $f^{\prime}=0$ on $U D_{n} \times G_{n}$,
(vi) for each (x, t) $\in R^{p} \times R$ we have

$$
\begin{aligned}
|f(x, t)| & \leq \sum_{n, x \in \operatorname{supp} \varphi_{n}}\left|\varphi_{n}(x)\right|\left|h_{n}(t)\right| \\
& \leq \sum_{n, x \in \operatorname{supp} \varphi_{n}} 2^{-n} \operatorname{dist}^{2}\left(R^{p}-G, \operatorname{supp} \varphi_{n}\right) \leq \operatorname{dist}^{2}\left(x, R^{p}-G\right) .
\end{aligned}
$$

Hence, if $z \in\left(R^{p}-G\right) \times R$ and $y \in R^{p+1}$ then $|f(y)-f(z)| \leqslant\|y-z\|^{2}$. (vii) Whenever $x \in G$, the function $g: t \rightarrow f(x, t)$ is a convex combination of two functions from the sequence h_{n}, hence (vii) follows from Lemma 2,(iv).

The rest of the construction is straightforward. Let E denote the Hilbert space of all sequences $x=\left(x_{n} ; n=1,2, \ldots\right)$ of real numbers such that $\|x\|^{2}=\sum x_{n}^{2}<\infty$.

Theorem. There is a Lipschitz function f on E which is Gateaux differentiable at each point of E and which is Fréchet differentiable at no point of some residual subset of E.

Proof. By induction we shall construct a sequence of functions $f_{p}: R^{F} \rightarrow R$ and a sequence of open dense subsets G_{p} of R^{p} such that (i) $\left|f_{p}\right| \leqslant 2^{-p}$,
(ii) f_{p}^{p} is Fréchet differentiable at each point of R^{p},
(iii) $\left\|f_{p}^{\prime}\right\| \leq c+1$,
(iv) if ${ }^{p}(x, t),(y, t) \in R^{p} \times R$ then $\left|f_{p+1}(x, t)-f_{p+1}(y, t)\right|$ $\leq 2^{-p} c^{-1} x-y$,
(v) $f_{p}^{\prime}=0$ on G_{p},
(vi) if $(x, t) \in\left(R^{p}-q_{p}\right) \times R$ then $f_{p+1}^{\prime}(x, t)=0$,
(vii) if $(x, t) \in G_{p} x R$ then there is $s \in R$ such that $0<|s-t|<2^{-p}$ and $\left|f_{p+1}(x, s)-f_{p+1}(x, t)\right| \geqslant c^{-1}|s-t|$, and (viii) $G_{p+1} \subset G_{p} \times R$.
(We put $f_{1}=0, G_{1}=R$ and, whenever $f_{1}, \ldots, f_{p}, G_{1}, \ldots, G_{p}$ have been defined, we use Lemma 4 with $G=G$ and $\varepsilon=2^{-p-1} c^{-1}$ to construct the function f_{p+1}. The set G_{p+1} we define as the intersection of $G_{p} R$ with a dense open subset of R^{p+1} at each point of which $f_{p+1}^{\prime}=0$.)

For $x \in E$ we put $f(x)=\sum f_{p}\left(x_{1}, \ldots, x_{p}\right)$.
Since $\sum\left\|f_{p}^{\prime}\right\| \leqslant c+1$ according to (iii), (v), (vi) and (viii), each of the functions $\sum_{p<q} f_{p}\left(x_{1}, \ldots, x_{p}\right)$ has Lipschitz constant $\leqslant c+1$. Consequently, the Lipschitz constant of f is $\leq c+1$.

For each $x \in E$ and each natural k the function
$g_{k, x}\left(t_{1}, \ldots, t_{k}\right)=f\left(t_{1} \ldots, t_{k}, x_{k+1}, \ldots\right)=\sum_{p \leqslant k} f_{p}\left(t_{1}, \ldots, t_{p}\right)+$

$$
+\sum_{p>k} f_{p}\left(t_{1}, \ldots, t_{k}, x_{k+1}, \ldots, x_{p}\right)
$$

is Fréchet differentiable on R^{k} since the sum of Fréchet derivatives converges uniformly according to (iv). Since fis Lipschitz, this implies that f is Gateaux differentiable at each point of E.

Let $H_{p}=\left\{x \in E ;\left(x_{1}, \ldots x_{p}\right) \in G_{p}\right\}$ and let H be the intersection of the sequence H_{p}. Then H is a dense G_{δ} subset of E and $d f(x)=0$ at each $x \in H$. On the other hand, for each $x \in H$ and each natural k we may find $s \in R$ such that
$\left|f_{k+1}\left(x_{1}, \ldots, x_{k}, s\right)-f_{k+1}\left(x_{1}, \ldots, x_{k+1}\right)\right| \geqslant c^{-1}\left|s-x_{k+1}\right|$ and $0<\left|s-x_{k+1}\right|<2^{-k-1}$ (property (vii)). Hence $\begin{aligned}\left|f\left(x_{1}, \ldots, x_{k}, s, x_{k+2}, \ldots\right)-f(x)\right| & \geqslant c^{-1}\left|s-x_{k+1}\right|-\sum_{n>k} 2^{-n} c^{-1}\left|s-x_{k+1}\right| \\ & \geqslant(2 c)^{-1}\left|s-x_{k+1}\right| .\end{aligned}$ (The first inequality follows from (iv).) This shows that f is not Fréchet differentiable at x.

REFERENCES

1. ARONSZAJN N. "Differentiability of Lipschitz mappings between Banach spaces", Studia Math., 57(1976), 147-190.
2. CHRTSTENSEN J.P.R. "Measure theoretic sets in infinite dimensional spaces and application to differentiability of Lipschitz mappings", Actes du Deuxieme Colloque d'Analyse Fonctionelle de Bordeaux, (Univ. de Bordeaux, 1973), no.2, 29-39.
3. FEDERER H. "Geometric measure theory", Springer Verlag, BerlinHeidelberg 1969.
4. FITZPATRICK S. "Metric projection and the differentiability of the distance functions", Bull. Austral. Math. Soc., 22(1980), 291-312.
5. MANKIEWICZ P. "On the differentiability of Lipschitz mappinga in Fréchet spaces", Studia Math., 45 (1973), 15-29.
6. PHELPS R.R. "Gaussian null sets and differentiability of Lipschitz map on Banach spaces", Pacific J. Math., 77(1978), 523-531. 7. ZAHORSKI Z. "Sur 1 "ensemble des points de non-dérivabilité d'une fonction continue", Bull. Soc. Math. France, 74(1946), 147-178.
7. ZAHORSKI Z. "Sur la première dérivéé; Trans. Amer. Math. Soc., 62(1950), 1-54.

Chair of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18600 Prague, Czechoslovakia

