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A CHARACTERIZATION OF A CLASS OF GRAPHS 

CONNECTED WITH THE HYSTERESIS PHENOMENA 

AleS Pultr, Prague 

In the theory of dynamical syterns we are encountered with the 

following situation (see Fig.l(a) ) ; The system is governed by a 

field tending to opposite directions in two (almost complemental) 

••Ł 

ł 
(b) 

Fig.l 

areas of the plane* The borderline is then naturally divided into 

the parts of stable behavior (the segments -o©A, BC9 DE9 F+<*> 

in Fig.1(b) ) and the unstable ones ( X&, CD, EF in Fig.1(b) ). 

If a point moves along a stable part which is connected (obey

ing some further unspecified forces)9 its state can be taken for 

qualitatively unchanged. If we, however, reach an edge, the field 

causes a jump into another state. Thus (see Fig.2(a) ), e.g. at 

the edge B we jump from BC to -o©A9 at the edge A from -<»A to 

DE, etc. We obtain an oriented graph of state transitions the nodes 

of which are the possible states (the maximal connected stable 

parts) and the oriented edges represent the possible jumps* M.Ka-

t&tov and J.Siska put the question as to how to characterize the 

finite oriented graphs thus obtained. 

In this article the question is considered under two restrict-
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ions. One of them is limiting ourselves so far to the monotone ca

se, in which the borderline never changes direction along the y 

axis (i«e, when it can be described by a formula f(-c,y)l x*f(y). 

ytJ ̂  where J is an open interval and f is a continuous function 

—A 

Ы (Ь) 

Fig.2 

tending to -©o at the one end of J and to +00
 a

t the other end)* 

This is an essential restriction* In Fig.3 an example of a border

line such that its graph can be obtained from no monotone one is 

Fig.3 

indicated. On the other hand* very often a non-monotone case can 

be replaced by a monotone one (see Fig.4). 

A less important restriction is the second one : We consider 

the recurrent parts of the graph only (the subgraph consisting of 

the recurrent states, i.e. those into which one can always return
t 

the transient states being left apart - this terminology is bor

rowed from Markov processes, see e.g*|~2j; in graph terminology, 

this amounts to restricting ourselves to connected graphs)* In the 
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description of real processes, the recurrent states are those which 

play the main role. Besides, the procedure described is able to 

handle many transient cases, too; we just have not so far inTesti-

Fig.4 

gated the extent of this* 

The characterization is not given in a form of a compact sys

tem of necessary and sufficient conditions. Instead, we present a 

procedure which decides in polynomial time whether a giTen graph 

belongs to the class or not. 

and all the other a., "І 

We are 

are 

1. H-graphs and their description by means 

of couples of mappings 

!.!• The monotone case can be represented as follows 

giTen a system X, of non-void open intervals 
( U i » b i ) ) i - 0 . . . . . n 

such that 

(i) a
Q
= -oo, b

n
« 

finite, 

(ii) •
i
>

b
i^i *

o r a 1 1
 i<n • 

There is a jump "down" from i to j if j is smallest such that the 

half-line {(b
i#
i+t) | t > 0 } meets the segment (a.,b.)x{j$; si

milarly, there is a jump "up
14
 from i to j if j is largest such 

that l < a . , i - t ) | t > 0 } meets (a.
t
b.)x{ji (see Fig.5). 

1»2» From now on, the motiTation being certainly quite lucid, 

we will stop speaking on borderlines, fields and jumps, and con

sider the situation in the form indicated in 1.1. GiTen a system 

3C » ^
a
i»

b
i^ico n

 w i t n
 *

n e
 described properties, consider 
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the mappings 

defined by 

(fжi {0,l,...,n-lţ 
үxs t-»2 nţ — 

Í 0 # l # # . . f n | f 

Í O # l # . . . f n l 

<f>x(i) • min { j l j > i # • ^ • j ^ 
t^ í i ) = max { j \ j < i # b ^ b j } 

WT 

тт І_L 
i 

Fig. 5 

Define an oriented graph G(X) as 

({0
#
l

#
...

#
n}

f
^Vie > • 

A graph (X
f
R) is said to be an H-.graph if it is isomorphic with 

a G($C) . 

In this section, we will discuss an easy characterization of 

H-graphs (X,R) using explicitely an ordering on X and the decompo

sition of B into the two mappings. In the following one we will 

show that the ordering and the decomposition can be
#
 in essence

f 

reconstructed from R itself. 

1.3. Let L, £ be linearly ordered sets# let L be finite and 

0 resp. T be its first resp. last element. For a mapping (not ne

cessarily monotone) 

ot 2 L-^{Ti — + B 
define 

S : L ^ t T i - ^ E 
by putting £ ( x ) « min £y I y > x & *c(y)> °c(x) } . 

1 .4. Lemma : (a) x < 3 . ( x ) 
(b) x < y < £ ( x ) =^3^(y)<Sj (x ) . 

Proof : (a) is trivial. 

(b) : Let x<y<.SJ(y). If ©i(y)>oc(x)# we would hare in par

ticular ot(y) ̂  ot( ST(x)) and consequently c*(y)><*(x) in contra

diction with the minimality of S2(x) • Q 
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ft#5» Lemma : oo m 06 9 
Proof : For x<y< Sc(x) we haTe £(y)< ot(x) so that 

S (x)>S(x) • 
On the other hand9 if we haTe x<y and od.(x)< oc(j) 9 we haTe 
obTiously 2 (x)^ y-<c£(y)9 and hence 

M1« { y | x<y & <*(x)«*(y)} <̂  £y | x<y & ~(x)<£ty) * k ê 
Thus, 

06 (x) = min U 2 < min MJL = oc(x) • Q 
1>6# ObaerTation : In the notation of 1.2, if we put (S(i) = 

=- b, 9 we haTe <f = (V ; if we put u(i) * a^ and reverse the order* 
ing of i0,lf#..9ni 9 we obtain np »ot • 

1«7» Proposition : A graph (X9R) is an H-graph iff there 
exists a linear ordering < on X and mappings 

<f : X M T i —* X 
yi X M O i —*X 

(0 resp« T is the first resp* last element in < ) such that 
(1) ip(x)<x <cf(x) 9 
(2) x<y<<f(x) **> <f (y) ̂  <f>(x) 9 

x>y>-y(x) =5> f(y) > ij/(x) 9 
(3) B « <f «-> Y * 

Proof : Without loss of generality we may assume that X « 
s[0,l,«,.*9n£ and < is the usual ordering of this set* If fi =<f oy 
is the decomposition from the definition, we haTe (l)-(3) by 1«6 
and 1*4* 

On the other hand* let us haTe CP and tp with the prescribed 
properties* Put b, * <J(±) for i<n 9 b « + <*9 *0= -•• # a.*y(i)*n 
for i > 0 # According to the obserTation in 1«6 and Lemma 1#5 we see 
that the mappings described in 1*2 coincide with the original <f> 
and ^ • Q 

1>8* Remark : In the definition of the interTals (a^9bi) in 
the second part of the preceding proof we haTe b.= b. for i < j < 
< <f(i) (and similarly with a.). If we wish to avoid this9 it suf-x # i * i 
fices to modify the construction to b.s b^- n • ai * ai~ n # 

2* Reconstruction of the decomposition R » y u V 
2.1. If (X9R) is an H-graph and (<9<f »Y> the data from the 

construction of B9 the same R is obtained from (> 9y 9<f ). We im
mediately identify the subset £09T}cx : these are the only two 
points with out-degree one* 

Thus, the problem of unicity of the data goes as follows : Gi-
Ten an H-graph (X9B) and fixing one of the exceptional points as 
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the first one in the ordering we seek, can we reconstruct the data 
< # <f and y ? We are going to show that for connected graphs the 
answer is positive. 

In the sequel. (X,R) is an H-graph and the notation < » <f $ ̂  # 
0 and T is as in 1.2 and 1.3. 

2.2. Lemma : Let 0=xQRx1R#. .Rxr«-T be a squence of distinct 
elements. Then x̂ tf ̂ i+i for all i=0,l,•.•,r-l • 

Proof : Obviously xQ<# x. • Let i be the first index such that 
x i ^ x i + 1 . Since the x. are distinct, we hare

 x\<x±+^< xi+l *or 

some j<i# We will show that then, however, x i + k< x̂ ^ for all k^l 
(and hence we cannot have x = T). The statement already holds for 
k=-l# Suppose we know that x.+.<x.. Then x.<x. « < x . . for some 
j<i. Thus. Xj<x i + k< <pXj , hence x . ^ ^ ^ x . ^ ^ y x ^ x ^ • 
Since xi+k+1i-Xj+1 # we conclude that xi+k<fl< x . ^ x± . Q 

2.3. Lemma : Let x±<f %2Rx^B...Rx be a sequence of distinct 
elements. Let x^ * y y and xf= ̂ y (p^O) and let for all i<r 
and j^O hold x ^ <pjy # Then x r - 1< y and 

x . ^ x ^ for all i=l,...fr-l . 
Similarly, if XJ^ x2R...Rx is a sequence of distinct elements, 
xx= <f(y)» xr ^ y (p^O) and x±t yjy for all i<r and j £0, 
then x^ -> y and r^x 

x^Y*-^! for all i*lf..,r-l • 
Proof : First, we will show that 

(•* ) if x^tf x« *f ••• <{x± for some i<r, we hare x.< y • 
Indeed, we have x.<y ; let us know for some k < i that x.<*y . If 

i i+1 

we had x-^ 5 <pxk> yt there would hare been x
sCfJy<xlL+1< ^

J y 
for some j^O (since X j ^ is still unequal to a <*Jy). Then, how* 
erer, xfe< z <<fx^<. <{z contradicting the property of y • Thus, 
x k + 1< y and the equality is not yet possible, hence x k + 1< y# 

Now, let there be an i such that x^f x
i4>1» take the first of 

such indices. By (*) we have x i<y. We will show that then 
x i + k< y for all k, in contradiction with x *(fPy^y • 

We have x
±4.i

m *VX±<X±< *• Moreover, since 
ipy « x 1 < x i < y 

(here we use the fact that x+<f x^), we have 

and hence there is a j < i such that 
xj < xi+l < xj+l • 

Thus, x±+2^ ^xi«fl^xj+l ^^ xi+2^ xi+l b y the a 8 S U B 1P t i o n °* 
distinctness. If x.^* Y*i+i • the inequality x

±+2? xi i s ob
vious; if xi+2*tpxi+1 we conclude x±+2> xx from x 1

s Y - / < x i + l
< y 
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(and the distinctness of the elements)* 

Let us have already proved that there i s a j < i such that 
x j< x i+k< x j+r Then <rxi*k^ ? v v i «* xi+k+i' V i s o t h a t 

x i -k+i< x j . f i ; i f x i*k + i a ? x i*k w e s e e t n a t x i s r ^ x i ^ k * i 
from Y y < ''i+k^ Jm a 

2.4. Theorem : Let (X,R) be a connected H-graphf 0 one of the 
two points with out-degree 1* Then there exists exactly one order
ing < on X and exactly one couple of mappings 

(p: XM.05-*X # V : xMTi-^X 
such that 

(1) V x y(x)<x <<f(x) f 
(2) x < y < (fix) *> <f(y)* <f(x) f 

t^(x)<y<x => Y(X) < y(y) f 

(3) 0 is the first element in (X,< ) f 
(4) R * <f<-> y . 

Proof * Put 
AQ * {<f

k0 \ k> 0 t <fk0 defined i . 
for ±> 0f A 2 i + 1 * £tfkx | x^A 2 i f k;*0 f VS.: defined}, 
for i> 0f A 2 i « {<jp

kx |xcA 2 i + 1 f k > 0 # <f
kx defined}* 

The proof will be done by subsequent identifying and placing the 
points of Ai on the basis of the knowledge on the sets A. for j<i* 

First of all we deal with the points of AQ* According to Lemma 
2.2 it suffices to find an unrepetitive squenee ORx,R*#*Rx _|RT* 

The steps from 2i to 2i+l and from 2i-l to 2i are quite ana
logous (differring in the interchange Of <f> and tp only). Thusf 
we will discuss just the former one* 

Describe A 2 i as £yQ»y1«.«,yri with 

°* y 0
< y i < # # # < y r s T • 

Consider those y, which were not yet in AoiM| » denote them by 

y t < y t . < . . . < y t • 
o i m 

Of the points of A g ^ t i t suffices to identify and place the tjltyt 

since the other y y. have been already dealt with* •* 
Each y+ has to have the form ?y_ for a y (otherwise i t 

V . 1 8 8 

would not be new in A2i)» We have 

which immediately yieldsJ J 

<~) ytj" Y V 1 ' 
Now, we will identify and place the IP y* inductively by j* For 



246 ALE§ PULTfi 

j«0 there is 0 = ^ 0 only* Let 1[/ y. be dealt with for j<q» We 

can assume q«t for some p. By (**) we haTe y * Yyn.»l • 

Since y is in A^. we already know the <jfy_* This identifies 

also the tpy 9 namely as the target of the remaining arrow starting 

in y • Find an unrepetitiTe sequence 

yq
 s xo^ xl R x2"- xr-l R xr 

such that xr*i(/
Sy „x a n d *jl* V*7 „x * o r a 1 1 J < r *nd *-***• Such a 

sequence necessarily exists since for some a 9b^0 one has yay « 
b i 4 

= 0 = Y y , * By 2*3 wd see that x.s-^y for j<r and 

V ^ Xr-1 < Xr.2< ••• < x i < yq • 

The Talues i|/r+^y are the already identified Y 8* J ya-l * ^ 

2.5. Conclusions : The time required for finding a path be

tween giTen.two points in a connected graph (X9R) with bounded 

out-degrees expands only linearly with the expanding X (see9 
e.g., [l])* Thus, the described procedure does not need more than 

quadratically many steps (in fact, less9 since the longer the 

search for a concrete path has been, the more points are dealt 

with at the stagejl 

Now, giTen an (X9R) we can decide whether it is an H-graph 

simply by running on it the procedure from the proof of 2*4 

(having previously checked whether the out-degrees are always two 

with exactly two exceptions of points with out-degree one). It is 

an H-graph iff the procedure works* 

3. A remark on the general case 

Let us for a moment return to the general (not necessarily mo

notone) case, A graph (X9R) of state transitions obTiously satis

fies the condition 

/,j two of the nodes haTe out-degree one, all the other ones 

haTe out-degree two. 

This necessary condition is obTiously not sufficient* One can see 

easily that such a graph satisfies, moreoTer, 

(X»R) can be drawn in the plane (without intersecting edges) 

(2) so that the two exceptional points can be connected with 

the infinity* 

I do not know an example of a graph satisfying (1)&(2) which is 

not a graph of state transitions* 
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